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Abstract

We introduce a novel solution concept, denoted α-dissipative solutions, that provides a continuous
interpolation between conservative and dissipative solutions of the Cauchy problem for the two-
component Camassa–Holm system on the line with vanishing asymptotics. All the α-dissipative
solutions are global weak solutions of the same equation in Eulerian coordinates, yet they exhibit
rather distinct behavior at wave breaking. The solutions are constructed after a transformation into
Lagrangian variables, where the solution is carefully modified at wave breaking.

2010 Mathematics Subject Classification: 35Q53, 35B35 (primary); 35Q20 (secondary)

1. Introduction

We consider the Cauchy problem for the two-component Camassa–Holm (2CH)
system given by

ut − ut xx + κux + 3uux − 2ux uxx − uuxxx + ηρρx = 0, (1a)
ρt + (uρ)x = 0, (1b)

with initial data u|t=0 = u0 and ρ|t=0 = ρ0. Here, κ ∈ R and η ∈ (0,∞) are given
parameters. We are interested in global weak solutions for general initial data
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u0 ∈ H 1(R) and ρ0 ∈ L2(R). (2)

The 2CH system was introduced by Olver and Rosenau [35, Equation (43)] (see
also [2, 8, 32]), and derived in the context of water waves by Constantin and
Ivanov [11]. In this paper, the question of wave breaking is also analyzed. The
scalar CH equation, which corresponds to the case where ρ(t, x) = ρ0(x) = 0,
was introduced by Camassa and Holm in the fundamental paper [7], and its
analysis has been pervasive. Other generalizations of the Camassa–Holm equation
exist; see, for example, [8, 9, 13, 21, 33].

The 2CH system experiences wave breaking in the sense that the spatial
derivative of u becomes unbounded while keeping its H 1(R) norm finite.
This gives rise to a dichotomy between so-called conservative and dissipative
solutions, which complicates the issue of well posedness of the Cauchy problem.
This issue has been studied extensively [15, 17, 18, 34, 37]. Analysis of blow-up
and existence of global solutions for the 2CH system can be found in, for example,
[19, 22–25, 30, 31].

In this article, we introduce a novel class of solutions parameterized by α ∈ [0,
1]. The parameter α determines the amount of dissipation for the corresponding
class of solutions. If α = 0, there is no dissipation, and we obtain the conservative
solutions, meaning that, when a collision (that is, wave breaking) occurs, the
energy contained in the collision is entirely redistributed in the system after the
collision. If α = 1, we obtain the (fully) dissipative solutions, where all the energy
contained in a collision vanishes from the system. The intermediate values of α
give the fraction of the energy contained in the collision which is dissipated. The
remaining energy is given back after the collision.

For simplicity, in this introduction, we consider first the CH equation with κ =
0. However, in the text proper, we analyze the full 2CH system. Dissipation occurs
when the solution blows up. The problem of blow-up can be studied explicitly
in the case of multipeakon solutions, but since this example is well known, we
refer to, for example, [26], where this is well described, rather than presenting the
details here. The upshot of the analysis is that the solution u has to be augmented
by an additional variable in the form of a measure, denoted µ, that describes
the energy. For u0 ∈ H 1(R), we let µ = u2

x dx . For smooth solutions to the CH
equation, the following conservation law for the energy holds:

(u2
+ u2

x)t + (u(u
2
+ u2

x))x = (u3
− 2Pu)x , (3)

which implies that the total energy, that is, the H 1(R) norm of u, is preserved.
Here, P is an integrated term which is defined below; see (4). When blow-up
occurs, the energy density (u2

+ u2
x) dx becomes singular; that is, it becomes

a measure containing a singular part. This measure has to be augmented to the
solution u in order to be able to define the continuation after blow-up.
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Interpolation between conservative and dissipative solutions for the 2CH system 3

The proper way to continue the solution after blow-up is to rewrite the equation
in terms of new variables, denoted Lagrangian variables, where the CH equation
appears as a system of ordinary differential equations taking values in a Banach
space in such a way that the blow-up in the original Eulerian variables (1)
evaporates [4, 5, 27, 29]. In the present literature, the analysis has been distinct for
the two classes of solutions. Our new solution concept governed by the parameter
α allows for a continuous interpolation between the conservative and dissipative
solutions. At the same time it allows a uniform treatment of all cases. We denote
these solutions as α-dissipative solutions.

Let us describe more precisely the construction of the α-dissipative solutions.
After applying the inverse Helmholtz operator (1 − ∂xx)

−1, the CH equation can
be rewritten as

ut + uux + Px = 0, P − Pxx = u2
+

1
2 u2

x . (4)

The pattern of blow-up is known [10]: the solution remains continuous while the
derivative ux tends to minus infinity at the blow-up point. For this reason, the
blow-up for the CH equation is often characterized as wave breaking, and we will
use this term extensively in this paper. Wave breaking occurs precisely when the
characteristics, y = y(t, ξ), given by

yt(t, ξ) = u(t, y(t, ξ)), (5)

have a critical point; that is, yξ (t, ξ) = 0. For a given ‘particle’, labeled by ξ , the
characteristic y(t, ξ) denotes the trajectory of ξ , and

τ1(ξ) =

{
sup{t ∈ R+ | yξ (t ′, ξ) > 0 for all 0 < t ′ < t} if {· · ·} 6= ∅,
∞ otherwise,

denotes the time of the first wave breaking for ξ . For dissipative solutions, we
would set yξ (t, ξ) = 0 for t > τ1(ξ), while for conservative solutions we would
continue to use (5). Typically, in a collision taking place at time tc, the trajectories
of different particles meet, say y(tc, ξ1) = y(tc, ξ) = y(tc, ξ2) for ξ ∈ [ξ1, ξ2]. In
the dissipative case, the particles remain together. The energy, which in the case
of conservative solutions sends the collided particles apart, is entirely dissipated
in the dissipative case. To keep track of the part of the energy that accumulates at
collision points, we introduce the function

h(t, ξ) = u2
x(t, y(t, ξ))yξ (t, ξ).

The time evolution of h is given by

ht(t, ξ) = 2(U 2(t, ξ)− P(t, ξ))Uξ (t, ξ),
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where the function
U (t, ξ) = u(t, y(t, ξ)) (6)

denotes the Lagrangian velocity. We write the CH equation as a system of
ordinary differential equations in Lagrangian coordinates:

yt = U, Ut = −Q, ht = 2(U 2
− P)Uξ ,

yt,ξ = Uξ , Ut,ξ =
1
2 h + (U 2

− P)yξ ,
(7)

where P and Q are integrated terms, enjoying higher regularity, given by (24) and
(21), respectively. The control on the level of dissipation, which depends on α, is
determined by the Lagrangian variables at the times of collision. At collision time
τ1(ξ), for the particle ξ , we decompose h into two parts:

h(τ1(ξ), ξ) = αh(τ1(ξ), ξ)+ (1− α)h(τ1(ξ), ξ).

For α-dissipative solutions, the first part is dissipated, while the second is
redistributed to the system. We introduce h̄, which denotes the effective part of
the energy, that is, the part which effectively amounts for the energy that is left
after a collision. Before the first collision, h and h̄ coincide, but at collision time,
h̄ is discontinuous, and we set

h̄(τ1(ξ), ξ) = (1− α) lim
t↑τ1(ξ)

h̄(t, ξ), (8)

while h remains continuous in time. In fact, it should be enough only to consider
h̄ instead of h; however, the variable h, because of its time continuity property, is
so useful in the proofs that we keep it as one of the variables for the governing
equations. The same particle may experience additional collisions later. Thus, we
construct the sequence

0 < τ1(ξ) < τ2(ξ) < · · · < τ j(ξ) < · · ·

of collision times. For a given ξ , the sequence τi(ξ) does not accumulate, and
there exists a lower bound for the time separating two collisions; see Corollary 19.
At each τ j(ξ), we reset h̄; that is,

h̄(τ j(ξ), ξ) = (1− α) lim
t↑τ j (ξ)

h̄(t, ξ). (9)

The equations in Lagrangian coordinates we will consider are given by

yt = U, (10a)
Ut = −Q, (10b)
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Interpolation between conservative and dissipative solutions for the 2CH system 5

yt,ξ = Uξ , (10c)
Ut,ξ =

1
2 h̄ + (U 2

− P)yξ , (10d)
ht = 2(U 2

− P)Uξ , (10e)

where P and Q are given by (33) and (34), respectively. The initial characteristics
are given by y(ξ) = sup{y | µ((−∞, y)) + y < ξ}. Note that, since h̄ is
discontinuous, the system of ordinary differential equations (10) is discontinuous.

Now we want to obtain a global solution of the system (10), properly
formulated. We consider the vector Θ = (ζ,U, ζξ ,Uξ , h̄, h) ∈ L∞(R) × E5,
where E = L2(R) ∩ L∞(R), and, for technical reasons, we prefer to work with
ζ = y− Id. In order to obtain a global solution that respects the intrinsic structure
of the system, we have to restrict the initial data appropriately, and we only
consider initial data in the set G given by Definition 3. Short-time existence is
proved by an iteration argument (see Theorem 15), and existence of a global
solution in G is proved in Theorem 17.

