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Selective breeding of dogs has culminated in a large number of modern breeds distinctive in terms of size, shape and behaviour. Inadvertently,

a range of breed-specific genetic disorders have become fixed in some pure-bred populations. Several inherited conditions confer chronic metabolic

defects that are influenced strongly by diet, but it is likely that many less obvious breed-specific differences in physiology exist. Using Labrador

retrievers and miniature Schnauzers maintained in a simulated domestic setting on a controlled diet, an experimental design was validated in

relation to husbandry, sampling and sample processing for metabolomics. Metabolite fingerprints were generated from ‘spot’ urine samples

using flow injection electrospray MS (FIE-MS). With class based on breed, urine chemical fingerprints were modelled using Random Forest

(a supervised data classification technique), and metabolite features (m/z) explanatory of breed-specific differences were putatively annotated

using the ARMeC database (http://www.armec.org). GC-MS profiling to confirm FIE-MS predictions indicated major breed-specific differences

centred on the metabolism of diet-related polyphenols. Metabolism of further diet components, including potentially prebiotic oligosaccharides,

animal-derived fats and glycerol, appeared significantly different between the two breeds. Analysis of the urinary metabolome of young male

dogs representative of a wider range of breeds from animals maintained under domestic conditions on unknown diets provided preliminary

evidence that many breeds may indeed have distinctive metabolic differences, with significant differences particularly apparent in comparisons

between large and smaller breeds.

Dog breeds: Metabolomics: Random Forest: Urine

The domestic dog (Canis familiaris) is the most phenotypically
diverse mammalian species, with an enormous range of sizes,
shapes and behaviours(1). Over the last 150 years, pedigree
breeding barriers and standards have resulted in levels of genetic
polymorphism that can be greater among domestic breeds than
between wild canid species(2). Alongside selection of desired
morphological and behavioural traits, a range of less obvious
(including metabolic) genetic disorders have also been inadver-
tently selected and enriched within a number of breeds(3 – 6).
In consequence, pure-bred dogs are considered useful models
of human diseases and lifestyle-related disorders(7). Although
some advances have been made in the last three decades,
however, many of the nutritional requirements of companion
animals remain unknown(7). With the popularity of complete
dog foods manufactured from a wide range of ingredients,
it may be possible to tailor diet formulations for dogs with
differing physiological needs and metabolic characteristics(7 – 9).

A recent appreciation of the importance of interactions
between genetics, behaviour, environment and nutrition on
human health has resulted in the emergence of the field of

nutrigenomics(10,11). The interactions between diet and geno-
type in domestic dogs are exceedingly complex. Certain
breeds are specifically prone to chronic ailments associated
with nutrition, for example, copper toxicosis in Bedlington
Terriers(3). Certain breeds are also prone to common com-
plaints such as kidney/bladder stones and sensitive bowel pro-
blems, in which nutrition can play a role in development and
treatment(4,5,12,13). However, the underlying physiological/
metabolic mechanisms and the contribution of genotype–
diet interactions are often poorly understood.

Nutritional studies using commercially available pet food
are hampered by the fact that most food raw materials are in
the form of a chemically complex matrix. To ensure nutri-
tional requirements stipulated by local legislative bodies are
met, manufacturers may supplement diets to produce a com-
plete and balanced pet food. Beyond this, different brands/
manufacturers may add other defined constituents such as
vitamins, minerals, plant oils and prebiotics with functional
nutritional claims(14,15). However, the value of such additives
at the level of individual breeds may not have been ascertained.
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In addition to factors related to breed genotype and diet
composition, the diverse microbial flora in the mammalian
gastrointestinal tract is capable of a wide range of enzyme-cat-
alysed chemical transformations of metabolites derived from
the diet(16). The metabolite profiles of accessible biofluids
such as blood, urine and saliva are also affected by beha-
vioural factors such as water intake, meal times, exercise
and stress. For example, it is estimated that urine can contain
in excess of 2000 different metabolites in omnivorous mam-
mals, with many chemicals displaying huge dynamic vari-
ation(17,18). Urine is a useful analytical biofluid because it is
a concentrated collection of metabolites that are a result of
mechanisms to maintain the homoeostasis of the individual.
It is likely, therefore, that different physiological stresses
may manifest themselves in the urine metabolite fingerprint.
Urine composition is also likely to contain information on
how the individual responds to diet. Furthermore, the non-
invasive nature of urine collection makes it a practical biofluid
to collect(19,20).

