Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-24T21:46:25.168Z Has data issue: false hasContentIssue false

PEARL MILLET PRODUCTION PRACTICES IN SEMI-ARID WEST AFRICA: A REVIEW

Published online by Cambridge University Press:  11 February 2015

STEPHEN C. MASON*
Affiliation:
Department of Agronomy and Horticulture, 279 Plant Science, University of Nebraska-Lincoln, Lincoln NE 68583-0915, USA
NOURI MAMAN
Affiliation:
INTARNA Research Station, Institut National de Recherche Agronomique du Niger (INRAN), B.P. 240, Maradi, Niger
SIÉBOU PALÉ
Affiliation:
Institut d'Evironnement et de Recherche Agricoles (INERA), B.P. 476, 01 Ouagadougou, Burkina Faso
*
Corresponding author. Email: smason1@unl.edu

Summary

Pearl millet (Pennisetum glaucum L.) is an important grain crop for millions of poor farmers and consumers in the semi-arid region of West Africa. During the past 40 years, much research on pearl millet production practices and adoption in this region has been conducted, but an attempt to summarize these results has not been previously completed and these research results are not readily available to many West African scientists. This review was completed to address this need and integrate knowledge, and at the same time identify research needs for the future and extension priorities for semi-arid West African agro-ecological zones. Research has shown that selection of improved varieties and cropping systems, appropriate cultural practices, and recommended integrated soil, nutrient, residue and pest management can greatly increase grain and stover yields of pearl millet. However, adoption by farmers has been minimal due to limited profitability, high risk and labour demand, limited input supply, market availability and appropriate public policy. This review has 196 articles included as in-text citations (Table 1) compared to 149 articles in the reference list, indicating that only one in four articles integrated two or more topics in the research. The obvious conclusion is that most of the past research has not addressed the ‘system’ but rather one or two management practices. In addition, most studies have interpreted responses in terms of yield without addressing other important considerations for farmer adoption. Recent conservation agriculture research moves closer to addressing the larger integrative types of research needed. Such research is complex and requires sustained funding for field and laboratory activities, but also for computer simulation modelling and economic assessment.

Type
Review Paper
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abate, T., van Huis, A. and Ampofo, J. K. O. (2000). Pest management strategies in traditional agriculture: an African perspective. Annual Review of Entomology 45:631659.Google Scholar
Abdou, A., Koala, S. and Bationo, A. (2012). Long-term soil fertility trials in Niger, West Africa. In lessons learned from long-term soil fertility management experiments in Africa, 105120 (Eds Bationo, B., Waswa, B., Kihara, J., Adolwa, I., Vanlauwe, B. and Saidou, K.). Dordrecht: Springer.Google Scholar
Abdoulaye, T. and Lowenberg-DeBoer, J. (2000). Intensification of Sahelian farming systems: evidence from Niger. Agricultural Systems 64:6781.CrossRefGoogle Scholar
Abdoulaye, T. and Sanders, J. H. (2005). Stages and determinants of fertilizer use in semiarid African agriculture: the Niger experience. Agricultural Economics 32:167179.CrossRefGoogle Scholar
Abdoulaye, T. and Sanders, J. H. (2006). New technologies, marketing strategies and public policy for traditional food crops: Millet in Niger. Agricultural Systems 90:172292.Google Scholar
Alene, A. D. and Manyong, V. M. (2007). The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis. Empirical Economics 32:141159.CrossRefGoogle Scholar
Anaso, C. E., Lale, N. E. S., Kano, M. A. and Anaso, A. B. (1998). Use of pesticidal plant extracts for pest control in millet-based cropping systems. In Pearl Millet in Nigerian Agriculture, 154170 (Eds Emechebe, A. M., Ikwelle, C., Ajayi, O., Aminu-Kano, M. and Anaso, A. B.). Maiduguri, Nigeria: Ramadan Press.Google Scholar
Andrews, D. J. and Brammel-Cox, P. J. (1993). Breeding cultivars for sustainable crop production in low input dryland agriculture in the tropics. In International Crop Science, 211–23 (Eds Burton, D. R., Shibles, R., Forsberg, R. A., Blad, B. L., Asay, K. H., Paulsen, G. M. and Wilson, R. F.). Madison, Wisconsin: Crop Science Society of America.Google Scholar