The next task is then to return to Eulerian coordinates, where the solution (u(t),
µ(t)) for each positive time t satisfies u(t) ∈ H 1(R), as well as being a weak
global solution of (4), andµ(t) is a nonnegative Radon measure such thatµac(t)=
u2

x(t, ·) dx . When u is a smooth solution, µ = µac, but, at a blow-up time tc,
the singular part of µ, which we denote µs, accounts for the singular part of the
energy, as we have

lim
t↑tc
((u2(t, x)+ u2

x(t, x)) dx) = µs(tc)+ (u2(tc, x)+ u2
x(tc, x)) dx .

The next problem is that of relabeling; there are several distinct Lagrangian
solutions corresponding to one and the same solution in Eulerian variables, similar
to the fact that there are several distinct parameterizations of one and the same
curve. We identify the precise set G of relabeling functions (see Definition 5),
and we show that the flow respects the relabeling (see Theorem 24). The return to
Eulerian variables is contained in Definition 8, where we define

u(x) = U (ξ) for any ξ such that x = y(ξ),
µ = y#(h̄(ξ) dξ).

Here we used the convention to denote the push-forward of the measure dσ by
the function y as ν = y#(dσ), where ν(A) = σ(y−1(A)). Finally, we show that
the solution is a global weak solution of the CH equation, and that we have (see
Theorem 26)

(u2
+ µ)t + (u(u2

+ µ))x 6 (u3
− 2Pu)x (11)

in the sense of distributions.
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Until now, we have focused on the CH equation, that is, the case where ρ(t,
x) = ρ0(x) = 0, which implies that (1a) and (1b) decouple. For the 2CH system
in the general case, when ρ0 6= 0, we observe the same regularization properties
as in the conservative case presented in [15], namely that, if ρ0(x) > 0 for all x ,
then the solution retains the same level of regularity as the one it has initially, no
collision occurs, and

E(t) = E(0) (12)

for all times t , where E(t) =
√
‖u(t, ·)‖2

H1 + ‖ρ(t, ·)‖2
L2 . For general initial data,

if α = 0, the identity (12) holds only for almost every time t , while, if α > 0, the
function E(t) is then nonincreasing almost everywhere, that is,

E(t) 6 E(t ′) (13)

for t > t ′, where t and t ′ belong to a given set of full measure; see Theorems 26
and 27.

Finally, we present in Section 5 detailed calculations for the explicit example of
a peakon–antipeakon solution. Here, one can see the interplay between Eulerian
and Lagrangian variables, and the role and use of relabeling, as well as an explicit
description of the behavior at wave breaking.

2. Lagrangian setting

We consider the Cauchy problem for the two-component Camassa–Holm
system with arbitrary κ ∈ R and η ∈ (0,∞), given by

ut − ut xx + κux + 3uux − 2ux uxx − uuxxx + ηρρx = 0, (14a)
ρt + (uρ)x = 0, (14b)

with initial data u|t=0 = u0 and ρ|t=0 = ρ0, such that u ∈ H 1(R) and ρ ∈ L2(R).
A close look reveals that, if (u(t, x), ρ(t, x)) is a solution of the two-component
Camassa–Holm system (14), then we easily find that

v(t, x) = u(t, x), and τ(t, x) =
√
ηρ(t, x), (15)

solves the two-component Camassa–Holm system with η = 1. Therefore, without
loss of generality, we assume in what follows that η = 1. Our analysis does not
extend to the case with η negative. For results in that case, see, for example,
[12]. In addition, we only consider the case κ = 0, as one can make the same
conclusions for κ 6= 0 with slight modifications. The general case with κ ∈ R,
which is related to the case where the solution u, ρ has nonvanishing asymptotics,
is treated in [14, 15, 18].

In the remainder of this section, we will introduce the set of Lagrangian
coordinates we want to work with, and the corresponding Banach space.
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2.1. Reformulation of the 2CH system in Lagrangian coordinates. The
2CH system with κ = 0 can be rewritten as the following system in Eulerian
coordinates:

ut + uux + Px = 0, (16a)
ρt + (uρ)x = 0, (16b)

P − Pxx = u2
+

1
2 u2

x +
1
2ρ

2, (16c)

where P and Px are given by

P(t, x) =
1
2

∫
R

e−|x−z|

(
u2
+

1
2

u2
x +

1
2
ρ2

)
(t, z) dz, (17)

and

Px(t, x) = −
1
2

∫
R

sgn (x − z)e−|x−z|

(
u2
+

1
2

u2
x +

1
2
ρ2

)
(t, z) dz. (18)

(For κ nonzero, (16c) is simply replaced by P − Pxx = u2
+ κu + 1

2 u2
x +

1
2ρ

2.) In order to reformulate system (16) in Lagrangian variables, we define the
characteristics y(t, ξ) as the solution of

yt(t, ξ) = u(t, y(t, ξ)) (19)

for a given y(0, ξ). The Lagrangian velocity is given by U (t, ξ) = u(t, y(t, ξ)),
and we find using (16a) that

Ut(t, ξ) = −Q(t, ξ), (20)

where Q(t, ξ) = Px(t, y(t, ξ)) is given by

Q(t, ξ) = −
1
4

∫
R

sgn (ξ − η)e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h)(t, η) dη, (21)

where we have introduced h = (u2
x + ρ

2) ◦ yyξ , or

h(t, ξ) = (u2
x(t, y(t, ξ))+ ρ2(t, y(t, ξ)))yξ (t, ξ). (22)

The time evolution of h(t, ξ) is given by

ht(t, ξ) = 2(U 2(t, ξ)− P(t, ξ))Uξ (t, ξ), (23)

where P(t, ξ) = P(t, y(t, ξ)) is given by

P(t, ξ) =
1
4

∫
R

e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h)(t, η) dη. (24)
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Last, but not least, the Lagrangian density

r(t, ξ) = ρ ◦ yyξ (t, ξ) = ρ(t, y(t, ξ))yξ (t, ξ) (25)

is preserved with respect to time; that is,

rt = 0, (26)

according to (16b).
We have formally reformulated the 2CH system (16) in Eulerian coordinates as

the following system of ordinary differential equations in Lagrangian variables:

yt = U, (27a)
Ut = −Q, (27b)
yt,ξ = Uξ , (27c)

Ut,ξ =
1
2 h + (U 2

− P)yξ , (27d)
ht = 2(U 2

− P)Uξ , (27e)
rt = 0, (27f )

where P and Q are given by (24) and (21), respectively.

2.2. The new solution concept: α-dissipative solutions. Wave breaking for
the 2CH system means that ux becomes pointwise unbounded from below, which
is equivalent, in this case, to saying that yξ becomes zero. Let therefore τ1(ξ)

denote the first time when yξ (t, ξ) vanishes at the point ξ ; that is,

τ1(ξ) = sup{t ∈ R+ | yξ (t ′, ξ) > 0 for all 0 < t ′ < t} (28)

if there exists some t > 0 such that yξ (t ′, ξ) > 0 for all t ′ ∈ (0, t) and yξ (t,
ξ) = 0. Otherwise, we set τ1(ξ) = ∞. For conservative solutions, we would
continue yξ (t, ξ) past wave breaking according to the definition (19), while for
dissipative solutions one sets y(t, ξ) constant in ξ (not in time), that is, yξ (t,
ξ)= 0, after wave breaking. It turns out that the proper way to interpolate between
the two solutions is by using the variable h(t, ξ) given by (22). For α ∈ [0, 1], we
extend the solution past wave breaking by instantaneously reducing the function
h(t, ξ) by a factor (1−α) at wave breaking. More precisely, we introduce an extra
energy variable, h̄, which corresponds to the energy which is actually contained
in the system and which coincides with h until wave breaking occurs for the first
time. At each collision, h̄ is going to be discontinuous in time (for α > 0) as we
set

h̄(τ1(ξ), ξ) = (1− α)h̄(τ1(ξ)− 0, ξ).
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Here we use the notation Φ(x ± 0) = limε↓0Φ(x ± ε). The energy variable h
remains continuous in time, as we set

h(τ1(ξ), ξ) = h(τ1(ξ)− 0, ξ).

We define by induction the times τn(ξ), for ξ fixed, where collisions occur. Let

τn(ξ) = sup{t ∈ (τn−1(ξ),∞) | yξ (t ′, ξ) > 0 for all τn−1(ξ) < t ′ < t}, (29)

if there exists some t > τn−1(ξ) such that yξ (t ′, ξ) > 0 for all t ′ ∈ (τn−1(ξ), t) and
yξ (t, ξ) = 0. We set τn(ξ) = ∞ otherwise. For convenience, we let τ0(ξ) = 0 for
all ξ ∈ R. Then, as above, we impose

h̄(τn(ξ), ξ) = (1−α)h̄(τn(ξ)−0, ξ) and h(τn(ξ), ξ) = h(τn(ξ)−0, ξ). (30)

We denote by l j the change in h̄ due to the collision; that is,

l j(ξ) = h̄(τ j(ξ)− 0, ξ)− h̄(τ j(ξ), ξ) = αh̄(τ j(ξ)− 0, ξ). (31)

REMARK 1. The sequence τn(ξ) is increasing and can a priori accumulate.
However, we will show that this does not happen; see Corollary 19.