Recent improvements in both analytical chemistry and data
mining have resulted in the establishment of metabolomics
technology platforms capable of analysing objectively the
global composition of complex biofluids such as urine(19 – 24).
In the absence of reference chemicals for all expected metab-
olites, methods for ‘metabolite fingerprinting’(25) have proven
valuable for exploring genotypic and phenotypic differences
among organisms. For example, Fourier transform IR(26) and
NMR(19,27) spectroscopies can generate global chemical fin-
gerprints without specialised sample preparation. However,
although reproducible and intrinsically quantitative, NMR is
relatively insensitive compared with other techniques and,
for the vast majority of metabolites, a further level of directed
analysis is generally required to link differences in chemical
shifts to specific chemistry and thus develop new bio-
markers(19,21,28 – 31). Fingerprinting techniques based on MS
such as flow injection electrospray MS (FIE-MS) are more
sensitive, and offer the advantage that the measured ‘vari-
ables’ (mass-to-charge (m/z) ratios) can be linked more
directly to specific metabolites by the additional indication
of molecular mass, particularly in data derived from ultra-
high mass accuracy instruments(25,32 – 36). In FIE-MS, a chro-
matographic step is not utilised and a fingerprint is developed
following ‘soft’ ionisation of the sample during injection over
1–2 min. Such fingerprints can be regarded as simplified
images of total sample composition, in that each m/z variable
may integrate the levels of several isobaric metabolites.
During soft ionisation, the main products are charged versions
of the parent molecule and salt adducts; fragmentation pro-
ducts are relatively rare and thus the identity of molecules pro-
ducing signal at specific m/z can be investigated directly based
on predicted mass of the metabolite(37).

The present study set out to explore the utility of metabolite
fingerprinting of urine, based on MS, for nutritional studies in
domestic dogs. Recent NMR investigations have validated the
utility of urine metabolomics for breed classification in
dogs(19). Additionally, urine analysis of Labrador retrievers
suggested that there are urinary markers consistent with age
and caloric regimen(28). The objectives were to determine
whether a urine metabolic fingerprint based on MS was a
useful tool to investigate breed-specific metabolic differences
and whether other physiological or environmental factors have

more of an impact upon the urine metabolome. One exper-
imental population consisted of male and female Labrador
retriever and miniature Schnauzer dogs housed in a single,
purpose-built, environmentally enriched facility and main-
tained on the same diet. Another population consisted of
client-owned male dogs of ten breeds fed unspecified diets
in private domestic environments.

Experimental methods

Animal maintenance and urine collection

Labrador retriever and miniature Schnauzer dogs in the con-
trolled-diet studies were housed in small groups in the com-
plex of purpose-built, environmentally enriched facilities at
the WALTHAM Centre for Pet Nutrition, in accordance
with the Centre’s research ethics and UK Home Office Regu-
lations. They had free access to water and were given com-
mercially available, complete dog food throughout the study
at energy levels to maintain adult body weight. After an over-
night fast (.20 h), dogs were given individual morning walks,
during which urine was obtained by a ‘free catch’ in an indi-
vidually designated Uripet collection vessel. Urine samples
were at ambient temperature for up to 30 min before being
placed on ice, and then frozen within 1 h of sampling. Samples
were kept at 2808C until shipment on dry ice to Aberystwyth
University, where they were stored at 2808C.

In the technical validation study, four male Labrador retrie-
vers (aged 6–8 years) were maintained on Pedigree Complete
Adult dog food (Mars Petcare UK Ltd, Melton Mowbray,
UK). In the main controlled-diet study, Labrador retrievers
(five male and six female) and miniature Schnauzers (seven
male and five female) were fed Pedigree Complete Adult
Small Breed dog food, for at least 4 weeks before urine collec-
tion. For each animal, up to eight urine samples were collected
on different days within a 2-week longitudinal study.

The dogs from private homes were healthy males recruited
in the US at several veterinary clinics before a client-elected
surgical castration. The breeds represented in the present
study were Labrador retriever, Golden retriever, Rottweiler,
German shepherd, Doberman, Beagle, Cocker spaniel,
Poodle, Yorkshire terrier and Shih tzu. Urine was collected
by catheter during routine veterinary surgery (neutering),
and stored immediately at 808C, before shipment and further
storage as above.

Metabolite fingerprinting by flow injection electrospray MS

FIE-MS was carried out as previously described with modifi-
cation to accommodate urine samples(25). Aliquots of thawed
urine (50ml) were diluted in sterile distilled water (100ml)
and then added to MeOH (350ml). The samples were vortexed
and centrifuged for 6 min at 14 000 g. For FIE-MS analysis,
supernatant (60ml) was transferred to HPLC crimp cap glass
vials containing a 200ml micro glass insert. The vial caps
were crimped and then stored at 48C for same day analysis.
Vials were randomised before injection using an autosampler
(tray temperature: 158C). The diluted samples (20ml) were
injected into a flow of 60ml/min water–methanol (50:50 v/v)
using a Surveyor liquid chromatography system (Thermo
Scientific, Waltham, MA, USA) as previously described(25).
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For each sample, data were acquired in positive and negative
ionisation modes in two scan ranges (low: 15–200 m/z;
and high: 110–2000 m/z) on a LTQ linear ion trap (Thermo
Electron Corporation, San Jose, CA, US). Acquisition time
was 5 min. Raw data of the whole infusion profiles were
exported and mass intensities of each scan electronically
binned to a nominal mass of 1 amu (between 20·3 and
0·7 amu). The resulting mass spectrum for each analysis was
calculated as the mean of eleven scans about the apex of
the infusion profile. Mass spectra of all analytical runs per
sample and ionisation mode were combined in a single inten-
sity matrix (runs £ m/z values). Data were log10 transformed
and normalised to total ion current before analysis.