Aune, J. B. and Bationo, A. (2008). Agricultural intensification in the Sahel – The ladder approach. Agricultural Systems 98:119125.Google Scholar
Bagayoko, M., Buerkert, A., Lung, G., Bationo, A. and Römheld, V. (2000a). Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant and Soil 218:103116.Google Scholar
Bagayoko, M., George, E., Römheld, V. and Buerkert, A. (2000b). Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. Journal of Agricultural Science 135:399407.Google Scholar
Bagayoko, M., Maman, N., Palé, S., Sirifi, S., Taonda, S. J. B., Traore, S. and Mason, S. C. (2011). Microdose and N and P fertilizer application for pearl millet in West Africa. African Journal of Agricultural Science 6:11411150.Google Scholar
Bagayoko, M., Mason, S. C., Traore, S. and Eskridge, K. M. (1996). Pearl millet/cowpea cropping system yields and soil nutrient levels. African Crop Science Journal 4 (4):453462.Google Scholar
Baidu-Forson, J. and Bationo, A. (1992). An economic evaluation of a long-term experiment on phosphorus and manure amendments to sandy Sahelian soils: using a stochastic dominance model. Fertilizer Research 33:193202.Google Scholar
Bationo, A. and Buerkert, A. (2001). Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems 61:131142.CrossRefGoogle Scholar
Bationo, A., Christianson, C. B. and Baethgen, W. E. (1990). Plant density and nitrogen fertilizer effects on pearl millet production in Niger. Agronomy Journal 82:290295.Google Scholar
Bationo, A., Christianson, C. B., Baethgen, W. E. and Mokwunye, A. U. (1992). A farm-level evaluation of nitrogen and P fertilizer use and planting density for pearl millet production in Niger. Fertilizer Research 31:175184.Google Scholar
Bationo, A., Christianson, C. B. and Klaij, M. C. (1993). The effect of crop residue and fertilizer use on pearl millet yields in Niger. Fertilizer Research 34:251258.Google Scholar
Bationo, A., Kimetu, B., Vanlauwe, B., Bagayoko, M., Koala, S. and Mokwunye, A. U. (2011). Comparative analysis of the current and potential role of legumes in integrated soil fertility management in West and Central Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management, 117150 (Eds Bationo, A., Waswa, B., Okeyo, J. M., Maina, F., Kihara, J. and Mokwunye, U.). Dordrecht: Springer.Google Scholar
Bationo, A., Lompo, F. and Koala, S. (1998). Research on nutrient flows and balances in West Africa: state-of-the-art. Agriculture, Ecosystems and Environment 71:1935.CrossRefGoogle Scholar
Bationo, A. and Mokwunye, A. U. (1991). Role of manures and crop residue in alleviating soil fertility constraints to crop production: with special reference to the Sahelian and Sudanian zones of West Africa. Fertilizer Research 29:117125.Google Scholar
Bationo, A., Mughogho, S. K. and Mokwunye, A. U. (1986). Agronomic evaluation of phosphate fertilizers in tropical Africa. In Management of Nitrogen and Phosphorus Fertilizers in Sub-Saharan Africa, 283318 (Eds Mokwunye, A. U. and Vlek, P. L. G.). Dordrecht: Martinus Nijhoff Publishers.Google Scholar
Bationo, A., Ntare, B. R., Pierre, D. and Christianson, B. C. (1996). Crop rotation and N effects on crop yield and soil chemical properties in a sandy soil of West Africa Semi-Arid Tropics. Fertilizer Research 37:7581.Google Scholar
Baudron, F., Jaleta, M., Okitoi, O. and Tegegn, A. (2014). Conservation agriculture in African mixed crop-livestock systems: expanding the niche. Agriculture, Ecosystems and Environment 187:171182.Google Scholar
Bekunda, M. A., Bationo, A, Ssali, H. (1997). Soil fertility management in Africa: a review of selected research trials. In Replenishing Soil Fertility in Africa, 6379 (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, F.). Madison, Wisconsin: Soil Science Society of America.Google Scholar
Bidinger, F. R. and Hash, C. T. (2004). Pearl Millet, 225270 (Eds Nguyen, H. T. and Blum, A.). New York: Marcel Dekker.Google Scholar
Bielders, C. L., Michels, K. and Rajot, J.-L. (2000). On-farm evaluation of ridging and residue management practices to reduce wind erosion in Niger. Soil Science Society of America Journal 64:17761785.Google Scholar
Bilquez, A. F. (1963). Etude due mode d’hérédité de la précocité chez le mil pénicillaire (Pennisetum typhoides Stapf et Hubbard): I. Déterminisme génétique des diffénces de sensibilité a la longueur du jour existant entre les mils de groupe sanio et ceux du groupe souna (Study of Pennisetum typhoides Stapf et Hubbard): Genetic determination of daylength sensitivity differences existing among millet in the sanio and souna groups). Agronomie Tropical 18:12491253.Google Scholar