DEFINITION 1. An α-dissipative solution in Lagrangian coordinates is given by
the functions (y,U, yξ ,Uξ , h̄, h, r) such that

y − Id ∈ L∞([0, T ],W 1,∞(R)), U ∈ L∞([0, T ], H 1(R)),
yξ − 1,Uξ , r ∈ W 1,∞([0, T ], L2(R) ∩ L∞(R))

h̄ ∈ L∞([0, T ], L2(R)), h ∈ W 1,∞([0, T ], L1(R) ∩ L∞(R)),

and measurable functions τ1(ξ) < τ2(ξ) < · · · , either finitely many or τn(ξ)→∞

as n→∞, given by (28) and (29), which satisfy, for almost every ξ ∈ R,

yt(t, ξ) = U (t, ξ), (32a)
Ut(t, ξ) = −Q(t, ξ), (32b)
yt,ξ (t, ξ) = Uξ (t, ξ), (32c)

Ut,ξ (t, ξ) = 1
2 h̄(t, ξ)+ (U 2(t, ξ)− P(t, ξ))yξ (t, ξ), (32d)

ht(t, ξ) = 2(U 2(t, ξ)− P(t, ξ))Uξ (t, ξ), (32e)
h̄t(t, ξ) = ht(t, ξ), (32f )

rt(t, ξ) = 0, (32g)

for t ∈ [τn−1(ξ), τn(ξ)) and

X (τn(ξ), ξ) = X (τn(ξ)− 0, ξ), (32h)
h̄(τn(ξ), ξ) = (1− α)h̄(τn(ξ)− 0, ξ), (32i)
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for X = (y,U, yξ ,Uξ , h, r). In (32), the functions P and Q are given by

P(t, ξ) =
1
4

∫
R

e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h̄)(t, η) dη (33)

and

Q(t, ξ) = −
1
4

∫
R

sgn (ξ − η)e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h̄)(t, η) dη, (34)

respectively.

REMARK 2. Note that, due to the above considerations, we can represent h̄(t, ξ)
in the following way:

h̄(t, ξ) = h(t, ξ)−
n∑

j=0

l j(ξ), for t ∈ [τn(ξ), τn+1(ξ)), (35)

where we recursively define l j(ξ) = α(h(τ j(ξ), ξ) −
∑ j−1

k=0 lk(ξ)) for j ∈ N,
and l0(ξ) = h(0, ξ) − h̄(0, ξ) > 0 and τ0(ξ) = 0. In particular, we have
0 6 h̄(t, ξ) 6 h(t, ξ).

REMARK 3. We will here try to explain the strategy behind the lengthy existence
proof in Lagrangian variables. Our starting point is the formulation (27) in
Lagrangian variables. We replace the mixed derivatives yt,ξ and Ut,ξ by new
variables, namely q = yξ and w = Uξ , which turns (27) into a system of
ordinary differential equations. We show the existence of a solution by an iterative
argument, as part of the proof of Theorem 15. To secure a global solution, and
to make sure that the underlying structure is preserved (for example, that the
functions q andw satisfy q = yξ andw =Uξ , respectively), we have to restrict the
set of initial data to the set G; see Definition 3. The existence of global solutions
then follows in the standard way by showing that the solution remains bounded.
This would then yield the solution in Lagrangian variables in the conservative
case. However, to construct the α-dissipative solutions we need to monitor yξ (t,
ξ) carefully as a function of t for each fixed ξ . At the first occasion when yξ (t,
ξ) = 0, that is, when t = τ1(ξ), we read off the values of the dependent variables,
and scale the variable h̄ (which equals h up to τ1(ξ)) by the factor 1 − α. The
system of ordinary differential equations is then restarted at t = τ1(ξ) and runs
according to (32) until the next time yξ (t, ξ) vanishes. Again the function h̄
is rescaled, and the system restarted. This construction is performed for each
ξ ∈ R. As the system of ordinary differential equations is discontinuous, the
global existence proof requires careful estimates; see Lemmas 5, 6, 8, 10–13, 16.
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The function g, introduced below in Definition 2, plays a subtle role in our
considerations. It is used in Lemma 10, when identifying κ1−γ (see (56)), as the
set of points which will experience wave breaking in the near future. However,
it will play an even more vital role in the (future) construction of a Lipschitz
metric for this system; see, for example, [6, 16]. A close look at g and h̄ reveals
that the function h̄ drops suddenly at breaking time, while the function g models
the loss of energy in a continuous way. Thus g will play a major role in (future)
investigations about the stability of solutions.

We introduce the following notation for the Banach spaces that are frequently
used. Let

E = L2(R) ∩ L∞(R),

together with the norm

‖ f ‖E = ‖ f ‖L2 + ‖ f ‖L∞,

and let

W = [L2(R)]4, W̄ = E4,

V = L∞(R)× L2(R)×W, V̄ = L∞(R)× E × W̄ .

For any function f ∈ C([0, T ], B) for T > 0 and B a normed space, we denote

‖ f ‖L1
T B =

∫ T

0
‖ f (t, ·)‖B dt and ‖ f ‖L∞T B = sup

t∈[0,T ]
‖ f (t, ·)‖B .

DEFINITION 2. For x = (x1, . . . , x7) ∈ R7, we define the functions g1, g2,
g : R7

→ R by

g1(x) = |x4| + 2x3,

g2(x) = x3 + x5,

and

g(x) =

{
αg1(x)+ (1− α)g2(x) if x ∈ Ω1,
g2(x) otherwise,

(36)

where Ω1 is the set where g1 6 g2, x4 is nonpositive, and x7 = 0; thus

Ω1 = {x ∈ R7
| |x4| + 2x3 6 x3 + x5, x4 6 0, and x7 = 0}.

We identify x = (x1, . . . , x7) with Θ = (y,U, yξ ,Uξ , h̄, h, r).
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REMARK 4. In the case of conservative solutions (that is, α = 0), we have
0 < g(Θ)(t, ξ) = g2(Θ)(t, ξ) and h(t, ξ) = h̄(t, ξ) for all ξ ∈ R and t ∈ R.
In the case of dissipative solutions (that is, α = 1), we infer 0 < g(Θ)(t, ξ) and
h(t, ξ) = h̄(t, ξ) before wave breaking, while 0 = g(Θ)(t, ξ) and h̄(t, ξ) = 0
thereafter. The function g(Θ)(t, ξ) is introduced in such a way that it describes
the loss of energy in a continuous way, in contrast to h̄(t, ξ), which drops suddenly
at wave breaking.

DEFINITION 3. The set G consists of all Θ = (y,U, yξ ,Uξ , h̄, h, r) such that

X = (ζ,U, ζξ ,Uξ , h, r) ∈ V̄ , (37a)
g(Θ)− 1 ∈ E, (37b)

h ∈ L1(R), (37c)
yξ > 0, h > 0, h̄ > 0 almost everywhere, (37d)

lim
ξ→−∞

ζ(ξ) = 0, (37e)

1
yξ + h

∈ L∞(R), (37f )

yξ h̄ = U 2
ξ + r 2 almost everywhere, (37g)

h > h̄ almost everywhere, (37h)

where we denote y(ξ) = ζ(ξ)+ ξ .

The condition (37e) will be valid as long as the solution exists, since in that
case we must have limξ→−∞U (t, ξ) = 0 by construction. In addition, it should be
noted that, due to the definition of g(Θ), the relation (37b) is valid for any Θ that
satisfies (37a), since 0 6 h̄ 6 h.

Making the identifications q = yξ and w = Uξ , we obtain

yt = U, (38a)
Ut = −Q(Θ), (38b)

qt = w, (38c)
wt =

1
2 h̄ + (U 2

− P(Θ))q, (38d)
ht = 2(U 2

− P(Θ))w, (38e)
rt = 0, (38f )

where P(Θ) and Q(Θ) are given by

P(t, ξ) =
1
4

∫
R

e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η) dη, (39)
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and

Q(t, ξ) = −
1
4

∫
R

sgn (ξ − η)e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η) dη, (40)

respectively.
The definition of τ1 given by (28) (after replacing yξ by the corresponding

variable q) is not appropriate for q ∈ C([0, T ], L∞(R)), and, in addition, it is
not clear from this definition if τ1 is measurable. Thus we replace this definition
by the following one. Let {ti}

∞

i=1 be a dense countable subset of [0, T ]. Define

At =
⋃
n∈N

⋂
ti6t

{
ξ ∈ R | q(ti , ξ) >

1
n

}
.

The sets At are measurable for all t , and we have At ′ ⊂ At for t 6 t ′. We consider
a dyadic partition of the interval [0, T ] (that is, for each n, we consider the set
{2−niT }2

n

i=0), and set

τ n
1 (ξ) =

2n∑
i=0

iT
2n
χi,n(ξ),

where χi,n is the indicator function of the set A2−n iT \ A2−n(i+1)T . The function τ n
1 is

by construction measurable. One can check that τ n
1 (ξ) is increasing with respect

to n; it is also bounded by T . Hence, we can define

τ1(ξ) = lim
n→∞

τ n
1 (ξ),

and τ1 is a measurable function. The next lemma gives the main property of τ1.

LEMMA 5. If, for every ξ ∈ R, q(t, ξ) is positive and continuous with respect to
time, then

τ1(ξ) =

{
sup{t ∈ R+ | q(t ′, ξ) > 0 for all 0 < t ′ < t} if {· · ·} 6= ∅,
∞ otherwise;

(41)

that is, we retrieve Definition (28).