Flow injection electrospray MS signal interpretation

The initial feature selection by Random Forest (RF) produced
a list of m/z signals ranked by importance scores or P value for
each classification task. Using ARMeC, a bespoke database
developed for FIE-MS signal annotation(37), the top ranked
m/z values (generally top 40) were examined for groups of
potentially related signals that could represent salt adducts
(e.g. Na ¼ M þ 23; K ¼ M þ 39; Cl ¼ M þ 35), common
neutral losses (e.g. water ¼ M 2 18; formate ¼ M 2 46) or
isotopes (M þ 1 or þ2) of individual metabolites. As several
overlapping solutions predicting the presence of different
metabolites were often possible, the most likely combination
of ions identifying a specific metabolite was confirmed by
further examining signal relationships in a correlation analysis
using just m/z with an appropriate low P value. A comprehen-
sive list of metabolites present in the mammalian meta-
bolome was compiled from exhaustive literature and
database searches. Further investigation of predicted meta-
bolome differences between samples centred on the targeted
analysis of GC-time-of-flight MS (GC-TOF-MS) data, as the
majority of metabolite classes predicted to be explanatory of
differences among breeds were suitable for GC-MS analysis.

Metabolite profiling using GC-time-of-flight MS analysis

Neat urine (50ml) was dried in vacuo and GC-TOF-MS
analysis performed as previously described(34). Methoximation
of carbonyl moieties in 100ml of a 20 mg/ml solution of
methoxyamine hydrochloride in pyridine (Fluka, St Gallen,
Switzerland) was carried out at 308C for 90 min. Acidic
protons were subsequently derivatised with 100ml N-methyl-
N-(trimethylsilyl)-trifluoroacetamide (Machery-Nagel GmbH,
Düren, Germany) at 378C for 30 min. One microlitre of the
resulting solution was injected (injector temperature 2508C;
1:2 split ratio) into a Pegasus III GC-TOF-MS system (Leco
Inc., St Joseph, MI, USA) and chromatographed on a 20 m
DB5-MS column (20 m £ 0·25mm internal diameter £ 0·25
mm film) using a temperature gradient (80–3308C over
17 min). Mass spectra were recorded after a solvent delay of
112 s over an m/z range of 54–500 at an acquisition rate of
20 spectra/s and ion source temperature of 2308C.

Peak finding and deconvolution were performed using
Leco ChromaTof software. Mass spectra of all detected
compounds were compared with in-house standards and
spectra in the National Institute of Standards and Technology
library (http://www.nist.gov/srd/nist1.htm), and other publicly

available databases. All data pre-treatment procedures,
such as baseline correction, chromatogram alignment, data
compression and curve resolution, were performed using
custom scripts in Matlab v.6.5.1 (The Math Works Inc.,
Natick, MA, USA). Targeted peak lists were generated,
and the peak apex intensity of a characteristic mass in
a retention time window for each GC-MS dataset was
saved in the form of an intensity matrix (run £ metabolite)
using Matlab.

Data analysis

All calculations were performed in the R v.2.3 þ (http://
cran.r-project.org) and Matlab environments as previously
described(35,38). Principal component analysis and eigenvalue
decomposition were performed on the covariance matrix
using mean-centred data. Linear discriminant analysis (LDA)
was implemented in Matlab according to Thomaz(39). RF anal-
ysis was done with the R package randomForest (v 4.5 þ )
with default settings except that the number of trees was set
to 1000. The statistical significance of the RF importance
score and model margins were assessed by 1000 random per-
mutations: P was defined as the fraction of scores larger than
or equal to the original importance score of the unpermutated
data. Model margins obtained under permutation were used to
estimate distribution quartiles(40). Receiver operating charac-
teristic curves were used as an alternative measure of
model-predictive abilities(40,41) and summarised as the area
under the curve statistic. Correlation analysis of individual sig-
nals was performed using variables that fell under a specified
threshold in at least one of the comparisons. The absolute
value of the correlation coefficient between variables was
used as the similarity measure for performing hierarchical
cluster analysis with complete linkage as the clustering
method (hclust function in R). The Wilcoxon rank sum test
in Matlab was used as a non-parametric univariate test to
assess whether two samples came from the same distribution.

Results

Validation of sampling and flow injection electrospray MS
fingerprinting for urine sample classification in male Labrador
retrievers

To validate the technique, urine from four male Labrador
retrievers was subjected to FIE-MS fingerprinting and multi-
variate data analysis. Principal component analysis revealed
that samples from all four dogs were well dispersed in a
single large grouping in a scores plot of principle components
(PC1 £ PC2; Fig. 1(a)). LDA was performed to determine
whether urine samples from individual dogs could be discrimi-
nated (Fig. 1(b)). Each point represents a chemical fingerprint
(high range, positive ion data: 50–2000 m/z) of urine from a
single dog on eight different days during a 2-week period.
In all cases, samples from individual dogs are found in dis-
crete associations of similar dimension, but model statistics
suggested that inter-dog differences were minimal (i.e. Tw
or eigenvalues ,2 in both DF1 and DF2(38,40)). These data
indicated that the metabolome of each dog was sufficiently
consistent and the sampling method was deemed adequate
for further studies.

