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Summary

Most traits of economic importance in livestock are either quantitative or complex. Despite
considerable efforts, there has been only limited success in identifying the polymorphisms that cause
variation in these traits. Nevertheless, selection based on estimated breeding values (BVs), calculated
from data on phenotypic performance and pedigree has been very successful. Genomic tools, such as
single nucleotide polymorphism (SNP) chips, have led to a new method of selection called ‘genomic
selection’ in which dense SNP genotypes covering the genome are used to predict the BV. In this
review we consider the statistical methodology for estimating BVs from SNP data, factors affecting
the accuracy, the long-term response to genomic selection and the design of breeding programmes
including the management of inbreeding.

1. Introduction

The objectives of genetic improvement of livestock
are usually quantitative or complex traits such as milk
yield or meat quality. Traditional genetic improve-
ment has relied on using the recorded phenotype of
each animal together with the knowledge of its pedi-
gree to estimate its breeding value (BV), most often
using the statistical method, known as best linear
unbiased selection (BLUP) (Henderson, 1984). This
technology has been very successful, leading to gen-
etic gains in most farmed species (e.g. see Van Vleck
et al., 1986; Havenstein et al., 1994). Despite this
success, there has long been an interest in using simply
inherited genetic markers to increase the rate of
genetic gain and to identify the genes and poly-
morphisms controlling traits in the breeding objec-
tives (as summarized in Dekkers & Hospital, 2002).

Ideally one would identify causal polymorphisms
affecting an objective trait and incorporate these in
the selection criterion (Dekkers, 2004). This has oc-
curred for some mutations that cause genetic abnor-
malities and a small number of polymorphisms with

large effects on quantitative traits (Dekkers, 2004).
However, these known causal polymorphisms explain
only a small proportion of genetic variance in the
breeding objective and have contributed only a small
amount to the genetic gain achieved. This approach
has been limited by our inability to identify most
of the causal polymorphisms affecting our objective
traits.

As new categories of genetic markers were dis-
covered they have been tested for an association with
quantitative traits, even though there was no a priori
reason to expect an association. For instance, bovine
blood groups were sometimes found to be associated
with milk production traits (Neimann-Sorensen &
Robertson, 1961; Rendel, 1961). It is possible that
this association was causal but more likely that it was
due to linkage between the blood group loci and
quantitative trait loci (QTL) that cause variation in
milk production. These associations proved too weak
and too unreliable to be useful in the selection of
livestock.

Microsatellites were the first class of genetic
markers that covered the genome and therefore, had
the possibility to detect QTL no matter where they
were located. Typically 100–200 microsatellites were
used to cover the genome and they detected QTL by
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linkage within full-sib or half-sib families (Georges
et al., 1995). The limitations of these studies were that
they mapped the QTL very imprecisely (often to
confidence intervals of 50 cM) and the marker and
QTL were in linkage equilibrium so that the linkage
phase varied between families. Consequently the
linkage phase had to be determined within each
family before the marker could be used for selection.
Fernando & Grossman (1989) presented a general
method for estimating BVs using markers in linkage
equilibrium with QTL but, in practice, the gains were
small and this method of marker assisted selection
has only been used rarely (but for an exception see
Boichard et al., 2006). By saturating a QTL region
with additional markers, the causal mutation has
occasionally been discovered (Grisart et al., 2003), but
only when it explained an unusually large proportion
of genetic variance.