Proof. See [29].

One can represent τn(ξ) with n = 2, 3, . . ., similarly. Indeed, let {ti}
∞

i=1 be a
dense countable subset of [0, T ]. Define inductively

An,t =
⋃
m∈N

⋂
ti6t

{
ξ ∈ R | τn−1(ξ) 6 ti , q(ti , ξ) >

1
m

}
, n = 2, 3, . . . .
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As before, the sets An,t are measurable for all t , and, in particular, An,t ′ ⊂ An,t for
t 6 t ′. We consider a dyadic partition of the interval [0, T ], and set

τm
n (ξ) =

2m∑
i=0

iT
2m
χi,n,m(ξ),

where χi,n,m is the indicator function of the set An,2−m iT \An,2−m (i+1)T . The function
τm

n (ξ) is by construction measurable. One can check that τm
n (ξ) is increasing with

respect to m, and bounded by T . Hence, we define

τn(ξ) = lim
m→∞

τm
n (ξ),

and τn(ξ) is a measurable function. Concluding as in the proof of Lemma 5, one
obtains the following result.

LEMMA 6. If, for every ξ ∈ R, q(t, ξ) is positive and continuous with respect to
time, then

τn(ξ) =


sup{t ∈ (τn−1(ξ),∞) | q(t ′, ξ) > 0

for all t ′ ∈ (τn−1(ξ), t)} if {· · ·} 6= ∅,
∞ otherwise,

(42)

for n = 2, 3, . . ..

REMARK 7. In the case of conservative solutions, we actually do not need to
define τ j(ξ) for ξ ∈ R, because we do not redefine our system (32) after wave
breaking.

So far, we have identified q with yξ . However, yξ does not decay fast enough
at infinity to belong to L2(R), but yξ − 1 = ζξ will be in L2(R), and we therefore
introduce v = q − 1. In the case of conservative solutions, we know that Q(Θ)
and P(Θ) are Lipschitz continuous on bounded sets and that Q(Θ) and P(Θ)
can be bounded by a constant depending on the bounded set. A slightly different
result is true when describing α-dissipative solutions. Define

BM =

{
Θ | ‖X‖V̄ + ‖h‖L1 +

∥∥∥∥ 1
q + h

∥∥∥∥
L∞

6 M ,

qh̄ = w2
+ r 2, h̄ 6 h, and q, h̄ > 0 a.e.

}
. (43)

In addition, it should be pointed out that for any Θ ∈ C([0, T ], BM) the set of
all points which experience wave breaking within a finite time interval [0, T ] is
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bounded, since

meas({ξ ∈ R | q(t, ξ) = 0}) 6
∫
R

h
q + h

(t, ξ) dξ

6

∥∥∥∥ 1
q + h

∥∥∥∥
L∞T L∞
‖h‖L∞T L1 6 C(M), (44)

for all t ∈ [0, T ], where C(M) denotes some constant depending only on M .

LEMMA 8. (i) For all Θ ∈ C([0, T ], BM), we have

‖Q(Θ)‖L∞T E + ‖P(Θ)‖L∞T E 6 C(M) (45)

for a constant C(M) which depends only on M.
(ii) For any Θ and Θ̃ in C([0, T ], BM), we have

‖Q(Θ)− Q(Θ̃)‖L1
T E + ‖P(Θ)− P(Θ̃)‖L1

T E

6 C(M)
(

T ‖X − X̃‖L∞T V̄ +

∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt

)
. (46)

Here, C(M) denotes a constant which depends only on M.

Proof. We will establish only the estimates for P(Θ), as those for Q(Θ) can be
obtained using the same methods with only slight modifications. The main tool
for proving the stated estimates will be Young’s inequality, which we recall here
for the sake of completeness. For any f ∈ L p(R) and g ∈ Lq(R) with 1 6 p, q,
r 6∞, we have

‖ f ? g‖Lr 6 ‖ f ‖L p‖g‖Lq , if 1+
1
r
=

1
p
+

1
q
. (47)

(i) By definition, we have

P(Θ)(t, ξ) =
1
4

∫
R

e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η) dη. (48)

So far, we do not know if y(t, ξ) is an increasing function or not; thus we
will split the integral above into three, as follows. By assumption, we have that
‖y(t, ξ)− ξ‖L∞T L∞ 6 M ; thus

(ξ − η)− 2M 6 y(t, ξ)− y(t, η) = (y(t, ξ)− ξ)+ (ξ − η)− (y(t, η)− η)
6 (ξ − η)+ 2M,
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and, in particular,

y(t, ξ)− y(t, η) > 0 if η 6 ξ − 2M,
y(t, ξ)− y(t, η) 6 0 if η > ξ + 2M.

Hence, we can rewrite (48) as

P(Θ)(t, ξ) =
1
4

∫ ξ−2M

−∞

e−(y(t,ξ)−y(t,η))(2U 2q + h̄)(t, η) dη

+
1
4

∫ ξ+2M

ξ−2M
e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η) dη

+
1
4

∫
∞

ξ+2M
e−(y(t,η)−y(t,ξ))(2U 2q + h̄)(t, η) dη

= I1(t, ξ)+ I2(t, ξ)+ I3(t, ξ).

Let f (ξ) = χ{ξ>2M}e−ξ . Then we have

‖I1(t, ξ)‖L∞T E =

∥∥∥∥1
4

∫ ξ−2M

−∞

e−ζ(t,ξ)e−(ξ−η)eζ(t,η)(2U 2q + h̄)(t, η) dη
∥∥∥∥

L∞T E

6
1
4

e‖ζ‖L∞T L∞‖( f ? [eζ (2U 2q + h̄)])(t, ξ)‖L∞T E

6 C(M)(‖ f ‖L1 + ‖ f ‖L2)‖eζ (2U 2q + h̄)‖L∞T L2

6 C(M),

since h̄(t, ξ) 6 h(t, ξ). Similarly, one can estimate ‖I3(t, ξ)‖L∞T E by replacing the
function f (ξ) by the function g(ξ) = χ{ξ<−2M}eξ . As far as I2(t, ξ) is concerned,
we conclude as follows:

‖I2(t, ξ)‖L∞T E

6

∥∥∥∥1
4

∫ ξ+2M

ξ−2M
e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η) dη

∥∥∥∥
L∞T E

6

∥∥∥∥1
4

∫ ξ+2M

ξ−2M
(e−(y(t,ξ)−y(t,η))

+ e−(y(t,η)−y(t,ξ)))(2U 2q + h̄)(t, η) dη
∥∥∥∥

L∞T E

6

∥∥∥∥1
4

∫ ξ+2M

ξ−2M
e−(y(t,ξ)−y(t,η))(2U 2q + h̄)(t, η) dη

∥∥∥∥
L∞T E

+

∥∥∥∥1
4

∫ ξ+2M

ξ−2M
e−(y(t,η)−y(t,ξ))(2U 2q + h̄)(t, η) dη

∥∥∥∥
L∞T E

.
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Following closely the argument we used for I1(t, ξ) yields

‖I2(t, ξ)‖L∞T E 6 C(M). (49)

(ii) As before, we split the integral into three parts, and investigate each of them
separately. We start with

B1(t, ξ) =
1
4

∫ ξ−2M

−∞

(e−(y(t,ξ)−y(t,η))(2U 2q + h̄)(t, η)

− e−(ỹ(t,ξ)−ỹ(t,η))(2Ũ 2q̃ + ¯̃h)(t, η)) dη

=
1
4
(e−ζ(t,ξ) − e−ζ̃ (t,ξ))

∫ ξ−2M

−∞

e−(ξ−η)eζ(t,η)(2U 2q + h̄)(t, η) dη

+
1
4

e−ζ̃ (t,ξ)
∫ ξ−2M

−∞

e−(ξ−η)(eζ(t,η)2U 2q(t, η)− eζ̃ (t,η)2Ũ 2q̃(t, η)) dη

+
1
4

e−ζ̃ (t,ξ)
∫ ξ−2M

−∞

e−(ξ−η)(eζ(t,η)h̄(t, η)− eζ̃ (t,η) ¯̃h(t, η)) dη.

Let f (ξ) = χ{ξ>2M}e−ξ ; then

‖B1(t, ξ)‖L1
T E 6 C(M)T ‖ζ − ζ̃‖L∞T E + C(M)T (‖ f ‖L1 + ‖ f ‖L2)‖X − X̃‖L∞T V

+ C(M)(‖ f ‖L∞ + ‖ f ‖L2)

×

(
T ‖X − X̃‖L∞T V +

∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt

)
6 C(M)

(
T ‖X − X̃‖L∞T V +

∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt

)
.