Dog breed dietary metabolism by metabolomics 1129
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Flow injection electrospray MS fingerprinting to distinguish
breed and sex in Labrador retrievers and miniature
Schnauzers

With sampling and analytical chemistry methods established,
fuller experiments were conducted to determine the relative
importance of sex and breed in discriminating between the
urine FIE-MS fingerprints. Urine was collected (n 143 individ-
ual samples) from five male (n 36) and six female (n 33) Lab-
rador retrievers, and seven male (n 48) and five female (n 26)
miniature Schnauzers. FIEMS data are highly dimensional
and, in the case of urine, were expected to display consider-
able biological variability.

Such data require the use of robust multivariate data-mining
tools. In preliminary experiments, sample classification accuracy
was compared using a range of supervised data analysis methods
that we have previously used successfully with complex meta-
bolome data(38,40). LDA and RF were applied to all four FIE-
MS datasets (positive and negative ion; high and low m/z range)
to assess the difficulty of determining both breed and sex in all
possible binary comparisons. For two of the datasets, Table 1
summarises LDA and RF model statistics, in the forms of
percentage classification accuracies, and of area under the curve
for receiver operating characteristic curves. The latter have a
value of 0·5 if samples from either class are uniformly distri-
buted across the decision boundary, and a value of 1 if the
decision boundary completely discriminates the classes(38,40).

Similar trends were observed in relation to each task with
both data-mining methods; breed classification was always
much more accurate and generated more robust models than
sex assignment. These major features of sample class discrimi-
nation are clearly evident in LDA projections (Fig. 2) of the
first two discriminant functions.

Random Forest data mining for metabolome features
discriminating dog breeds

We have previously shown that although LDA and RF will
often classify samples with comparable accuracies, there are

advantages in using RF for the subsequent identification of
explanatory variables(35). One output of RF is an importance
score for each variable for any particular classification pro-
blem. In previous experiments, importance scores ranked in
descending order generally fell dramatically and then rapidly
levelled out within the range 0·0030–0·0015, below which
variables often lack significant explanatory power at
P¼0·005(35,36,38,40). Importance scores derived from RF
models comparing FIE-MS fingerprints of Labrador retrievers
and miniature Schnauzers exhibited similar trends (Fig. 3). In
low molecular weight range data, approximately 15–20 m/z
signals in both ionisation modes potentially have significant
explanatory power to discriminate MS from LR dogs
(Fig. 3(a)). A similar number of potentially significant signals
were evident in the high-range positive ion data with a smaller

Fig. 1. Reproducibility of urine sampling from male Labrador retrievers assessed by multivariate analysis of flow injection electrospray MS fingerprints. Symbols

denote individual dogs, and points represent fingerprints (positive ions; m/z 50–1100) of daily urine samples taken over 2 weeks. (a) Scores plot of the first two

principal components (PC1 and PC2). Numbers in brackets indicate percentage of variance explained by each PC. (b) Linear discriminant analysis (LDA) on

same samples. Numbers in brackets indicate eigenvalues (Tw) for each discriminant function (DF).

Table 1. Model statistics for classification of dogs by breed or sex
using flow injection electrospray MS fingerprints

Classification
accuracy (%) AUC

Classes compared RF LDA RF LDA

Positive ions, high m/z range (50–1100)
LF–LM 81·5 84·9 0·88 0·89
LF–MF 92·6 97·5 0·96 0·99
LF–MM 93·2 96·6 0·97 0·99
LM–MF 94·5 99·6 0·99 1·00
LM–MM 90·5 96·9 0·96 0·98
MF–MM 84·4 91·1 0·92 0·96

Negative ions, low m/z range (5–200)
LF–LM 75·7 82·9 0·84 0·91
LF–MF 92·7 96·3 0·97 0·99
LF–MM 92·3 93·3 0·97 0·98
LM–MF 92·7 97·7 0·98 0·99
LM–MM 95·0 93·5 0·98 0·97
MF–MM 77·2 77·0 0·86 0·86

AUC, area under the (receiver operating characteristic) curve; RF, Random Forest;
LDA, linear discriminant analysis; LF, Labrador retriever female; LM, Labrador
retriever male; MF, miniature Schnauzer female; MM, miniature Schnauzer male.
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number of ions (8–15) having explanatory power in high-
range negative ion data (Fig. 3(b)).

All potentially explanatory m/z signals (P#0·005) are
shown in RF importance score rank order within all four data-
sets (Fig. 4). Putative structural assignments from ARMeC(37)

are organised in columns by metabolite class with individual-
predicted metabolites numbered as indicated in the figure
legend. The annotation of metabolites was guided by previous
analyses of human urine in the Human Metabolome Project
database(18). The predictions suggest that more than 50 %
of the significant signals in both ionisation modes represent
ionisation products originating from a wide range of phenolic
molecules. Alternative predictions to phenolics centred
largely on hydroxylated organic acids structurally related to
butanoate, such as citramalate, 2-hydroxy-3-methylbutyrate
or 2-hydroxybutanoate. Signals possibly representing fatty

acids, particularly carnitine derivatives, were also predicted
to discriminate between FIE-MS fingerprints of the two
breeds. Particularly noteworthy are 240 and 224 m/z (positive
ion mode), which were highly correlated and could represent
octanoylglycine. Two strongly correlated positive ion signals
(527 and 543 m/z) commonly associated with trisaccharides
such as raffinose and kestose in FIE-MS data(34) were also
highly ranked. Signals possibly derived from pantothenate
(vitamin B5), glycerol, urea and several polyamines could
also have significant explanatory value.