Boffa, J. M., Taonda, S. J. B., Dickey, J. B. and Knudson, D. M. (2000). Field-scale influence of karaté (Vitellaria paradoxa) on sorghum production in the Sudan zone of Burkina Faso. Agroforestry Systems 49:153175.Google Scholar
Breman, H. and Kessler, J. J. (1997). The potential benefits of agroforestry in the Sahel and other semi-arid regions. European Journal of Agronomy 7:2533.Google Scholar
Brouwer, J. and Powell, J. M. (1998). Increasing nutrient use efficiency in West-African agriculture: the impact of micro-topography on nutrient leaching from cattle and sheep manure. Agriculture, Ecosystems and Environment 71:229239.Google Scholar
Buerkert, A., Bagayoko, M., Bationo, A. and Römheld, V. (2000b). Soil fertility management and crop production in semi-arid and sub-humid West Africa. In Adapted Farming in West Africa: Issues, Potentials and Perspectives, 129151 (Eds Graef, F., Lawrence, P. and von Oppen, M.). Stuttgart, Germany: Verlage Ulrich E. Grauer.Google Scholar
Buerkert, A., Bationo, A. and Dossa, K. (2000a). Mechanisms of residue mulch-induced cereal growth increases in West Africa. Soil Science Society of America Journal 64:346358.Google Scholar
Buerkert, A., Bationo, A. and Piepho, H. P. (2001). Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa. Field Crops Research 72:115.Google Scholar
Buerkert, A., Piepho, H. P. and Bationo, A. (2002). Multi-site time-trend analysis of soil fertility management effects on crop production in Sub-Saharan West Africa. Experimental Agriculture 38:163183.Google Scholar
Buerkert, A. and Stern, R. D. (1995). Effects of crop residue and phosphorus application on the spatial variability of non-destructively measured millet growth in the Sahel. Experimental Agriculture 31:429449.Google Scholar
Buntin, G. D., Hanna, W. W., Wilson, J. P. and Ni, X. (2007). Efficacy of insecticides for control of insect pests of pearl millet for grain production. Plant Health Progress, doi:10.1094/PHP-2007-0219-01-RS. Online at http://plantmanagementnetwork.org/php/.Google Scholar
Buresh, R. J., Smithson, P. C. and Hellums, D. T. (1997). Building phosphorus capital in Africa. In Replenishing Soil Fertility in Africa, 1150 (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, F.). Madison, Wisconsin: Soil Science Society of America.Google Scholar
Camara, Y., Bantilan, M. C. S. and Ndjeunga, J. (2006). Impacts of sorghum and millet research in West and Central Africa (SCA): a synthesis and lessons learnt. SAT eJournal oline at http://ejournal.icrisat.org/index.htm.Google Scholar
Carsky, R. J., Singh, I. and Ndikawa, R. (1994). Suppression of Striga hermonthica of sorghum using cowpea intercrop. Experimental Agriculture 30:130132.CrossRefGoogle Scholar
Carson, A. G. (1988). Effect of intercropping sorghum and groundnuts on density of Striga hermothica in the Gambia. Tropical Pest Management 34:97101.CrossRefGoogle Scholar
Charreau, C. and Nicou, R. (1971). L’amelioration du profil cultural dans les sol sableux et sablo-argileux de la zone tropicale seche ouest-africane et ses incidences agronomique (The improvement of the cultural profile of sandy and sandy clay in dry tropical West Africa and agronomic implications). Agronomie Tropical 26:903978.Google Scholar
Coulibaly, A., Bagayoko, M., Traore, S. and Mason, S. C. (2000). Effect of crop residue management and cropping system on pearl millet and cowpea yield. Africa Crop Science Journal 8 (4):18.Google Scholar
Dancette, C. (1983). Besoins en eau du mil au Sénégal: Adaptation en zone semi-arid tropicale (Millet water needs in Senegal: adaptation to semi-arid tropical environments). Agronomie Tropicale 38:267280.Google Scholar
de Rouw, A. (2004). Improving yields and reducing risks in pearl millet farming in the African Sahel. Agricultural Systems 81:7393.Google Scholar
Odo, P. E. and Bibinu, A. T. S. (1998). Effects of sowing date and planting pattern on millet/legume mixtures. In Pearl Millet in Nigerian Agriculture, 114119 (Eds Emechebe, A. M., Ikwelle, M. C., Ajayi, O., Aminu-Kano, M. and Anaso, A. B.). Maiduguri, Nigeria: Ramadan Press.Google Scholar
Doraiswamy, P. C., McCarty, G. W., Hunt, E. R. Jr., Yost, R. S., Doumbia, M. and Franzluebbers, A. J. (2007). Modeling soil carbon sequestration in agricultural lands of Mali. Agricultural Systems 94:6374.Google Scholar