B3(t, ξ), which corresponds to I3(t, ξ) in (i), can be investigated similarly. As far
as B2(t, ξ) is concerned, we have

B2(t, ξ) =
1
4

∫ ξ+2M

ξ−2M
(e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η)

− e−|ỹ(t,ξ)−ỹ(t,η)|(2Ũ 2q̃ + ¯̃h)(t, η)) dη

=
1
4

∫ ξ+2M

ξ−2M
(e−|y(t,ξ)−y(t,η)|

− e−|ỹ(t,ξ)−ỹ(t,η)|)(2U 2q + h̄)(t, η) dη

+
1
4

∫ ξ+2M

ξ−2M
e−|ỹ(t,ξ)−ỹ(t,η)|(2U 2q + h̄ − 2Ũ 2q̃ − ¯̃h)(t, η) dη

=
1
4

∫ ξ+2M

ξ−2M
e−|y(t,ξ)−y(t,η)|
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× (1− e−|ỹ(t,ξ)−ỹ(t,η)|+|y(t,ξ)−y(t,η)|)(2U 2q + h̄)(t, η) dη

+

∫ ξ+2M

ξ−2M
e−|ỹ(t,ξ)−ỹ(t,η)|2(U 2q − Ũ 2q̃)(t, η) dη

+

∫ ξ+2M

ξ−2M
e−|ỹ(t,ξ)−ỹ(t,η)|(h̄ − ¯̃h)(t, η) dη

= B21(t, ξ)+ B22(t, ξ)+ B23(t, ξ).

‖B22(t, ξ)‖L1
T E and ‖B23(t, ξ)‖L1

T E can be estimated using Young’s inequality,
while ‖B21(t, ξ)‖L1

T E requires more careful estimates. Since ξ − 2M 6 η 6
ξ + 2M , we have

‖y(t, ξ)− y(t, η)| − |ỹ(t, ξ)− ỹ(t, η)‖ (50)
6 |y(t, ξ)− ỹ(t, ξ)| + |y(t, η)− ỹ(t, η)| 6 2‖y − ỹ‖L∞T L∞

and

‖y(t, ξ)− y(t, η)| − |ỹ(t, ξ)− ỹ(t, η)‖ (51)
6 |y(t, ξ)− y(t, η)| + |ỹ(t, ξ)− ỹ(t, η)|
6 4‖y − Id‖L∞T L∞ + 2|ξ − η| 6 8M.

Hence

|1− e−|ỹ(t,ξ)−ỹ(t,η)|+|y(t,ξ)−y(t,η)|
| 6

∣∣∣∣∫ 0

−|ỹ(t,ξ)−ỹ(t,η)|+|y(t,ξ)−y(t,η)|
ex dx

∣∣∣∣ (52)

6 C(M)‖y − ỹ‖L∞T L∞

and

‖B21(t, ξ)‖L1
T E

6 C(M)‖y − ỹ‖L∞T L∞

∥∥∥∥1
4

∫ ξ+2M

ξ−2M
e−|y(t,ξ)−y(t,η)|(2U 2q + h̄)(t, η) dη

∥∥∥∥
L1

T E

6 C(M)T ‖y − ỹ‖L∞T L∞

(∥∥∥∥1
4

∫ ξ+2M

ξ−2M
e−(y(t,ξ)−y(t,η))(2U 2q + h̄)(t, η) dη

∥∥∥∥
L∞T E

+

∥∥∥∥1
4

∫ ξ+2M

ξ−2M
e−(y(t,η)−y(t,ξ))(2U 2q + h̄)(t, η) dη

∥∥∥∥
L∞T E

)
6 C(M)T ‖y − ỹ‖L∞T L∞ .

Thus, putting everything together, we have

‖B2(t, ξ)‖L1
T E 6 C(M)

(
T ‖X− X̃‖L∞T V+

∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt

)
. (53)
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REMARK 9. (i) In the case of conservative solutions, that is, α = 0, we have
h(t, ξ) = h̄(t, ξ), and hence∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt 6 T C(M)‖X − X̃‖L∞T V̄ ,

after using that h = U 2
ξ + r 2

− hζξ together with the Cauchy–Schwarz inequality.
(ii) In the case of dissipative solutions, that is, α = 1, we get, since h̄(t, ξ) = 0
for t > τ1(ξ), that∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt 6 C(M)

(
T ‖X − X̃‖L∞T V̄

+

∫
R

(∫ τ̃1

τ1

h̃(t, ξ)χ{τ̃1>τ1}(ξ) dt +
∫ τ1

τ̃1

h(t, ξ)χ{τ1>τ̃1}(ξ) dt
)

dξ
)
.

Here, we used the same argument as in (i) together with an application of Fubini’s
theorem. In particular, this means that the norm estimates here imply the ones in
[18], where the dissipative case is studied, and vice versa.

To show short-time existence of solutions, we will use an iteration argument
for the following system of ordinary differential equations. Denote generically
(ζ,U, q, w, h̄, h, r) by Θ , (ζ,U, q, w, h, r) by X , and (q, w, h, r) by Z ; thus
X = (ζ,U, Z). Then, we define the mapping

P : C([0, T ], BM)→ C([0, T ], BM)

as follows: given Θ0 ∈ G ∩ BM0 and Θ ∈ C([0, T ], BM), we can compute P(Θ)
and Q(Θ) using (39) and (40). Then, we define Θ̃ = P(Θ) as follows. Given
ξ ∈ R, we set Θ̃(0, ξ) = Θ0(ξ) and Θ̃(t, ξ) on [τ̃n(ξ), τ̃n+1(ξ)] as the solution of
the system of ordinary differential equations

ζ̃t(t, ξ) = Ũ (t, ξ), (54a)
Ũt(t, ξ) = −Q(Θ)(t, ξ), (54b)

q̃t(t, ξ) = w̃(t, ξ), (54c)

w̃t(t, ξ) = 1
2
¯̃h(t, ξ)+ (U 2(t, ξ)− P(Θ)(t, ξ))q̃(t, ξ), (54d)

h̃t(t, ξ) = 2(U 2(t, ξ)− P(Θ)(t, ξ))w̃(t, ξ), (54e)
¯̃ht(t, ξ) = h̃t(t, ξ), (54f )

r̃t(t, ξ) = 0, (54g)

which satisfies, at t = τ̃n(ξ),

X̃(τ̃n(ξ), ξ) = X̃(τ̃n(ξ)− 0, ξ) and ¯̃h(τ̃n(ξ), ξ) = (1− α)
¯̃h(τ̃n(ξ)− 0, ξ).

(55)
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We write ¯̃Z t = F(Θ) ¯̃Z , where ¯̃Z = (q̃, w̃, ¯̃h, r̃) for all times t , where no wave
breaking occurs, that is, for t ∈ [τ̃n(ξ), τ̃n+1(ξ)). So far, we have not excluded that
the sequence τ̃n(ξ) might have an accumulation point τ̃∞(ξ). Later on, we will
see that this is not possible; see Lemma 12. If the sequence τ̃n(ξ) were to have an
accumulation point τ̃∞(ξ), we define Θ̃ as the solution of

ỹt(t, ξ) = Ũ (t, ξ), Ũt(t, ξ) = −Q(t, ξ),

q̃t(t, ξ) = w̃t(t, ξ) =
¯̃ht(t, ξ) = r̃t(t, ξ) = 0,

h̃(t, ξ) = h̃(τ̃∞(ξ), ξ),

for t ∈ [τ̃∞(ξ), T ].
The following set will play a key role in the context of wave breaking, since it

contains all points which will experience wave breaking in the near future,

κ1−γ =

{
ξ ∈ R

∣∣∣∣ h̄0

q0 + h̄0
(ξ)> 1−γ , w0(ξ)6 0, and r0(ξ)= 0

}
, γ ∈

[
0,

1
2

]
.

(56)
Note that

h̄0

q0 + h̄0
(ξ) > 1− γ ⇐⇒ γ > 1−

h̄0

q0 + h̄0
(ξ) =

q0

q0 + h̄0
(ξ)

⇐⇒ (1− γ )q0(ξ) 6 γ h̄0(ξ) 6 γ h0(ξ),

which implies that (q0/(q0 + h0))(ξ) 6 γ , and hence (h0/(q0 + h0))(ξ) > 1−γ .
In particular, we have that

meas(κ1−γ ) 6
1

1− γ

∫
R

h0

h0 + q0
(ξ) dξ 6

1
1− γ

∥∥∥∥ 1
q0 + h0

∥∥∥∥
L∞
‖h0‖L1, (57)

and therefore the set κ1−γ has finite measure if we choose γ ∈ [0, 1
2 ], and, in

particular, meas(κ1−γ ) 6 C(M).

LEMMA 10. GivenΘ0 ∈ G∩BM0 for some constant M0, givenΘ ∈ C([0, T ], BM),

we denote by Θ̃ = (ζ̃ , Ũ , ṽ, w̃, ¯̃h, h̃, r̃) = P(Θ) with initial data Θ0. Let

M̄ = ‖Q(Θ)‖L∞T L∞ + ‖P(Θ)‖L∞T L∞ + ‖U‖2
L∞T L∞ .

Then the following statements hold.
(i) For all t , and almost all ξ ,

q̃(t, ξ) > 0, h̃(t, ξ) > 0, ¯̃h(t, ξ) > 0, (58)
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and
q̃ ¯̃h = w̃2

+ r̃ 2. (59)

Thus, q̃(t, ξ) = 0 implies that w̃(t, ξ) = 0 and r̃(t, ξ) = 0. Recall that q̃ = ṽ+1.
(ii) We have ∥∥∥∥ 1

q̃ + h̃
(t, ·)

∥∥∥∥
L∞

6 2eC(M̄)T

∥∥∥∥ 1
q0 + h0

∥∥∥∥
L∞
, (60)

and
‖(q̃ + h̃)(t, ·)‖L∞ 6 2eC(M̄)T

‖q0 + h0‖L∞, (61)

for all t ∈ [0, T ] and a constant C(M̄) which depends only on M̄. In particular,
q̃ + h̃ remains bounded strictly away from zero.