As there were many overlapping potential structural assign-
ments, the phenolic signals were examined in more detail
by mapping predicted metabolites onto known metabolic
pathways and assessing the degree of correlated signal beha-
viour in the datasets. A likely solution centred on the meta-
bolism of dietary cinnamates (including chlorogenate) and

Fig. 2. Classification of dogs by breed and sex using urine metabolite fingerprints. Samples from neutered male and female Labrador retrievers and miniature

Schnauzers were analysed by flow injection electrospray MS in both ionisation modes, and the spectra subjected to linear discriminant analysis. (a) Positive ion

mode; (b) negative ion mode. Percentage of variance accounted for by first two discriminant functions (DF1 and DF2) is in brackets. LF, Labrador retriever female;

LM, Labrador retriever male; MF, miniature Schnauzer female; MM, miniature Schnauzer male.

Fig. 3. Relative significance of explanatory signals discriminating dog breeds in flow injection electrospray MS (FIE-MS) fingerprints. Importance scores of the top

fifty m/z signals (in rank order) from Random Forest (RF) models comparing FIE-MS fingerprints of Labrador retrievers (LR) and miniature Schnauzers (MS) using

(a) low m/z range (15–200) or (b) high m/z range (110–1100) data. (a) , NegL; , PosL. (b) , NegH; , PosH.

Dog breed dietary metabolism by metabolomics 1131
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flavonoids initially by the gut microflora to generate benzoate
or coumarate derivatives destined for excretion (Fig. 5).
An alternative pathway could represent the degradation of
phenylalanine following deamination to 3-hydroxyphenylace-
tate via phenylacetaldehyde.

GC-time-of-flight MS analysis to confirm the identity of
discriminatory metabolome signals

With a clear indication that urine from Labrador retrievers
and miniature Schnauzers can be discriminated by metabolite
fingerprinting, replicate samples were further subjected to
GC-TOF-MS analysis(34,36). As urine was derivatised directly
after drying down without solvent extraction or partitioning,
it was expected that GC-TOF-MS should allow the analysis
of a wide range of metabolite classes. Preliminary exper-
iments revealed that the urine matrix was complex, highly
variable and contained a wide range of structurally unknown
chemistry. Under such circumstances, it is extremely difficult
to use instrument manufacturers’ or third-party software tools
to align chromatograms, identify metabolite peaks, decon-
volve spectra and quantify peaks. As an alternative approach,

we focused on the identification of retention time windows in
which total ion currents exhibited breed-specific differences
as detected by the Wilcoxon rank sum test following rough
alignment of chromatograms using in-house software. Peaks
within each of these regions were then manually decon-
volved, aligned and their relative intensity calculated. Peaks
differing significantly in intensity between breeds in a
Wilcoxon test (P#0·00 001) are shown in Table 2. In line
with the metabolite fingerprinting, predictions more than
50 % of the structurally characterised metabolites were phe-
nolic in nature. Specifically, the fact that 3-hydroxybenzoic
acid, 3-hydroxyphenylpropanoic acid, m-coumaric acid and
hippuric acid were all strongly discriminatory suggested
that the major compositional differences in urine of the two
dog breeds centred on metabolism of dietary polyphenols
(Fig. 5; compounds in boxes), rather than endogenous meta-
bolism of phenylalanine via phenylacetaldehyde. ANOVA
confirmed that these metabolites displayed significantly
different mean-relative intensities in the two breeds, with
the levels of phenolics in urine being much greater in
Labrador retrievers (Fig. 6). As anticipated from metabolite
fingerprinting results, raffinose, kestose and glycerol levels

Fig. 4. Metabolite signals discriminating Labrador retrievers from miniature Schnauzers in urine flow injection electrospray MS fingerprints. The left hand side of

each of the four panels lists potentially explanatory m/z signals (P#0·005) in RF importance score rank order within all four datasets (PosL, positive ion low m/z

range; PosH, positive ion high m/z range; NegL, negative ion low m/z range; NegH, negative ion high m/z range). In each dataset (ionisation mode £ mass range),

tentative structural assignments from the signal annotation tool ARMeC (http://www.armec.org) are organised in columns by metabolite class. Individual-predicted

metabolites are numbered as follows. Phenolics: 1, quinaldic acid; 2, phenylacetaldehyde; 3, phenylanaline; 4, 3-hydroxybenzylalchohol; 5, cinnamaldehyde; 6, 3-

or 4-hydroxybenzoate; 7, trans-cinnamate; 8, 3,4- or 2,3-dihydroxyphenylacetic acid; 9, 3-hydroxybenzaldehyde; 10, benzoate; 11, 3,4-dihydroxybenzoate; 12,

phenylanalineglucoside; 13, trans-cinnamate glucoside; 14, 3,4-dihydroxyphenylacetic acid; 15, chlorogenate; 16, tyrosine; 17, 3-hydroxyphenylpropionic acid;