Doumbia, M., Jarju, A., Sène, M., Traoré, K., Yost, R., Kablan, R., Brannan, K., Berthe, A., Yamoah, C., Querido, A., Traoré, P. C. S. and Ballo, A. (2009). Sequestration of organic carbon in West African soils by Aménagement en Courbes de Niveau. Agronomy for Sustainable Development 29:267275.Google Scholar
Drees, L. R., Manu, A. and Wilding, L. P. (1993). Characteristics of aeolian dusts in Niger, West Africa. Geoderma 59:213233.CrossRefGoogle Scholar
FAO. (2008). Pearl Millet. Chapter 1 In Catalogue Ouest Africain des espèces et variétés végétales (Catalogue of West African Plant Species and Varieites). Rome: FAO.Google Scholar
FAO. (2014). FAOSTAT data base. Available at http://faostat.fao.org/site/5676/DesktopDefault.aspx.Google Scholar
Fatondji, D., Martius, C., Bielders, C. L., Vlek, P. L. G., Bationo, A. and Gerard, B. (2006). Effect of planting technique and amendment type on pearl millet yield, nutrient uptake, and water use on degraded land in Niger. Nutrient Cycling in Agroecosystems 76:203217.Google Scholar
Fatondji, D., Martius, C. and Vlek, P. (2001). Zaï - A traditional technique for land rehabilitation in Niger. ZEFnews 8:12. (Zentrum für Entwicklungsforschung, Universität Bonn, Bonn, Germany).Google Scholar
Fryrear, D. W. (1984). Soil ridges, clods and wind erosion. Transactions ASAE 27:445448.Google Scholar
Fussell, L. K. and Serafini, P. G. (1985). Crop associations in the semi-arid tropics of West Africa: research strategies past and present. In Appropriate Technologies for Farmers in Semi-Arid West Africa, 218235 (Eds Ohm, H. W. and Magy, J.). West Lafayette, Indiana: Purdue University.Google Scholar
Fussell, L. K., Serafini, P. G., Bationo, A. and Klaij, M. C. (1987). Management practices to increase yield and yield stability of pearl millet in West Africa. In Proceedings of the International Pearl Millet Workshop, 255268. Patancheru, India: ICRISAT.Google Scholar
Garrity, D. P., Akinnifesi, K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., Larwanou, M. and Bayala, J. (2010). Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Security 2:197214.Google Scholar
Geiger, S. C., Manu, A. and Bationo, A. (1992). Changes in a sandy sahelian soil following crop residue and fertilizer additions. Soil Science Society of America Journal 56:172177.Google Scholar
Gerner, H. and Mokwunye, A. U. (1995). Use of phosphate rock for sustainable agriculture in West Africa, Miscellaneous Fertilizer Study 11. International Fertilizer Development Center for Africa. Lome, Togo: IFDC.Google Scholar
Giller, K. E., Cadisch, G., Ehaliotis, C., Adams, E., Sakala, W. D. and Mafongoya, P. L. (1997). Building soil nitrogen capital in Africa. In Replenishing Soil Fertility in Africa, 151192 (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, F.). Madison, Wisconsin: Soil Science Society of America.Google Scholar
Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E. and Tittonell, P. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research 124:468472.Google Scholar
Giller, K. E., Witter, E., Corbeels, M. and Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research 114:2334.Google Scholar
Gnankambary, Z., Bayala, J., Malmer, A., Nyberg, G. and Hien, V. (2008). Decomposition and nutrient release from mixed plant litters of contrasting quality in an agroforestry parkland in the south-Sudanese zone of West Africa. Nutrient Cycling in Agroecosystems 82:113.Google Scholar
Grema, A. K and Odo, P. E. (1998). Management practices for increasing and stabilizing pearl millet production in Nigeria. In Pearl Millet in Nigerian Agriculture, 7686 (Eds Emechebe, A. M., Ikwelle, M. C., Ajayi, O., Aminu-Kano, M. and Anaso, A. B.). Maiduguri, Nigeria: Ramadan Press.Google Scholar
Gworgwor, N. A., Anaso, A. B. and Turaki, Z. G. (1998). Integrated cultural practices for Striga control in millet-based cropping systems. In Pearl Millet in Nigerian Agriculture, 8797 (Eds Emechebe, A. M., Ikwelle, M. C., Ajayi, O., Aminu-Kano, M. and Anaso, A. B.). Maiduguri, Nigeria: Ramadan Press.Google Scholar
Hatcher, P. E. and Melander, B. (2003). Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Research 43:303322.CrossRefGoogle Scholar
Hess, D. E and Ejeta, G. (1987). Effect of cultural treatments on infestation of Striga hermonthica (Del.) Benth (Scrophulariaceae). In Proceedings of Fourth International Symposium on Parasitic Flowering Plants, 367375 (Eds Weber, H. C. and Forstreuter, W.). Marburg, Germany: Philipps-Universitat.Google Scholar