(iii) There exists a γ ∈ (0, 1
2 ) depending only on M̄ such that, if ξ ∈ κ1−γ ,

then Θ̃(t, ξ) ∈ Ω1, where Ω1 is given in Definition 2, for all t ∈ [0,min(τ̃1(ξ),

T )], (q̃/(q̃ + ¯̃h))(t, ξ) is a decreasing function with respect to time for t ∈ [0,
min(τ̃1(ξ), T )] and (w̃/(q̃ + ¯̃h))(t, ξ) is an increasing function with respect to
time for t ∈ [0,min(τ̃1(ξ), T )]. Thus, we infer that

w0

q0 + h̄0
(ξ) 6

w̃

q̃ + ¯̃h
(t, ξ) 6 0 and 0 6

q̃

q̃ + ¯̃h
(t, ξ) 6

q0

q0 + h̄0
(ξ), (62)

for t ∈ [0,min(τ̃1(ξ), T )]. In addition, for γ sufficiently small, depending only on
M̄ and T , we have

κ1−γ ⊂ {ξ ∈ R | 0 6 τ̃1(ξ) < T }. (63)

(iv) Moreover, for any given γ ∈ (0, 1
2 ), there exists T̂ > 0 such that

{ξ ∈ R | 0 < τ̃1(ξ) < T̂ } ⊂ κ1−γ . (64)

Proof. (i) Since Θ0 ∈ G, equations (58) and (59) hold for almost every ξ ∈ R at
t = 0. We consider such a ξ , and will drop it in the notation. From (54), we have,
on the one hand,

(q̃ ¯̃h)t = q̃t
¯̃h + q̃ ¯̃ht = w̃

¯̃h + 2(U 2
− P(Θ))w̃q̃, t ∈ (τ̃n, τ̃n+1),

and, on the other hand,

(w̃2
+ r̃ 2)t = 2w̃w̃t = w̃

¯̃h + 2(U 2
− P(Θ))w̃q̃, t ∈ (τ̃n, τ̃n+1).

Thus,
(q̃ ¯̃h − w̃2

− r̃ 2)t = 0, (65)
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and, since q̃(0) ¯̃h(0) = w̃2(0) + r̃ 2(0), we have q̃(t) ¯̃h(t) = w̃2(t) + r̃ 2(t) for all
t ∈ [0, τ̃1). We show by induction that it holds for t ∈ [τ̃n−1, τ̃n] for each n > 1,
where τ̃0 = 0. We have q̃(τ̃n − 0) = q(τ̃n) = 0, so, by (55),

0 = q̃(τ̃n)
¯̃h(τ̃n − 0) = w̃2(τ̃n)+ r̃ 2(τ̃n).

Hence, w̃(τ̃n) = r̃(τ̃n) = 0, and

q̃(τ̃n)
¯̃h(τ̃n) = 0 = w̃2(τ̃n)+ r̃ 2(τ̃n),

so (59) holds for t = τ̃n . By (65), we obtain that (59) holds also on the whole
interval [τ̃n, τ̃n+1]. From the definition of τ̃1, we have that q̃(t) > 0 on [0, τ̃1),
and q̃(τ̃1) = w̃(τ̃1) = r̃(τ̃1) = 0 and ¯̃h(τ1) > 0. Hence w̃(t) becomes positive
at time τ̃1, and therefore q̃(t) is increasing. Since, whenever q̃(t) = 0, we have
that w̃ changes sign from negative to positive, it follows that q̃(t) > 0 for t > 0.
From (59) it follows that, for t ∈ [0, τ̃1),

¯̃h(t) = ((w̃2
+ r̃ 2)/q̃)(t) and therefore

¯̃h(t) > 0. By the continuity of ¯̃h (with respect to time), we have limt↑τ̃1
¯̃h(t) > 0,

and, using (55) and (59), we have ¯̃h(t) > 0 for all t ∈ [0, τ̃2). The claim now
follows by induction.

(ii) We consider a fixed ξ that we suppress in the notation. We denote by |Z̃ |2 =
(q̃2
+ w̃2

+ h̃2
+ r̃ 2)1/2 the Euclidean norm of Z̃ = (q̃, w̃, h̃, r̃). Since 0 6 ¯̃h 6 h̃,

we have
d
dt
|Z̃ |−2

2 = −2|Z̃ |−4
2 Z̃

d Z̃
dt

6 C(M̄)|Z̃ |−2
2

for a constant C(M̄) which depends only on M̄ . Applying Gronwall’s lemma, we
obtain |Z̃(t)|−2

2 6 eC(M̄)T
|Z(0)|−2

2 . Hence,

1

q̃2 + w̃2 + h̃2 + r̃ 2
(t) 6 eC(M̄)T 1

q2
0 + w

2
0 + h2

0 + r 2
0

. (66)

Using (59), we have

q̃2
+ w̃2

+ h̃2
+ r̃ 2 6 q̃2

+ q̃ h̃ + h̃2.

Hence, (66) yields

1

(q̃ + h̃)2
(t) 6

1

q̃2 + q̃ h̃ + h̃2
(t) 6 eC(M̄)T 1

q2
0 + h2

0

6 2eC(M̄)T 1
(q0 + h0)2

.

The second claim can be shown similarly.
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(iii) Let us consider a given ξ ∈ κ1−γ . We are going to determine an upper
bound on γ depending only on M̄ such that the conclusions of (iii) hold. For γ
small enough, we haveΘ0(ξ) ∈ Ω1, as otherwise g2(Θ0(ξ)) = q0(ξ)+ h̄0(ξ), and

1 =
g2(Θ0(ξ))

q0(ξ)+ h̄0(ξ)
<
−w0(ξ)+ 2q0(ξ)

q0(ξ)+ h̄0(ξ)
6
√
γ + 2γ

would lead to a contradiction. We claim that there exists a constant γ (M̄)
depending only on M̄ such that, for all γ 6 γ (M̄), ξ ∈ R, and t ∈ [0, T ],

q̃

q̃ + ¯̃h
(t, ξ) 6 γ and w̃(t, ξ) = 0 implies q̃(t, ξ) = 0, (67)

and
q̃

q̃ + ¯̃h
(t, ξ) 6 γ implies

(
w̃

q̃ + ¯̃h

)
t

(t, ξ) > 0. (68)

We consider a fixed ξ ∈ R, and suppress it in the notation. If w̃(t) = 0, then (59)
yields q̃(t) ¯̃h(t) = 0. Thus, either q̃(t) = 0 or ¯̃h(t) = 0. Assume that q̃(t) 6= 0;
then ¯̃h(t) = 0. Hence, 1 − γ 6 ¯̃h(t)/(q̃(t)+ ¯̃h(t)) = 0, and we are led to a
contradiction. Hence, q̃(t) = 0, and we have proved (67).

If (q̃/(q̃ + ¯̃h))(t) 6 γ , we have(
w̃

q̃ + ¯̃h

)
t

=
1
2
+

(
U 2
− P(Θ)−

1
2

)
q̃

q̃ + ¯̃h
− (2U 2

− 2P(Θ)+ 1)
w̃2

(q̃ + ¯̃h)2

>
1
2
− C(M̄)

q̃

q̃ + ¯̃h
− C(M̄)

q̃ ¯̃h

(q̃ + ¯̃h)2

>
1
2
− C(M̄)γ. (69)

Recall that we allow for a redefinition of C(M̄). By choosing γ (M̄) 6

(4C(M̄))−1, we get (w̃/(q̃ + ¯̃h))t > 0, and we have proved (68). For any
γ 6 γ (M̄), we consider a given ξ in κ1−γ , and again suppress it in the notation.
We define

t0 = sup
{

t ∈ [0, τ̃1]

∣∣∣∣ q̃

q̃ + ¯̃h
(t ′) < 2γ and w̃(t ′) < 0 for all t ′ 6 t

}
.