18, cynadin-3-glucoside; 19, naringenin chalcone; 20, pelargodinin; 21, hippuric acid; 22, benzaldehyde; 23, 3-hydroxyphenylacetic acid; 24, m-coumaraldehyde;

25, 3-hydroxy-3-phenylpropanoate; 26, hydroxyhippurate; 27, m-coumarate; 28, phenylpyruvate; 29, cyanadin; 30, 3- or 4- hydroxybenzoic acid glucoside; 31,

cis-cis-muconic acid; 31, pre-phenylacetate. Organic acids: 1, 3-hydroxyisobutyrate; 2, citrate; 3, 2-hydroxy-3-methylbutyrate; 4, succinate; 5, malate; 6, 2- or

3-hydroxybutyrate; 7, succinate semialdehyde; 8, pyruvate; 9, 2-hydroxy-3-methylbutyrate; 10, 2,3-dihydroxybutyrate; 11, citramalate; 12, hydroxypyruvate;

13, pantoate. Fatty acids: 1, tetradecanoic (myristic) acid; 2, octanoyl glycine; 3, acetyl carnitine; 4, decanoyl carnitine; 5, hexanoyl carnitine; 6, dodeconoic (lauric)

acid; 7, choline; 8, 2-octanoic acid; 9, carnitine; 10, octanoate; 11, hexenol. Amino acids: 1, b-alanine; 2, L-alanine; 3, n-methylglycine; 4, glutamate; 5, pyrogluta-

mate; 6, taurine; 7, methyl-L-glutamate. Polyamines: 1, cittruline; 2, ornithine; 3, cadaverine. Other: 1, pantothenate; 2, raffinose; 3, glycerol; 4, glycerate; 5, urea.
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differed significantly between the two dog breeds (Table 2;
Fig. 6). Additionally, citric acid was also highlighted as a
discriminatory metabolite. In this case, ANOVA revealed
that, although citrate levels generally appeared higher in
miniature Schnauzers, the class means were rather similar
and the upper quartile range was much greater, which was
indicative of significant inter-dog variability (data not shown).

As hydroxylated butanoate derivatives were predicted as
highly ranked alternatives to phenolics, the GC-TOF-MS
chromatograms were re-examined manually for evidence of
peak differences between dog classes. The level of 2-hydro-
xybutanoate and 3-aminoisobutyric acid was discovered to
be very similar between breeds but demonstrated sex-specific
concentration differences (Fig. 6).

Fig. 5. Predicted metabolism of dietary polyphenols to explain urine differences between Labrador retrievers and miniature Schnauzers. The metabolic pathway

shown is a ‘best-fit’ model, which accounts for a large number of the explanatory m/z signals in flow injection electrospray MS fingerprints tentatively annotated as

derived from phenolic compounds. Metabolites in text boxes were confirmed by GC-MS. , multiple steps in a metabolic pathway; ! , represent one-step

biotransformations; , represent steps likely to be carried out by colonic microflora; ! represent endogenous biotransformations.
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Breed discrimination by analysis of urine metabolome of pet
dogs fed their normal diet

The study above indicated stable, breed-specific differences in
the urine metabolome of dogs in a highly controlled experi-
mental design. Further work was undertaken to assess the
utility of metabolomics for animals from domestic homes,
whose diet and prior behavioural activity were not specified.
Ten young male dogs of each of ten breeds had urine sampled
after catheterisation just before client-elected castration at
a range of veterinary clinics in the US. Following FIE-MS
analysis, all breeds were compared in a single LDA projection
(Fig. 7(a)). Some clustering of breed samples is evident,
but with the exception of Beagles in DF1, breed separation
is not complete. Thus, breed-specific discrimination was
weaker in this less experimentally controlled study.

We have shown previously that pairwise comparison of
FIE-MS fingerprints by RF is a powerful way to classify
different genotype classes in plant populations(35). Both
classification accuracy and the model margin were thus
calculated for all possible pairwise combinations of breeds
(Fig. 7(b)). A stratified cross-validation method was adapted
to test modelling accuracies. Several pairwise comparisons
have .70 % correct predictions but have differing margin
estimates, which suggested that over-optimistic models were
being generated. However, some pairwise comparisons have
RF margins close to the threshold of an adequate model
(0·2)(38) suggesting that breed-specific differences in urine
metabolome do exist.

Discussion

Obtaining biofluid samples such as urine or blood from dom-
esticated animals demands that strict, ethically acceptable,
procedures are followed and often require habituation of ani-
mals and intensive carer resource. Such stringent requirements
naturally limit the number of sample replicates that can be
obtained, which can be a major problem for ‘omic’ level
studies(42,43). The present work demonstrates that, despite
such limitations on replication (in addition to the normal

variability of urine as a homoeostatic fluid), the metabolite
composition of fasted (.20 h) ‘spot’ urine samples from
two domestic dog breeds is consistent enough to allow suc-
cessful classification based on metabolome fingerprint data.
Using Labrador retrievers maintained in a simulated domestic
setting, an experimental design in relation to husbandry,
sampling and metabolite analysis was developed, which mini-
mised the effect of external factors on the reproducibility of
the metabolite fingerprint. With adequate procedures in
place, comparison of the urinary chemical fingerprints of Lab-
rador retrievers and miniature Schnauzers fed an identical diet
suggested distinct, major differences centred largely on the
metabolism of diet-related polyphenols. These data confirm
the findings of a NMR study using identical samples(19).
Although breed discrimination was relatively accurate, it
proved more difficult to correctly predict sex.