The QTL mapping studies showed that many QTL
affect a typical quantitative trait (Hayes & Goddard,
2001; Chamberlain et al., 2007). Meuwissen &
Goddard (1996) showed that the gain in selection re-
sponse from marker assisted selection was nearly
proportional to the proportion of genetic variance
explained by the markers. Therefore, a new type of
marker assisted selection was needed that utilized all
QTL and that did not require linkage phase to be
determined for each family. Meuwissen et al. (2001)
showed with simulation that using a dense panel of
markers covering the whole genome and in linkage
disequilibrium (LD) with the QTL could lead to large
increases in response to selection. This type of marker
assisted selection has become known as genomic
selection. It became feasible with the availability of
panels of thousands of single nucleotide polymorph-
isms (SNPs) that could be genotyped at reasonable
cost. It is already widely used in dairy cattle breeding
(Dalton, 2009) and is expected to revolutionize
all livestock genetic improvement programmes and
can be extended to plants (Bernardo & Yu, 2007;
Heffner et al., 2009; Zhong et al., 2009), aquaculture
(Sonesson & Meuwissen, 2009) and prediction of
genetic risk in humans (Wray et al., 2007). In this
review, we will describe the methodology used, the
factors determining the accuracy of selection, the
implementation in breeding programmes, the effect
on long-term genetic gain and the use of genomic
selection for QTL mapping.

2. Methodology

The BV (bv) or additive genetic value of an individual
j can be written as bvj=gNq

i=1xijai where ai is the ad-
ditive effect of the ith QTL and xij is the genotype of
the individual at the ith QTL coded as 0, 1 or 2 for
homozygote, heterozygote and other homozygote re-
spectively, and Nq is the number of QTL. In practice

the QTL position and effects are not known. Instead
we detect the QTL by their LD with markers such as
SNPs. If there is sufficient LD, the genotype at a QTL,
xi, can be predicted from a linear combination of
marker genotypes and so BVs can be estimated by a
linear combination of markers ~bbvj=gNm

i=1mijbi, where
bi is the apparent effect of the ith marker due to its LD
with one or more QTL, mij is the genotype of the jth
individual at the ith marker and Nm is the number of
markers. However, bi has to be estimated from data
and so the estimated breeding value (EBV) for indi-
vidual j becomes bbvbvj=gNm

i=1mijb̂i.
Selection theory shows that an EBV is most accu-

rate if bbvbv=E (bvjdata) where data includes whatever
information is available from which to estimate the
BV. Here this means that the vector of marker effects
b should be estimated as b̂=E (bjdata). The data (y)
usually consists of a reference sample of the popu-
lation that has been measured for the trait and geno-
typed for the markers. Assuming the data (y) have
been corrected for all other effects, then, as presented
in Goddard (2009),

b̂=E(bjdata)=
Z

bp(yjb)P(b)db=
Z

p(yjb)p(b)db,

(1)

where p(b) is the prior distribution of b, and P(y|b) is
the likelihood of the data given b. This shows that the
best estimate of b depends on the distribution of b.
If b follows a normal distribution with the same vari-
ance for all markers byN(0, Isb

2 ) then (1) reduces to a
BLUP estimate of b. Since 10 000–1 000 000 SNPs
may be used, this assumption implies that all SNPs
have very small effects and this is akin to the tra-
ditional infinitesimal model for quantitative traits.

Other assumptions for the distribution of b do not
lead to closed form solutions for b̂ but b̂ can be
calculated by Markov Chain Monte Carlo (MCMC)
methods. For instance, Meuwissen et al. (2001) con-
sidered the case where the marker effects are assumed
to follow a scaled t distribution.Marker effects of large
size are more probable under a t distribution with a
small number of degrees of freedom than under a
normal distribution (i.e. the t distribution has ‘thicker
tails ’ or greater kurtosis than a normal distribution).
This assumption might more correctly reflect the true
situation than assuming that marker effects follow
a normal distribution since some polymorphisms
with large effects on quantitative traits are known.
Meuwissen et al. (2001) called this model of marker
effects ‘Bayes A’ and showed how Gibbs sampling
could be used to estimate the marker effects and hence
the BV of individuals. Although it allows for some
markers with large effects, the Bayes A model still
assumes that all markers have a non-zero effect. If the
number of QTL is much smaller than the number of
markers, one might expect that many markers have
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no effect after those in higher LD with the QTL have
already been included in the model. Therefore,
Meuwissen et al. (2001) introduced a model (that
they called ‘Bayes B’) in which a proportion of the
marker effects follow a scaled t distribution but the
remainder of markers have no effect. Bayes B was
implemented using a combination of Gibbs sampling
and Metropolis–Hasting steps to estimate marker ef-
fects and hence individual’s BVs.