Let us prove that t0 = τ̃1. Assume the opposite; that is, t0 < τ̃1. Then we have
either (q̃/(q̃ + ¯̃h))(t0) = 2γ or w̃(t0) = 0. We have ((q̃/(q̃ + ¯̃h)))t 6 0 on [0,
t0], and (q̃/(q̃ + ¯̃h))(t) is decreasing on this interval. Hence, (q̃/(q̃ + ¯̃h))(t0) 6
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(q̃/(q̃ + ¯̃h))(0) 6 γ , and therefore we must have w̃(t0) = 0. Then (67) implies
that q̃(t0) = 0, and therefore t0 = τ̃1, which contradicts our assumption. From
(69), we get, for γ sufficiently small,

0 =
w̃

q̃ + ¯̃h
(τ̃1 − 0) >

w̃

q̃ + ¯̃h
(0)+

1
4
τ̃1,

and therefore τ̃1 6 4
√
γ . By taking γ small enough, we can impose τ̃1 < T ,

which proves (63). It is clear from (68) that w̃/(q̃ + ¯̃h) is increasing. Assume that
Θ̃(t, ξ) leaves Ω1 for some t < min(τ̃1, T ). Then we get

1 =
q̃(t)+ ¯̃h(t)

q̃(t)+ ¯̃h(t)
6
|w̃(t)| + 2q̃(t)

q̃(t)+ ¯̃h(t)
6
√
γ + 2γ,

and, by taking γ small enough, we are led to a contradiction.
(iv) Without loss of generality, we assume that T̂ 6 1. From (iii), we know

that there exists a γ ′ depending only on M̄ such that, for ξ ∈ κ1−γ ′ , we have that

q̃/(q̃ + ¯̃h) is a decreasing function, and w̃/(q̃ + ¯̃h) is an increasing function, both
with respect to time, on [0,min(τ̃1, T )]. Let γ̄ 6 min(γ, γ ′). We consider a fixed
ξ ∈ R such that τ̃1(ξ) < T̂ (which means implicitly that r̃(t, ξ) = 0 for all t), but
ξ 6∈ κ1−γ̄ . We will suppress ξ in the notation from now on. Let us introduce

t0 = inf
{

t ∈ [0, τ̃1)

∣∣∣∣ ¯̃h

q̃ + ¯̃h
(t̄) > 1− γ̄ and w̃(t̄) 6 0 for all t̄ ∈ [t, τ̃1)

}
. (70)

Since w̃t(τ̃1) =
1
2
¯̃h(τ̃1) > 0 and w̃(τ̃1) = q̃(τ̃1) = 0, the definition of t0 is well

posed when τ̃1 > 0, and we have t0 < τ̃1. By assumption, t0 > 0, and w̃(t0) = 0 or
(
¯̃h/(q̃ + ¯̃h))(t0)= 1−γ̄ . We cannot have w̃(t0)= 0, since it would imply, see (67),

that q̃(t0) = 0 and therefore t0 = τ̃1, which is not possible. Thus we must have
(
¯̃h/(q̃ + ¯̃h))(t0)= 1−γ̄ , and, in particular, (q̃/(q̃ + ¯̃h))(t0)= γ̄ . According to the

choice of γ̄ , we have that (q̃/(q̃ + ¯̃h))(t) 6 γ̄ for all t > t0, and (w̃/(q̃ + ¯̃h))(t)
is increasing. Then we have, following the same lines as in (69),(

w̃

q̃ + ¯̃h

)
t

>
1
2
− C(M̄)γ̄ , ,

which yields for 0 6 t0 6 t ′ 6 min(τ̃1, 1) that

w̃

q̃ + ¯̃h
(t ′) >

w̃

q̃ + ¯̃h
(t0)+ (t ′ − t0)

(
1
2
− C(M̄)γ̄

)
.
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Since w̃/(q̃ + ¯̃h)(t0) = −
√
γ̄ (1− γ̄ ), we choose T̂ such that 0 > −

√
γ̄ (1− γ̄ )+

T̂ ( 1
2 − C(M̄)γ̄ ). Thus (w̃/(q̃ + ¯̃h))(T̂ ) < 0, and therefore all points which

experience wave breaking before T̂ are contained in κ1−γ̄ , since any point entering
κ1−γ̄ at a later time cannot reach the origin within the time interval [0, T̂ ]
according to the last estimate.

LEMMA 11. Given M > 0, there exist T̄ and M̄ such that, for all T 6 T̄ and any
initial data Θ0 ∈ G ∩ BM , P is a mapping from C([0, T ], BM̄) to C([0, T ], BM̄).

Proof. To simplify the notation, we will generically denote by K (M) and C(M̄)
increasing functions of M and M̄ , respectively. Without loss of generality, we
assume that T̄ 6 1.

Let Θ ∈ C([0, T ], BM̄) for a value of M̄ that will be determined at the end as
a function of M . We assume without loss of generality that M̄ > M . Let Θ̃ =
P(Θ). From Lemma 8, we have

‖Q(Θ)‖L∞T E 6 C(M̄), ‖P(Θ)‖L∞T E 6 C(M̄). (71)

Since Ũt = −Q(Θ), we get

‖Ũ‖L∞T E 6 ‖U0‖E + T ‖Q(Θ)‖L∞T E 6 M + T C(M̄). (72)

Similarly, since, ζ̃t = Ũ , we get

‖ζ̃‖L∞T L∞ 6 ‖ζ0‖L∞ + T ‖Ũ‖L∞T L∞ 6 M + T C(M̄). (73)

From (54), by the Minkowski inequality for integrals, we get

‖ṽ(t, ·)‖E 6 ‖v0‖E +

∫ t

0
‖w̃(t ′, ·)‖E dt ′, (74a)

‖w̃(t, ·)‖E 6 ‖w0‖E + T ‖P(Θ)−U 2
‖L∞T E

+

∫ t

0

(
1
2
‖h̃(t ′, ·)‖E + ‖U 2

− P(Θ)‖L∞T E‖ṽ(t ′, ·)‖E

)
dt ′,(74b)

‖h̃(t, ·)‖E 6 ‖h0‖E + 2
∫ t

0
‖U 2
− P(Θ)‖L∞T E‖w̃(t ′, ·)‖E dt ′, (74c)

‖r̃(t, ·)‖E 6 ‖r0‖E . (74d)

Here, we used that 0 6 ¯̃h(t, ξ) 6 h̃(t, ξ) and that h̃(t, ξ) is continuous with
respect to time. These inequalities imply that

‖Z̃(t, ·)‖W̄ 6 K (M)+ T C(M̄)+ C(M̄)
∫ t

0
‖Z̃(t ′, ·)‖E dt ′, (75)
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and, applying Gronwall’s inequality,

‖Z̃‖L∞T W̄ 6 (K (M)+ T C(M̄))eC(M̄)T . (76)

Gathering (72), (73), and (76), we get

‖X̃‖L∞T V̄ 6 (K (M)+ T C(M̄))eC(M̄)T . (77)

Moreover, (54) implies that

‖h̃(t, ·)‖L1 6 ‖h̃0‖L1 + 2T ‖U 2
− P(Θ)‖L∞T L2‖w̃‖L∞T L2, (78)

and hence
‖h̃‖L∞T L1 6 (K (M)+ T C(M̄))eC(M̄)T . (79)

From (60), we get ∥∥∥∥ 1

q̃ + h̃

∥∥∥∥
L∞T L∞

6 K (M)eC(M̄)T .

Thus, we finally obtain

‖X̃‖L∞T V̄ + ‖h̃‖L∞T L1 +

∥∥∥∥ 1

q̃ + h̃

∥∥∥∥
L∞T L∞

6 (K (M)+ T C(M̄))eC(M̄)T (80)

for some constants K (M) and C(M̄) that depend only on M and M̄ , respectively.
We now set M̄ = 2K (M). Then we can choose T so small that (K (M) +
C(M̄)T )eC(M̄)T 6 2K (M) = M̄ , and therefore

‖X̃‖L∞T V̄ + ‖h̃‖L∞T L1 +

∥∥∥∥ 1

q̃ + h̃

∥∥∥∥
L∞T L∞

6 M̄ .

Given Θ0 ∈ G ∩ BM , there exists M̄ , which depends only on M , such that P is
a mapping from C([0, T ], BM̄) to C([0, T ], BM̄) for T small enough. Therefore,
we set

Im(P) = {P(Θ) | Θ ∈ C([0, T ], BM̄)}. (81)

LEMMA 12. Given Θ0 ∈ G ∩ BM , given Θ ∈ C([0, T ], BM̄), we denote Θ̃ =
P(Θ) ∈ C([0, T ], BM̄) with initial data Θ̃|t=0 = Θ0.

Then there exists a time T̂ depending on M̄ such that any point ξ can experience
wave breaking at most once within the time interval [T0, T0 + T̂ ] for any T0 > 0.
More precisely, given ξ ∈ R, we have

τ̃ j+1(ξ)− τ̃ j(ξ) > T̂ for all j. (82)

In addition, for T̂ sufficiently small, we get that in this case w̃(t, ξ) > 0 for all
t ∈ [τ̃ j(ξ), τ̃ j(ξ)+ T̂ ].
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Proof. If no wave breaking occurs within [0, T ] or α = 1, there is nothing to
prove. Therefore, let us assume that α ∈ [0, 1), and that for some fixed ξ ∈ R
wave breaking occurs. Moreover, let us assume the worst possible case, namely
T0 = τ̃1(ξ), since all other cases follow from this one. At time τ̃1(ξ), we have
q̃(τ̃1(ξ), ξ) = w̃(τ̃1(ξ), ξ) = 0, and, in particular, ( ¯̃h/(q̃ + ¯̃h))(τ̃1(ξ), ξ) = 1 and
r̃(t, ξ) = 0 for all t . Moreover, wave breaking can only take place if w̃(t, ξ) 6 0
for τ̃1(ξ)− ε 6 t 6 τ̃1(ξ), but right after wave breaking w̃(t, ξ) is positive, in the
case where α < 1. Thus, before wave breaking can occur once more at ξ ∈ R,
w̃(t, ξ) has to change sign from positive to negative at some time t∗ > τ̃1(ξ).
Hence, we will now establish a lower bound on t∗ − τ̃1(ξ), which defines T̂ .