Hess, D. E., Thakur, R. P., Hash, C. T., Sérémé, P. and Magill, C. W. (2002). Pearl millet downy mildew: problems and control strategies for a new millennium. In Sorghum and Millet Diseases, 3741 (Ed Leslie, J. F.). Ames, Iowa: Iowa State Press.Google Scholar
Ikpe, F. N., Powell, J. M., Isirimah, N. O., Wahua, T. A. T. and Ngodigha, E. M. (1999). Effects of primary tillage and soil amendment practices on pearl millet yield and nutrient uptake in the Sahel of West Africa. Experimental Agriculture 35:437448.Google Scholar
Jat, R. A., Craufurd, P., Sahrawat, K. L. and Wani, S. P. (2012). Climate change and resilient dryland systems: experiences of ICRISAT in Asia and Africa. Current Science 102:16501659.Google Scholar
Kadi, M., Lowenberg-Deboer, J., Reddy, K. C. and Abdoulay, B. (1990). Sustainable millet cowpea technologies for semi-arid Niger. Indian Journal of Dryland Agriculture Research and Development 4:9598.Google Scholar
Kassam, A., Friedrich, T., Shaxson, F. and Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability 7:292320.Google Scholar
Kho, R. M., Yacouba, B., Yayé, M., Katkoré, B., Moussa, A., Iktam, A. and Mayaki, A. (2001). Separating the effects of trees on crops: the case of Faidherbia albida and millet in Niger. Agroforestry Systems 52:219238.Google Scholar
Klaij, M. C. and Hoogmoed, W. B. (1993). Soil management for crop production in the West African Sahel. 2. Emergence, establishment and yield of pearl millet. Soil and Tillage Research 25 (4):301305.Google Scholar
Lamers, J. P. A. and Bruetrup, M. (1996). Comparative advantage of single and multiple uses of millet stover in Niger. Agricultural Systems 50:273285.CrossRefGoogle Scholar
Lamers, J., Bruentrup, M. and Buerkert, A. (1998). The profitability of traditional and innovative mulching techniques using millet crop residues in the West African Sahel. Agriculture, Ecosystems & Environment 67:2335.Google Scholar
Maman, N. and Mason, S. C. (2013). Poultry manure and inorganic fertilizer to improve pearl millet yield in Niger. African Journal of Plant Science 7:162169.Google Scholar
Maman, N., Mason, S. C. and Sirifi, S. (2000a). Influence of variety and management level on pearl millet production in Niger. I. Grain yield and dry matter accumulation. African Crop Science Journal 8:2534.Google Scholar
Maman, N., Mason, S. C. and Sirifi, S. (2000b). Influence of variety and management level on pearl millet production in Niger. II. N and P concentration and accumulation. African Crop Science Journal 8:3547.Google Scholar
Mando, A. and Stroosnijder, L. (1999). The biological and physical role of mulch in the rehabilitation of crusted soil in the Sahel. Soil Use and Management 15:123127.Google Scholar
Mason, S. C., Ouattara, K., Taonda, S. B. J., Palé, S., Sohoro, A. and Kaboré, D. (2014). Soil and cropping system research in semi-arid West Africa as related to the potential for conservation agriculture. International Journal of Agricultural Sustainability online at http://dx.doi.org/a0.2080/14735903.2014.945319.Google Scholar
Mbaye, D. F. (1992). Les maldies du mil au Sahel: Etat des connaissances et propositions de lutte. In La Lutte Intégrée Contre les Ennemis des Cultures Vivrières dans le Sahel (Pearl millet diseases in the Sahel: State of knowledge and management proposals). Montrouge, France: John Libby Eurotext.Google Scholar
Michels, K., Armbrust, D. V., Allison, B. E. and Sivakumar, M. V. K. (1995c). Wind and windblown sand damage to pearl millet. Agronomy Journal 87:620626.Google Scholar
Michels, K. and Bielders, C. L. (2005). Pearl millet growth on an erosion-affected soil in the Sahel. Experimental Agriculture 42:117.Google Scholar
Michels, K., Sivakumar, M. V. K. and Allison, B. E. (1995a). Wind erosion control using crop residue I. Effects on soil flux and soil properties. Field Crops Research 40:101110.Google Scholar
Michels, K., Sivakumar, M. V. K. and Allison, B. E. (1995b). Wind erosion control using crop residue II. Effects on millet establishment and yields. Field Crops Research 40:111118.Google Scholar
Mokgolodi, N. C., Setshogo, M. P., Ling-ling, S., Yu-jun, L. and Chao, M. A. (2011). Achieving food and nutritional security through agroforestry: a case of Faidherbia albida in Sub-Saharan Africa. Forestry Studies China 13:123131.Google Scholar