As usual, the BLUP estimate of a marker effect can
be interpreted as a least squares estimate that has been
shrunk or regressed towards zero. This is also the case
for estimates of marker effects under Bayes A and B
models, but they shrink the estimates in a non-linear
manner so that a least squares estimate that is small
relative to its standard error is shrunk almost to zero,
while estimates that are large are shrunk less severely.
Other prior distributions of b including the double
exponential also were considered (Yi & Xu, 2008) and
Meuwissen et al. (2009) gives a closed form solution
for this.

For the case where b is normally distributed there is
an equivalent model that is informative (Habier et al.,
2007; VanRaden 2008; Hayes & Goddard, 2008).
Using the matrix notation, if y=Mb+e and bv=Mb

then y=bv+e with bv � N(0,MMks2
g), whereM is the

matrix of marker genotypes with elements mij defined
above. This is a conventional animal model where y is
the sum of a bv and environmental error (e) but where
the relationships among the individuals are estimated
as MMk. Thus estimating the BV of an individual by
adding the effects of all markers carried (sometimes
called a SNPBLUP model) is equivalent to estimating
the BV using the realized relationship among the in-
dividuals estimated from the markers (sometimes
called aGBLUP). If a set of unphenotyped individuals
are all equally related, they will all receive the same
EBVs and so the correlation between the true BV and
EBV for this set of individuals is zero. This shows
the importance of variation in relationships between
pairs of individuals – it is this variation that provides
power to estimate BV from marker genotypes.

The best method for estimating the relationships is
a slight modification of MMk set out in Yang et al.
(2010). Their method has the lowest standard error
for estimated relationships when the true relation-
ships are small.

3. The accuracy of genomic selection

For individuals with marker genotypes but without
phenotypic records we can calculate their EBV simply
as bbvbvj=gNm

i=1mij b̂i. The accuracy of this EBV depends
on two factors – the proportion of variance in the
QTL explained by the markers due to LD, and the
accuracy with which the b are estimated (Goddard,
2009).

(i) The proportion of variance in the QTL explained
by the markers

The first of these factors can be quantified by the ac-
curacy with which the relationships between indi-
viduals are estimated by the markers. Consider an
infinitesimal model where there are an infinite number
of QTL spread evenly over the chromosomes. If the
markers are a random subset of these QTL they will
estimate the relationship at the QTL except for a
sampling error caused by the finite number of mar-
kers. The variance of the difference between the esti-
mated relationship and the true relationship of a pair
of individuals is called the prediction error variance
(PEV). The PEV of the relationship between in-
dividuals i and j (Gij) caused by the finite number of
markers (Nm) is PEV (Gij)=1/Nm (Yang et al., 2010).
The degree by which this error degrades the estimate
of the true relationship depends on the true variation
in relationship. If pairs of individuals vary widely in
relationship then a small error may be unimportant
but if the true variation is similar to the PEV then
this error will severely affect the accuracy of the
estimated relationship and hence, the EBVs. If in-
dividuals vary in pedigree relationship (e.g. some are
closely related and some are not) then the variation
in true relationship will be great and the markers
should be able to estimate these differences relatively
easily. However, in that case EBVs could be calcu-
lated from the pedigree information without genetic
markers. The real power of genomic selection is to
estimate BV more accurately than could be done
using pedigree data. Therefore, it is the variation in Gij

in excess of that due to variation in pedigree that is
important.