Preliminary examination of the urinary metabolome of
young male dogs representative of a wider range of breeds
from animals maintained under domestic conditions on
unknown diets provided evidence that some breeds may
have distinctive metabolic differences. For example, the pre-
sent limited data revealed Beagle urine to be significantly
different in composition from that of other breeds investigated,
suggesting potentially distinctive interactions with diet. Fur-
thermore, when breeds are designated as either small,
medium or large in stature (see key in Fig. 7(a)), it is apparent
that large breeds can be separated out from breeds of other
sizes (Fig. 7(b)). Urine-specific gravity is higher, but fre-
quency of urination and daily average urine output volumes
are lower in miniature Schnauzers compared to Labrador
retrievers(44), which may account for the fact that urea signals
in FIE-MS were highly significant discriminatory signals
between the two breeds. When considering a urine collection
strategy, it may be beneficial to take into account, particularly
any behavioural differences between breeds. Small breeds of
dog generally have more concentrated urine and many are
more prone to Ca stone formation in comparison to large
breeds(45). Urinary citric acid levels have long been viewed
as a marker of renal metabolism(46) and have been correlated
to net absorption of alkali in the genitourinary tract, which is
reduced in animals at risk of forming Ca stones(45,47).

The demonstration that non-targeted metabolite profiling
identified expected differences in citrate levels among
breeds is an indication of the comprehensiveness of this
‘first-pass’ analysis method. However, this last observation
does raise issues of data interpretability when dealing with
semi-quantitative measurements. The data are presented as
relative intensities (TIC ratio) and not as absolute amounts.
Furthermore, FIE-MS data may be affected by ion suppres-
sion or enrichment within the urine matrix. So while citrate
may be a significant peak in discriminating between the
two breeds, it is not possible to conclude that there is a
higher concentration of citrate in miniature Schnauzer urine
in comparison to Labrador retriever without further quanti-
tative analyses. The intensity value shown also provides no
evidence of a biologically significant effect on maintaining
genitourinary tract health. As such, while the observation is
useful for hypothesis generation, data should be interpreted
with caution.

From a practical perspective, the first-pass analysis of urine
by FIE-MS fingerprinting was simple and rapid, producing

Table 2. Metabolite peaks differing significantly between
dog breeds in GC time-of-flight MS analysis of urine

Peak identifier Assignment by NIST database

1 Glycerol
2 Unknown
3 Unknown organic acid
4 3-Hydroxybenzoic acid
5 Unknown
6 Unknown carbohydrate
7 3-Hydroxyphenylpropanoic acid
8 Citric acid
9 m-Coumaric acid
10 Hippuric acid
11 Unknown carbohydrate
12 Unknown aromatic
13 Unknown
14 Unknown
15 Kestose
16 Raffinose

NIST, National Institute of Standards and Technology.
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information-rich data with high potential for further inter-
pretation(25,35,37). A parallel study on the same urine samples
using NMR fingerprinting revealed ten metabolites that
differed in concentration between Labrador retrievers and
miniature Schnauzers(19), but of these signals only citrate
and hippurate were structurally assigned. The discriminatory
power of these metabolites was indeed confirmed in the pre-
sent study, along with a much larger number of ‘explanatory’
signals representing metabolites associated with several areas
of metabolism. It is concluded that an approach based on
MS complements metabolic fingerprinting by NMR, but addi-
tionally, by its increased sensitivity and opportunity for direct
metabolite putative annotations based on m/z value(37) offers
increased scope for data modelling and interpretation before
any deeper analysis by more targeted analytical methods.

Large differences in the levels of phenolic metabolites in
urine were a major discriminatory feature in the specific com-
parison of Labrador retrievers and miniature Schnauzers. The
most intense discriminatory phenolic metabolite peak in urine
was associated with m-coumarate, which is likely to have its
origin in the microbial breakdown of dietary chlorogenic
acid, an abundant hydroxycinnamic acid found in a large
variety of fruits and vegetables(48). Similarly, the presence
of elevated levels of 3-hydroxyphenylpropanoic acid in mam-
malian urine is commonly associated with degradation of
dietary flavonoids (such as the anthocyanins, pelargonidin and
cyanidin) and condensed tannins by the gut microflora(48,49).
3-Hydroxybenzoic acid in the urine is likely the product of
further endogenous b-oxidation of 3-hydroxyphenylpropanoic
acid(50). Benzoic acid, derived from both endogenous and

Fig. 6. Relative levels of metabolites discriminating urines of Labrador retrievers and miniature Schnauzers. The figure shows for each breed £ sex combination

the relative signal intensity ratios for ten specific metabolites as box plots derived from analysis of GC-MS data (Wilcoxon text; P # 0·00001). LF, Labrador retriever

female; LM, Labrador retriever male; MF, miniature Schnauzer female; MM, miniature Schnauzer male. (a) Hippuric acid; (b) coumaric acid; (c) 3-hydroxyphenyl

propanoic acid; (d) 3-hydroxybenzoic acid; (e) glycerol; (f) citric acid; (g) raffinose; (h) kestose; (i) 2-hydroxybutyric acid; (j) b-amino-isobutyric acid. *Outliers.
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gut microflora metabolism of dietary phenolics, is rapidly
conjugated with glycine to produce hippuric acid(50).