Muehlig-Versen, B., Buerkert, A., Bationo, A. and Marshcner, H. (1997). Crop residue and phosphorus management in millet based cropping systems on sandy soils of the Sahel. In Soil Fertility in West African Land Use Systems, 3140 (Eds Renard, G., Neef, A., Becker, K. and von Oppen, M.). Weikersheim, Germany: Margraf Verlag.Google Scholar
Muehlig-Versen, B., Buerkert, A., Bationo, A. and Roemheld, V. (2003). Phosphorus placement on acid arenosols of the West African Sahel. Experimental Agriculture 39:307325.Google Scholar
Ndiaye, S. (2002). Amelioration du controle du mildiou. Resultats du Projet P3: 1992–1997 (Improved control of mildew: Results of Project P3). Niamey, Niger: Réseau Ouest et Centre Afríaín de Recherche sur le Mil.Google Scholar
Ndunguru, B. J. and Williams, J. H. (1993). The impact of varying levels of competition from pearl millet on the yields of groundnut cultivars. Experimental Agriculture 29:2937.Google Scholar
Nicou, R. (1978). Etude de successions culturales au Sénégal: résultants et methods (Study of crop rotation in Senegal: results and methods). Agronomie Tropical 33:5161.Google Scholar
Nicou, R. and Charreau, C. (1985). Soil tillage and water conservation in semi-arid West Africa. In Appropriate Technologies for Farmers in Semi-Arid West Africa, 932 (Eds Ohm, H. W. and Magy, J. G.). West Lafayette, Indiana: Purdue University.Google Scholar
Nicou, R. and Chopart, J. L. (1979). Root growth and development in sandy-clay soils in Sénégal. In Soil Physical Properties and Crop Production in the Tropics, 375384 (Eds Lal, R. and Greenland, D. J.). New York: John Wiley & Sons.Google Scholar
Norman, D. W. (1977). The rationalization of intercropping. African Environment 2/3:97109.Google Scholar
Ntare, B. R. (1990). Intercropping morphologically different cowpea with pearl millet in a short season environment in the Sahel. Experimental Agriculture 26:4147.Google Scholar
Ntare, B. R. and Bationo, A. (1992). Effects of phosphorus on yield of cowpea cultivars intercropped with pearl millet on psammentic paleustalf in Niger. Fertilizer Research 32:143147.Google Scholar
Ntare, B. R. and Williams, J. H. (1992). Response of cowpea cultivars to planting pattern and date of sowing in intercrops with pearl millet in Niger. Experimental Agriculture 28:4148.Google Scholar
Nyakatawa, E. Z. (1996). Rain water and soil fertility management for sustainable cropping on sandy soils in semi-arid South-East Lowveld of Zimbabwe. Journal of Sustainable Agriculture 7:1934.Google Scholar
Ohm, H. W., Nagy, J. G. and Sawadogo, S. (1985). Complementary effects of tied ridging and fertilization with cultivation by hand and donkey and ox traction. In Appropriate Technologies for Farmers in Semi-Arid West Africa, 5460 (Eds Ohm, H. W. and Magy, J. G.). West Lafayette, Indiana: Purdue University Google Scholar
Ouattara, B., Hien, V. and Lompo, F. (1999). Development of water management technologies for rainfed crops in Burkina Faso. In Efficient Soil Water Use: The Key to Sustainable Crop Production in the Dry Areas of West Asia and North and Sub-Saharan Africa, 265281 (Eds Pala, M., Studer C., C. and Bielders, M.). Hyderbad, India: ICRISAT.Google Scholar
Ouattara, B., Ouattara, K., Serpantié, G., Mando, A., Sédogo, M. and Bationo, A. (2006). Intensity cultivation induced effects on soil organic carbon dynamic in western cotton area of Burkina Faso. Nutrient Cycling in Agroecosystems 76:331339.CrossRefGoogle Scholar
Ouédraogo, E., Mando, A., Brussaard, L. and Stroosnijder, L. (2007). Tillage and fertility management effects on soil organic matter and sorghum yield in semi-arid West Africa. Soil and Tillage Research 94:6474.Google Scholar
Ouédraogo, E., Mando, A. and Stroosnijder, L. (2006). Effects of tillage, organic sources and nitrogen fertilizer soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil and Tillage Research 91:5767.Google Scholar
Pannell, D. J., Llewellyn, R. S. and Corbeels, M. (2014). The farm-level economics of conservation agriculture for resource-poor farmers. Agriculture, Ecosystems and Environment 187:5264.Google Scholar
Payne, W., Tapsoba, H., Baoua, I. B., Malick, B. N., N’Diaye, M. and Dabire-Binso, C. (2011). On-farm biological control of the pearl millet head miner: realization of 35 years of unsteady progress in Mali, Burkina Faso and Niger. International Journal of Agricultural Sustainability 9:186193.Google Scholar
Payne, W. A. (1997). Managing yield and water use of pearl millet. Agronomy Journal 89:481490.Google Scholar
Payne, W. A. (2000). Optimizing crop water use in sparse stands of pearl millet. Agronomy Journal 92:808814.CrossRefGoogle Scholar