Hayes et al. (2009b) showed how variation in
realized relationship occurs among individuals with
the same pedigree, such as a group of full sibs. Among
pairs of full sibs, some pairs share more than 50% of
their DNA and some share less than 50%. This vari-
ation around 50% only exists because genes on the
same chromosome are linked and so not inherited
independently – if there were an infinite number of
unlinked genes, all pairs of full sibs would share 50%
of their autosomes. The variation about 50% com-
bined with phenotypes on a group of full sibs, allows
us to estimate the BV of an additional full sib from the
same family, even one with no recorded phenotype
(Hayes et al., 2009b). The estimation of BV of an
additional full sib is possible because the new indi-
vidual is more closely related to some of its full sibs
than to others. Full sibs inherit large segments of
chromosome from their parents without recombi-
nation, so whole segments of chromosome are either
shared or not shared between a pair of full sibs. Use
of the relationships in this way to estimate indi-
vidual’s BV is equivalent to estimating the effect of
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chromosome segments on the trait and using these
estimates to predict the BV of the additional full sib.

In a random mating population there is some vari-
ation in pedigree relationship and additional variation
in realized relationship. The variance of the relation-
ship around the pedigree relationship is approxi-
mately log(2NeL)/(2NeLc) where Ne is the effective
population size, L is the average length of a chromo-
some in Morgans and c is the number of haploid
chromosomes. If two individuals share a common
ancestor, there is a probability, defined by their re-
lationship that they both inherit an allele identical by
descent (IBD) from this common ancestor. If they
inherit a common allele at one locus they will also
inherit common alleles at neighbouring loci due to
linkage. On average, the length of this IBD segment
will decrease the more distant the common ancestor
is. The average time to a common ancestor increases
as Ne increases, so the length of chromosome seg-
ments shared IBD decreases asNe increases. Thus, in a
population of large Ne, individuals share many small
chromosome segments and the realized relationship
averages out to close to the relationship expected
from the pedigree. This explains the occurrence of
Ne in the formula for the variance of relationship
about the pedigree relationship. Therefore, for large
genomes and populations with large Ne the variance
of true relationship is very small and so the PEV must
be small if the relationships are to be estimated with
precision and this implies that a large number of
markers are needed.

Using the model based on SNP effects, y=Mb+e,
it is possible to estimate the total genetic variance
explained by the SNPs. The same answer can be
achieved by using the equivalent model based on re-
lationships estimated from the SNPs (Yang et al.,
2010). In either case the variance estimated will be less
than the total genetic variance if the QTL are not in
perfect LD with the SNPs or, equivalently, if the
estimated relationship is not an unbiased estimate of
the relationship at the QTL. In cattle breeds such as
Holsteins, the recent Ne has been small (y100) so the
variation in relationship is large and 50 000 SNPs can
estimate the relationships well and so the genetic
variance explained by the SNPs is close to the full
genetic variance (VanRaden et al., 2009). This is
equivalent to saying that the QTL genotypes can be
predicted by the SNP genotypes due to LD between
them. However, in humans recent Ne has been very
large and so the variance of true relationships is small
and even with 600,000 SNPs the PEV is significant
and results in the genetic variance explained by the
SNPs being only about half the known genetic vari-
ance (Yang et al., 2010). This is due partly to the use
of a finite number of SNPs to estimate the relation-
ship but also to systematic differences between the
SNPs and QTL. If QTL and SNPs have different

evolutionary histories, there may be systematic dif-
ferences in the relationships at QTL and at SNPs. For
instance, if QTL mutant alleles are typically elimi-
nated by selection, they will tend to be young, and so
ancient relationships estimated from the SNPs may
not be relevant. An equivalent description of this
situation is that QTL will have low minor allele fre-
quency (MAF) and so cannot be in high LD with
SNPs that have higher MAF. Consequently, the SNPs
will explain less of the genetic variance of a trait than
expected simply by accounting for the PEV due to a
finite number of SNPs. Yang et al. (2010) found that
SNPs only explained about half the genetic variance
for human height but they should have explained
80% if the QTL had behaved like SNPs.

Since the true variance in relationships is dependant
on NeLc and the PEV with which it is estimated is
1/Nm, it is not surprising that the accuracy of EBVs
depends on Nm/(NeLc) (Meuwissen, 2009; Meuwissen
& Goddard, 2010).

In the argument above we assumed an infinite
number of QTL. However, BLUP estimates of EBVs
are insensitive to the true genetic model for the trait
and give a similar accuracy regardless of the actual
number of QTL governing variation in the trait
(Meuwissen & Goddard, 2010).