There has been considerable literature advocating the poten-
tial beneficial effects on human health of dietary polyphenols
with antioxidant properties, such as flavonoids(51). Bioavail-
ability of phenolics with desirable antioxidant properties
may depend on the balance between absorption by intestinal
epithelial mono-carboxylic acid transporters and metabolism
by the gut microflora(50,52). As illustrated in Fig. 5, the first
steps in the degradation of dietary phenolics in the present
study are likely to be the result of colonic microbial activity,
which suggests that precursor molecules must be entering the
large intestine in both breeds. Thus, the differences in concen-
tration of phenolic breakdown products in urine could result
from a more efficient absorption of intact dietary flavonoids
and cinnamates into the blood stream in the upper gastrointes-
tinal tract in miniature Schnauzers, as reported previously for
chlorogenate in rats and human subjects(53). Alternatively, the
presence of much higher levels of phenolics in urine from
Labrador retrievers suggests either a more efficient catabolism
of diet-derived flavonoids and cinnamates by the colonic
microflora or differential absorption in the colon. Whole
grain wheat and maize, rice and sugarbeet pulp, together
with bran derived from both maize and soya, comprise a

large proportion of the raw ingredients used in the manu-
facture of the commercial dog foods used in the present
study. As whole grains cereals and bran products contain
high levels of polyphenols and are rich in cinnamates, couma-
rates, chlorogenate, caffeic acid and ferulate(52,54), then it is
possible that the differential utilisation of these potentially
‘bioactive’ plant secondary metabolites might have impli-
cations for animal health(16) and thus commercial pet foods
optimised for individual breeds, in some instances, may
prove beneficial(7).

The major contribution of phenolic signals discriminating
miniature Schnauzers and Labrador retrievers in classification
models based on FIE-MS data was confirmed independently
by GC-MS analysis. In addition to animal carcass meal, a sig-
nificant component of commercial pet foods is derived from
complex fat-based by-products, including liquid poultry fat,
beef tallow and vegetable oils(55) together, with pure com-
pounds such as glycerol that are used as moisture stabil-
isers(56). Although differences in the levels of organic acids
derived from butyric acid were more associated with sex, it
is possible that the non-targeted profiling GC-MS method-
ology in the present study did not adequately cover all classes
of organic acids and fatty acids. Indeed, a previous NMR
study suggested that metabolites related to 2-hydroxybutyrate
may differ in urines from these two breeds(19), and the pre-
sent GC-MS data highlighted at least one further unknown
organic acid as discriminatory. Thus, further differences in
fatty acid metabolism as tentatively suggested by FIE-MS
fingerprinting, particularly relating to butyrate derivatives or
carnitine derivatives of larger fatty acids, may be significant
between breeds. Related to this possibility, GC-MS analysis
also revealed much higher levels of glycerol in urine derived
from miniature Schnauzers. As diet-derived glycerol is a rich
energy source, it would be surprising if this compound was
excreted unless supply is greatly in excess of need, and so
this observation, together with possible differences in fatty
acid excretion, may be worthy of further investigation. The
levels of the trisaccharides raffinose and kestose followed
the same trend as glycerol, being present at substantially
higher levels in miniature Schnauzers. Raffinose and kestose
represent part of the indigestible ‘soluble fibre’ components
of animal diets that are only degraded by microbial activity
in the lower gastrointestinal tract. Thus, excretion of these
trisaccharides may again reflect stable and substantial differ-
ences in the microbial populations within the gastrointestinal
tract of these two breeds(57 – 59). This hypothesis is supported
by research characterising the canine gut microbiome
(C. Wallis, unpublished results). In that study, bacterial popu-
lations in faecal samples from different breeds have been
shown to differ in the proportion of the major phyla iden-
tified. As inulin-type metabolite prebiotics are now part
of specialist commercial animal feeds available on the
market(60,61), then knowledge relating to such potential
breed-specific differences may prove important to optimise
diets and improve health.

It is concluded that substantial potential exists to investigate
differences in nutrition-related metabolism by urine metabolite
fingerprinting, especially if the animals can be maintained on
the same diet before sampling, similar to human studies(31).
Such information could be valuable for developing diets
designed to suit classes of dog breeds(7,19,59).

Fig. 7. Discrimination of male dogs by breed using FIE-MS fingerprinting.

(a) Linear discriminant analysis scores plot of nine dog breeds (DF1 £ DF2).

(b) Summary of Random Forest performance (classification – accuracy and

model margin) in pairwise comparison of urines from selected dog breeds

using flow injection electrospray MS fingerprint data. Key: Breed (size):

R, Doberman (L); W, Rottweiler (L); , Labrador retriver (L); A, German

sheperd (L); B, Poodle (M); N, Shih tzu (S); X, Beagle (M); S, Cocker

spaniel (M); , Golden retriver (L); where, S, small; M, medium; L, large.
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