Payne, W. A., Wendt, C. W. and Lascano, R. J. (1990). Root zone water balances of three low-input millet fields in Niger, West Africa. Agronomy Journal 82:813819.Google Scholar
Payne, W. A., Williams, J. H., Maï Moussa, K. A. and Stern, R. D. (1998). Crop diversification in the Sahel through use of environmental changes near Faidherbia albida (Del.) A. Chev. Crop Science 38:15851591.Google Scholar
Peter, G. and Runge-Metzger, A. (1994). Monocropping, intercropping or crop rotation: an economic case study from the West African Guinea savannah with special reference to risk. Agricultural Systems 45:123143.CrossRefGoogle Scholar
Pieri, C. J. M. G. (1989). Fertility of Soils: A Future for Farming in the West African Savannah. Berlin, Germany: Springer-Verlag.Google Scholar
Pretty, J. N., Noble, A. D., Bossio, D., Dixon, J., Hine, R. E., Penning de Vries, F. W. T. and Morison, J. I. L. (2006). Resource-conserving agriculture increased yields in developing countries. Environmental Science and Technology 40:11141119.Google Scholar
Rebafka, F. P., Hebel, A., Bationo, A., Stahr, K. and Marschner, H. (1994). Short- and long-term effects of crop residues and of phosphorus fertilization on pearl millet yield on an acid sandy soil in Niger, West Africa. Field Crops Research 36:113124.Google Scholar
Reddy, K. C. (1988). Strategies Alternatives pour la Production de Mil/Niebe Pendant l’Hivernage (Alternate strategies for production of millet/cowpea during the rainy season). Fascicule No. 1. Niamey, Niger: Institut National de Recherches Agronomiques du Niger (INRAN).Google Scholar
Reddy, K. C., van der Ploeg, J. and Maga, I. (1990). Genotype effects in millet/cowpea intercropping in the semi-arid tropics of Niger. Experimental Agriculture 26:387396.Google Scholar
Reddy, K. C. and Visser, P. L. (1993). Late planting effects on early versus late pearl millet genotypes in Niger. Experimental Agriculture 29:121129.Google Scholar
Reddy, K. C., Visser, P. and Buckner, P. (1992). Pearl millet and cowpea yields in sole and intercrop systems, and their after-effects on soil and crop productivity. Field Crops Research 28:315326.Google Scholar
Reij, C., Tappan, G. and Smale, M. (2009). Agroenvironmental Transformation in the Sahel: another kind of ‘Green Revolution’. In Discussion Paper 00914. Washington: International Food Policy Research Institute.Google Scholar
Riej, C. P. and Smaling, E. M. A. (2008). Analyzing successes in agriculture and land management in Sub-Saharan Africa: Is macro-level gloom obscuring positive micro-level change? Land Use Policy 25:410420.Google Scholar
Roupsard, O., Ferhi, A., Granier, A., Pallo, F., Depommier, D., Mallet, B., Joly, H. I. and Dreyer, D. (1999). Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese West Africa. Functional Ecology 13:460472.Google Scholar
Sanchez, P. A., Shepherd, K. D., Soule, M. J., Place, F. M., Buresh, R. J., Izac, A. M. N., Mokwunye, A. U., Kwesiga, R. K., Ndiritu, C. G. and Woomer, P. L. (1997). Soil fertility replenishment in Africa: an investment in natural resource capital. In Replenishing Soil Fertility in Africa, 146 (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, F.). Madison, Wisconsin: Soil Science Society of America.Google Scholar
Sanders, J. H., Nagy, J. G. and Ramaswamy, S. (1990). Developing new agricultural technologies for the Sahelian countries: the Burkina Faso case. Economic Development and Cultural Change 39:122.Google Scholar
Sauerborn, J., Sprich, H. and Mercer-Quarshie, H. (2000). Crop rotation to improve agricultural production in Sub-Saharan Africa. Journal of Agronomy and Crop Science 184:6772.Google Scholar
Sawadogo, H. (2011). Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. International Journal of Agricultural Sustainability 9:120128.Google Scholar
Sawadogo, H., Bock, L., Lacroix, D. and Zombre, N. P. (2008b). Restauration des potentialitiés de sols degrades à l’aide du zaï et du compost dans le Yatenga (Burkina Faso). (Restoration of degraded soils using zaï and compost in Yatenga). Biotechnology, Agronomy, Society and Environment 12:279290.Google Scholar
Sawadogo, H., Zombre, N. P., Bock, L. and Lacroix, D. (2008a). Evolution de l’occupation du sol de Ziga dans le Yatenga (Burkina Faso) à partir de photos aeriennes (Change in soil cover in Ziga, Yatenga, Burkina Faso using aerial photographs). Revue Télédétection 8:5973.Google Scholar