(ii) The accuracy with which the marker effects
are estimated

If the BLUPmodel is used to estimate SNP effects, the
standard theory provides estimates of the accuracy of
the estimated SNP effects and the EBVs of individuals
provided that the correct variance components are
used. To the extent that the SNPs do not explain all
of the genetic variance, an additional ‘polygenic’ term
(u) should be included in the statistical model with
V(u)=Asu

2 where A is the relationship matrix con-
structed from pedigree information and su

2 is the
genetic variance not explained by the SNPs (Hayes
et al., 2009a). In the equivalent model based on rea-
lized relationships the G matrix should be estimated
by regressing MMk back towards A to account for the
error in the relationships estimated by MMk.

If all SNPs were independent (i.e. no LD) then
the accuracy of estimating any one SNP effect is
approximately

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(n+l)

p
where n is the number of

animals with genotypes and phenotypes and l=s2/sb
2 ,

where s2 is the phenotypic variance, that is, the vari-
ance of y. However, the LD between SNPs and QTL
located close together on a chromosome causes a
segment of chromosome to act almost as a block and
the accuracy of estimating the effect of the block is
given by the above formula but with l=ss2/sg

2, where
s is the effective number of chromosome segments.
The best value to use for s has not been fully resolved
but is approximately 2NeLc/log(2NeL) (Hayes et al.,
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2009b). The accuracy of estimating a single SNP effectffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(n+l)

p
also equals the accuracy of estimating that

part of the BV that is predicted by the SNPs, which is
the sum of many SNP effects.

If the SNP effects (b) do not follow a normal
distribution, the accuracy achieved using the BLUP
model is relatively unaffected. However, greater ac-
curacy can be achieved by a statistical method whose
assumption about the distribution of b more closely
approximates the true distribution. For instance, if a
trait is controlled by a small number of QTL, some of
which have a moderately large effect, then Bayes
B yields higher accuracy than the BLUP analysis
(Verbyla et al., 2009). This is not surprising because
Bayes B assumes that many of the SNP effects are
zero and the remainder follow a scaled t-distribution
which allows for some larger than normal effects.
However, whether a BLUP or Bayes B analysis is
used, l is still a key parameter in determining the
accuracy (Meuwissen & Goddard, 2010).

Unfortunately, we do not know the true distri-
bution of apparent SNP effects but for some traits
there are clearly a small number of QTL with effects
that are larger than would be sampled from a normal
distribution. Also it seems likely that as the number of
SNPs used increases the assumption that many have
zero effect is more likely to be true. Therefore, Bayes
B seems to be widely useful – it seldom performs worse
than BLUP and sometimes is significantly better
(see experimental results discussed later in this paper).

Many empirical methods have been tried for pre-
dicting BV from SNP genotypes (e.g. Gianola et al.,
2009; Moser et al., 2009). In most cases to date many
methods give similar accuracy. However, it seems
logical to attempt to use an explicit assumption about
the distribution of b and to make this assumption as
close to reality as possible. Most of these methods
imply an additive model of QTL effects. This seems
appropriate when the aim is to estimate BV because
this is by definition a linear combination of QTL
effects. However, if the aim was to estimate total
genetic value a model assuming non-additive genetic
effects might be better. Non-additive effects can be
included in the model explicitly or a non-parametric
or semi-parametric method such as kernel regression
may be used (Gianola et al., 2006). Lee et al. (2008)
showed that mouse colour could be predicted better
by including dominance in the model but the difficulty
with such non-additive models is likely to be the
inability to estimate numerous small effects that typi-
cally explain a small amount of the variance (Hill
et al., 2008).

The methods to estimate BV from marker geno-
types presented in this paper have a natural Bayesian
interpretation which includes a prior distribution
of marker effects. However, very similar methods
can be derived from non-Bayesian perspectives.

For instance, they can also be derived as the expected
value of BV in a frequentist setting where marker
effects are regarded as random samples from a popu-
lation of random effects. Penalized least squares and
other machine learning methods can also yield similar
results (Moser et al., 2009).

(iii) Experimental results

The accuracy of genomic prediction of BV has been
assessed by estimating a prediction equation using
one dataset and then testing the prediction in a second
independent dataset. When this has been done the
results are qualitatively in line with the theory above.
For instance Wiggans et al. (2010) observed the ac-
curacy to increase from 0.80 to 0.84 as the number of
records (n) used increased from 3700 to 7173.

In many respects, the conditions examined by
VanRaden et al. (2009) and Wiggans et al. (2010) are
the most favourable. All the animals were within one
breed of cattle (Holstein) and the recent effective
population size of this breed is low (y100). This
means that the variation in true relationship is large
or equivalently that the LD between SNPs and QTL is
high, so that the approximately 40 000 SNP explain
most of the genetic variance. Also, the low Ne means
that the effective number of chromosome segments (s)
is small and so the accuracy of estimating their effects
is high. This is further aided by the use of progeny
tested sires as the experimental animals since they
have relatively accurate estimates of BV and so the
residual error in the data (se

2) is low.
Experiments in other livestock have not yielded

such high accuracy. For instance, in sheep breeds the
accuracy achieved has been lower than reported in
Holsteins (Daetwyler et al., 2010). This is expected
because the number of animals with marker geno-
types and phenotypes is smaller, these animals belong
to multiple breeds and the phenotypic data consists
of individual animal phenotypes instead of the
progeny test used in the Holstein case. In humans,
where recent Ne is very large, the accuracy of pre-
dicting phenotype has been low despite large datasets
(Manolio et al., 2009). However, formal prediction
methods such as Bayes B have not been attempted.

As the number of records increases in other breeds
and species the accuracy of the EBVs is expected to
increase as it did in Holsteins. However, for many
breeds and species it may not be possible to assemble
such high quality datasets as has been done for
Holsteins. In these cases it would be desirable to
combine data from several breeds within a species.
This is only beneficial if the phase of LD between
SNPs and QTL is the same in different breeds. This is
not the case when 50 000 SNPs are used in cattle
breeds (de Roos et al., 2008) but consistent LD phase
should occur if denser SNPs are used (e.g. 500 000).
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Unfortunately, when multiple breeds are used, the
effective number of chromosome segments (s) in-
creases, implying that even larger datasets are needed.
Therefore, we expect that the increased accuracy
achieved from high density SNP panels will be greater
if methods such as Bayes B, which assume many SNPs
have zero effect, are used.

Methods such as Bayes B do yield higher accuracy
of EBV than BLUP in traits with segregating QTL of
moderate effect (Hayes et al., 2010). For instance,
EBVs for fat concentration in milk and proportion of
white colour in the coat of Holstein cattle where more
accurate when Bayes B was used than when BLUP
was used and there are known genes segregating
which effect these traits (Hayes et al., 2010).

4. Implementation of genomic selection

In most livestock breeds there are systems in place to
calculate EBVs from traditional phenotypic records
and pedigrees. In dairy cattle these operate at a
national and international level. The use of DNA
data to increase the accuracy of EBVs needs to be
integrated into these existing systems. At present
most systems have very large databases of traditional
phenotypic records (from millions of animals) and
comparatively small databases of SNP genotypes.
Consequently strategies have been devised to mini-
mize the additional computing load in the analysis of
the large database. For instance, the SNP genotypes
can be combined in a prediction equation to yield an
estimate of BV coming only from SNPs. This has been
called a direct genetic value (DGV) or marker breed-
ing value (MBV). A selection index is then used to
combine this estimate with that generated by the tra-
ditional analysis, which does not use SNPs at all,
resulting in a final published EBV (Harris & Johnson,
2010). Alternatively, the DGV can be treated as
an additional trait, genetically correlated with the
phenotypic trait, in a multi-trait BLUP analysis of the
large dataset. This has the advantage that it propa-
gates the DGV to the relatives of an animal with SNP
genotypes but at the cost of increased computing
burden. A third method is to use the equivalent model
based on relationships. For animals with SNP geno-
types these are used to calculate the relationship and
for other animals the pedigree relationship is adjusted
for the knowledge contained in the relationships
based on genotypes (Legarra & Misztal, 2008). This
method requires raw genotypes rather than DGVs
and it is most useful if the BLUP method of estimat-
ing SNP effects is to be used. However, other methods
such as Bayes B could be used by calculating a re-
lationship matrix from the SNPs but weighting the
SNPs according to the variance associated with them.
If, in the future, large numbers of animals have SNP
genotypes, it may be that the genetic evaluation