Scheuring, J. F., Katilé, S. O. and Kollo, I. A. (2002). Boosting pearl millet yields with Apron Plus and Apron Star seed treatments. In Sorghum and Millet Diseases, 4749 (Ed Leslie, J. F.). Ames, Iowa: Iowa State Press.Google Scholar
Schlecht, E. and Buerkert, A. (2004). Organic inputs and farmers – management strategies in millet fields in western Niger. Geoderma 121:271289.Google Scholar
Schlecht, E., Buerkert, A., Tielkes, E. and Bationo, A. (2006). A critical analysis of challenges and opportunities for soil fertility restoration in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems 76:109136.Google Scholar
Singh, B. B. and Emechebe, A. M. (1998). Increasing productivity of millet-cowpea intercropping systems. In Pearl Millet in Nigerian Agriculture, 7075 (Eds Emechebe, A. M., Ikwelle, M. C., Ajayi, O., Aminu-Kano, M. and Anaso, A. B.). Maiduguri, Nigeria: Ramadan Press.Google Scholar
Sivakumar, M. V. K. (1988). Predicting rainy season potential from the onset of the rains in southern Sahelian and Sudanian climatic zones of West Africa. Agriculture for Meteorology 42:295305.Google Scholar
Smalling, E. M. A., Nandwa, S. M. and Janssen, B. H. (1997). Soil fertility in Africa is at stake. In Replenishing Soil Fertility in Africa, 4761 (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, Y. F.). Madison, Wisconsin: Soil Science Society of America.Google Scholar
Smalling, E. M. A, Stoorvogel, J. J. and Sindmeijer, P. N. (1993). Calculating soil nutrient balances in Africa at different scales: II. District scale. Fertilizer Research 35:237250.Google Scholar
Stroosnijder, L. (2003). Technologies for improving green water use efficiency in West Africa. In Proceedings from the International Water Conservation Technologies Workshop, Bloemfontein, South Africa, April 8--11 (Eds Beukes, D., Villers, M. De, Mkhize, S., Sally, H., Rensburg, L. van) pp. 92102.Google Scholar
Stroosnijder, L. and Hoogmoed, W. (2004). The contribution of soil & water conservation to carbon sequestration in semi-arid Africa. Bulletin Réseau Erosion 23:528539.Google Scholar
Stroosnijder, L., Ridder, N. and Kiepe, P. (2001). Nutrient balances in Sahelian villages. Advances in Geoecology 33:213235.Google Scholar
Subbarao, G. V., Renard, C., Payne, W. A. and Bationo, A. (2000). Long-term effects of tillage, phosphorus fertilization and crop rotation on pearl millet-cowpea productivity in the West African Sahel. Experimental Agriculture 36:243264.Google Scholar
Tesso, T. and Ejeta, G. (2011). Integrating multiple control options enhances Striga management and sorghum yield on heavily infested soils. Agronomy Journal 103:14641471.Google Scholar
Thakur, R. P., Veeranki, P. R. and Sharma, R. (2011). Influence of dosage, storage time and temperature on efficacy of netalazyl-treated seed for the control of pearl millet downy mildow. European Journal of Plant Pathology 129:353359.Google Scholar
Triplett, G. B. and Warren, A. D. (2008). No-tillage crop production: a revolution in agriculture! Agronomy Journal 100:153165.Google Scholar
Uyovbisere, E. O. and Lombin, G. (1991). Efficient fertilizer use for increased crop production: the sub-humid Nigeria experience. Fertilizer Research 29:8194.Google Scholar
Valluru, R., Vadez, V., Hash, C. T. and Karanam, P. (2010). A minute P application contributes to a better establishment of pearl millet (Pennisetum glaucum (L.) R. Br.) seedlings in P deficient soils. Soil Use and Management 26:3643.Google Scholar
van Huis, A. and Meerman, F. (1997). Can we make IPM work for resource-poor farmers in Sub-Saharan Africa? International Journal of Pest Management 43:313320.Google Scholar
Vanderbeldt, R. J. and Williams, J. H. (1992). The effect of soil surface temperature on growth of millet in relation to the effect of Faidherbia albida trees. Agricultural and Forest Meterology 50:93100.Google Scholar
van Duivenbooden, N., Pala, M., Studer, C., Bielders, C. L. and Beukes, D. J. (2000). Cropping systems and crop complementary in dryland agriculture to increase soil water use efficiency: a review. Netherlands Journal of Agricultural Sciences 48:213236.Google Scholar
Vitale, J. D. and Sanders, J. H. (2005). New markets and technological change for the traditional cereals in semiarid Sub-Saharan Africa: the Malian case. Agricultural Economics 32:111129.Google Scholar
Winkle, T., Renno, J. F. and Payne, W. A. (1997). Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R.Br.) grown in Sahelian conditions. Journal of Experimental Botany 48:10011009.Google Scholar