system will be completely changed to one that uses
genetic markers rather than pedigree relationships, as
suggested by Goddard (1998).

If the data contains many animals each with many
genotypes, then MCMC methods to estimate SNP
effects can take so much computer time as to become
impractical. Approximations to Bayes B that use an
EM algorithm instead of sampling (Shepherd et al.,
2010) may overcome this problem.

5. The design of breeding programmes that utilize

genomic selection

Marker assisted selection is most useful for traits
which cannot be recorded on an individual prior to the
(minimum) age of breeding (Meuwissen & Goddard,
1996). For instance, traits which are only displayed
in females or only observable late in life or after
slaughter benefit most. Traditionally traits such as
milk yield, which is not displayed by bulls, have been
improved by progeny testing bulls based on their
daughters ’ milk yield. This leads to an accurate esti-
mate of the bull’s BV but at the expense of a long
generation interval. The benefit of genomic selection
is that bulls and heifers can be selected early in life and
the generation interval reduced leading to approxi-
mately doubling genetic gain per year (Schaeffer,
2006; König et al., 2009; Pryce et al., 2010). This
radically changes the design of dairy breeding pro-
grammes which have been based on progeny testing.
By using genetic markers and genomic selection we
can select the best bulls when they are born and breed
from them at 1 year of age instead of waiting until
they have completed a progeny test at 5 years of age.
Despite the large change in breeding programmes
needed to capture the benefit of genomic selection it is
being widely adopted. In the USA, 52 786 Holstein
dairy cattle alone had been genotyped with a SNP
chip up to September 2010 (George Wiggans, per-
sonal communication).

In developing countries it has been hard to im-
plement traditional genetic improvement programmes
because they are logistically complex especially if they
require recording the pedigree and production of
thousands to millions of animals. Genomic selection
might be more practical than traditional selection in
these countries. The development of a prediction
equation would still require recording the perform-
ance of many animals but pedigree would not be
required and implementation would require only a
DNA sample from each selection candidate and the
laboratory facilities to genotype SNPs and compute
EBVs from them.

6. Long-term response to genomic selection

If a prediction equation is estimated in the base gen-
eration and used for selection for several subsequent

M. E. Goddard et al. 418

https://doi.org/10.1017/S0016672310000613 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672310000613


generations, simulation studies show that the selec-
tion response declines rapidly (Muir, 2007). Goddard
(2009), shows that this is due to two processes. First,
selection drives the selected SNP allele towards fix-
ation more quickly than the favourable QTL allele so
that the LD between them, which genomic selection
relies on, diminishes. Second, traditional mass selec-
tion on phenotype does not result in a rapid decline
in genetic variance because increasing the frequency
of initially rare favourable alleles compensates for
the movement towards fixation of common, favour-
able alleles. However, genomic selection is unlikely
to select effectively for rare alleles because they are
poorly correlated with the common SNPs. The de-
cline in rate of response to genomic selection is likely
to be slower if the trait is controlled by very many
genes, each with very small effects, because then the
change in allele frequency will be slower.

This reduction in response over time can be reduced
in a number of ways. Re-estimating the prediction
equation each generation would partially prevent the
decline in response (Muir, 2007). Goddard (2009)
presented a method to optimize long-term response
which decreases selection pressure on QTL that are
initially common and of large effect, compared with
selection on EBV alone. When very high density SNP
genotyping and the Bayes B method of estimation of
SNP effects is used, only SNPs that are in close LD to
the QTL obtain estimated effects l0, with accuracies
that persist over time, since the LD persists over time
(Meuwissen & Goddard, 2010).

Long-term response is also reduced by inbreeding
which of course also causes inbreeding depression.
In traditional selection it is possible to balance
maximizing the EBV of selected animals with mini-
mizing long-term inbreeding by optimizing the con-
tribution of individual animals to the next generation
(Wray & Goddard, 1994; Meuwissen, 1997). By using
the relationship matrix estimated from the SNPs
this method can be extended to genomic selection
(Sonesson & Meuwissen, 2010b).

7. Genomic selection in plants and aquaculture

In principle genomic selection could be applied to
crops and species used for aquaculture as well as
to livestock. However, some practical problems are
likely to occur. Some species have very large Ne in the
wild and hence, the LD extends over a very short
distance. This means that very dense SNP genotyping
would be necessary and possibly very large sample
sizes as well. This may be uneconomical especially
where individual plants or fish have a small value.
To overcome these problems it may be necessary
to reduce Ne in a breeding programme, for instance,
by using only the best families or existing varieties
to breed the new strain. A novel design has been

suggested (Sonesson et al., 2010), where estimation of
SNP effects is based on the genotyping of DNA pools
and SNP density is reduced by estimating SNP effects
within one or a few families.

Deliberating reducing Ne could lead to faster
inbreeding and inbreeding depression but this can be
avoided when the commercial animal or plant is a
cross between two or more lines. Reciprocal recurrent
selection is selection within pure strains based on the
performance of their crossbred offspring. This is a
selection method which increases crossbred perform-
ance and heterosis and thus can be described as
minimizing inbreeding depression. Genomic selection
would be particularly useful for reciprocal recurrent
selection because it would eliminate the need for a
progeny test and therefore, reduce generation interval.

8. Genomic prediction in humans

In humans the same techniques for predicting genetic
value, from a genome wide panel of SNPs, could be
used to predict the genetic risk of a particular disease
that an individual faces (Wray et al., 2007). This could
be a more accurate prediction than that already made
from family history and used in disease prevention,
diagnosis, treatment and counselling. However, the
high recent Ne of humans implies that many SNPs
and a reference population with very many people will
be needed to achieve a highly accurate prediction. It is
hoped that use of methods such as Bayes B that
identify the SNPs in LD with causative variants will
lead to higher accuracy methods such as BLUP.

9. Mapping and identifying QTL

The genome wide SNP genotypes that are used in
genomic selection are also used in genome wide as-
sociation studies (GWAS) to map genes for complex
traits (Goddard & Hayes, 2009). Typically in a
GWAS each SNP is tested for an association with the
traits ignoring all other SNPs. Consequently the as-
sociation at one SNP could reflect the action of more
than one QTL and so the SNP with the largest as-
sociation may not be the closest SNP to a QTL. In
genomic selection all the SNPs are fitted at once which
may result in more precise mapping of the QTL.
However, when the BLUP model of SNP effects is
used many SNPs are estimated to have small effects
and the position of the QTL is again blurred. But
when a method such as Bayes B is used the SNPs with
large effects might be good indicators of the position
of QTL, (Verbyla et al., 2009).

10. Future developments

The cost of genome sequencing is dropping rapidly so
in the near future sequence data on individuals will
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supplement SNP genotype data. This will increase the
accuracy of EBVs because it will provide very dense
markers and will include the causal mutations
(Meuwissen & Goddard, 2010). Only a sample of
individuals from any species of livestock will be
sequenced but other animals will have sequence
imputed from SNP genotypes using the database of
sequenced animals as a reference. This will provide a
large number of animals with phenotypic records and
imputed genome sequence and this should constitute
a powerful resource for discovering the causal muta-
tions. This should lead to development of prediction
equations that persist across generations and across
breeds, since the LD between the SNPs and the QTL
is (nearly) complete.
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