Let t∗ be the first time after the first collision where w̃(t, ξ) changes sign. We
have t∗ > τ̃1(ξ), and (59) implies that either q̃(t∗, ξ) = 0 (that is, wave breaking
occurs) or ( ¯̃h/(q̃ + ¯̃h))(t∗, ξ) = 0 (that is, no wave breaking occurs). The first
alternative is not possible, as q̃t(t, ξ) = w̃(t, ξ) > 0 for t ∈ (τ1(ξ), t∗), in the case
where α < 1. Hence, q̃(t∗, ξ)/(q̃(t∗, ξ)+ ¯̃h(t∗, ξ)) = 1. Thus, if we can establish
a lower bound on how long it takes for the function q̃(t, ξ)/(q̃(t, ξ)+ ¯̃h(t, ξ)),
which equals 0 at time τ̃1(ξ), to reach 1 after wave breaking, the claim follows.

Observe first that (59) implies that∣∣∣∣ w̃

q̃ + ¯̃h
(t, ξ)

∣∣∣∣ 6 1
√

2
, and

∣∣∣∣ r̃

q̃ + ¯̃h
(t, ξ)

∣∣∣∣ 6 1
√

2
(83)

for all t ∈ [0,∞) and ξ ∈ R. Moreover, according to Lemma 8(i), we have

‖P(Θ)‖L∞T L∞ + ‖U‖2
L∞T L∞ 6 C(M̄). (84)

From (54), we get(
q̃

q̃ + ¯̃h

)
t

=
w̃

q̃ + ¯̃h

(
1− 2

q̃

q̃ + ¯̃h

(
U 2
− P(Θ)+

1
2

))
6

1
√

2
(1+ C(M̄)),

for t ∈ [τ̃1(ξ), τ̃2(ξ)). Hence, integrating the latter equation in time from τ1 to t∗

yields 1 = (q̃/(q̃ + ¯̃h))(t∗) 6 1
√

2
(t∗− τ1(ξ))(1+C(M̄)). Choosing T̂ =

√
2(1+

C(M̄))−1 concludes the proof.

We define the discontinuity residual as

Γ (Θ, Θ̃) =

∫ T

0

∫
R
|h̄(t, ξ)− ¯̃h(t, ξ)| dξ dt.
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According to Lemma 8(ii), we have

‖Q(Θ)− Q(Θ̃)‖L1
T E + ‖P(Θ)− P(Θ̃)‖L1

T E

6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (85)

In the next lemma, we establish some estimates for Γ (Θ, Θ̃), Γ (P(Θ),
P(Θ̃)), and a quasicontraction property for P .

LEMMA 13. Given Θ , Θ̃ ∈ Im(P), and γ ∈ (0, 1
2 ), let Θ2 = P(Θ) and

Θ̃2 = P(Θ̃); then there exists T > 0 depending on M̄ such that the following
inequalities hold.
(i)

‖h2 − h̃2‖L∞T L1 6 C(M̄)T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)), (86)

(ii)
Γ (Θ, Θ̃) 6 C(M̄)‖X − X̃‖L∞T V̄ , (87)

(iii)

Γ (Θ2, Θ̃2) 6 C(M̄)(T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ )+ γΓ (Θ, Θ̃)), (88)

(iv)

‖X2 − X̃2‖L∞T V̄ 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)), (89)

where C(M̄) denotes some constant which depends only on M̄.

Proof. Denote Θ2 = P(Θ) and Θ̃2 = P(Θ̃), and, abusing the notation, let τ2(ξ)

and τ̃2(ξ) be the first time when wave breaking occurs at the point ξ ∈ R for Θ2

and Θ̃2, respectively. Given γ > 0, we know from Lemma 10(iv) and Lemma 12
that there exists T small enough such that {ξ ∈ R | 0 < τ2(ξ) < T or 0 < τ̃2(ξ) <

T } ⊂ κ1−γ and such that every point experiences wave breaking at most once
within the time interval [0, T ]. We consider such T . Without loss of generality,
we can assume that T 6 1 and γ 6 γ (M̄).

(i) From (54), we get

‖h2 − h̃2‖L∞T L1

6
∫ T

0
‖2(U 2

− P(Θ))(w2 − w̃2)(s, ·)‖L1 ds

+

∫ T

0
‖2(U 2

− P(Θ)− Ũ 2
+ P(Θ̃))w̃2(s, ·)‖L1 ds
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6
∫ T

0
‖2(U 2

− P(Θ))(s, ·)‖L2‖(w2 − w̃2)(s, ·)‖L2 ds

+

∫ T

0
2(‖(U 2

− Ũ 2)(s, ·)‖L2 + ‖(P(Θ)−P(Θ̃))(s, ·)‖L2)‖w̃2(s, ·)‖L2 ds

6 C(M̄)T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ + ‖P(Θ)− P(Θ̃)‖L∞T E)

6 C(M̄)T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (90)

As far as the other estimates are concerned, observe first that for ξ ∈ κc
1−γ

no wave breaking occurs, and therefore |h̄2(t, ξ) −
¯̃h2(t, ξ)| = |h2(t, ξ) − h̃2(t,

ξ)|, since Θ2(0, ξ) = Θ̃2(0, ξ). Moreover, using (59), we get h̄2(t, ξ) = w2
2(t,

ξ)+ r 2
2 (t, ξ)− h̄2(t, ξ)v2(t, ξ), and a similar relation holds for ¯̃h2(t, ξ). Hence∫ T

0

∫
κc

1−γ

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dξ dt

6
∫ T

0

∫
κc

1−γ

|(w2 + w̃2)(w2 − w̃2)|(t, ξ) dξ dt

+

∫ T

0

∫
κc

1−γ

|(r2 + r̃2)(r2 − r̃2)|(t, ξ) dξ dt

+

∫ T

0

∫
κc

1−γ

(|(h̄2 −
¯̃h2)v2|(t, ξ)+

¯̃h2|v2 − ṽ2|(t, ξ)) dξ dt

6 C(M̄)T ‖X2 − X̃2‖L∞T V̄ , (91)

where we used the Cauchy–Schwarz inequality in the last step. Thus we have∫ T

0

∫
R
|h̄2(t, ξ)−

¯̃h2(t, ξ)| dξ dt

6 C(M̄)T ‖X2 − X̃2‖L∞T V̄ +

∫ T

0

∫
κ1−γ

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dξ dt. (92)

(ii) Let us consider ξ ∈ κ1−γ such that τ2(ξ) 6= τ̃2(ξ). Without loss of generality,
we assume that 0 < τ2(ξ) < τ̃2(ξ) 6 T . Since Θ2(t, ξ) and Θ̃2(t, ξ) both belong
to Im(P), we have that |h2(t, ξ) − h̃2(t, ξ)| = |h̄2(t, ξ) −

¯̃h2(t, ξ)| for t ∈ [0,
τ2(ξ)), and especially∫ τ2

0
|h̄2(t, ξ)−

¯̃h2(t, ξ)| dt =
∫ τ2

0
|h2(t, ξ)− h̃2(t, ξ)| dt. (93)
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For t ∈ [τ2(ξ), τ̃2(ξ)), we have h̄2(t, ξ) = h2(t, ξ) − l0(ξ) − l1(ξ) and ¯̃h2(t,
ξ) = h̃2(t, ξ)− l0(ξ). Hence, it follows that

|h̄2(t, ξ)−
¯̃h2(t, ξ)| 6 |h2(t, ξ)− h̃2(t, ξ)| + l1(ξ). (94)

Since (58) implies that 0 6 l1(ξ) 6 h2(t, ξ)− l0(ξ) for all t ∈ [τ2(ξ), τ̃2(ξ)], we
get ∫ τ̃2

τ2

l1(ξ) dt 6
∫ τ̃2

τ2

(h2(t, ξ)− l0(ξ)) dt

6
∫ τ̃2

τ2

|h2(t, ξ)− h̃2(t, ξ)| dt +
∫ τ̃2

τ2

(h̃2(t, ξ)− l0(ξ)) dt

6
∫ τ̃2

τ2

|h2(t, ξ)− h̃2(t, ξ)| dt +
∫ τ̃2

τ2

¯̃h2(t, ξ) dt. (95)

Since Θ̃2 = P(Θ̃) for Θ̃ ∈ C([0, T ], BM̄), we get, using (54), for t ∈ [τ2(ξ),

τ̃2(ξ)], that

w̃2(t, ξ) = w̃2(τ2(ξ), ξ)+
1
2

∫ t

τ2

¯̃h2(t ′, ξ) dt ′+
∫ t

τ2

(Ũ 2
−P(Θ̃))q̃2(t ′, ξ) dt ′. (96)

According to Lemma 10, since ξ ∈ κ1−γ , we have Θ̃2(t, ξ) ∈ Ω1 for all t ∈ [0,
min(τ̃2(ξ), T )]. Moreover, w̃2(t, ξ) 6 0 on the interval [0,min(τ̃2(ξ), T )], while
q̃2(t, ξ) is decaying. Furthermore, ‖Ũ 2

− P(Θ̃)‖L∞T E 6 C(M̄), w2(τ2(ξ), ξ) =

q2(τ2(ξ), ξ) = 0, and w2(t, ξ) > 0 for all t ∈ [τ2(ξ), T ]. Thus we get that

1
2

∫ τ̃2

τ2

¯̃h2(t ′, ξ) dt ′

= w̃2(τ̃2(ξ), ξ)− w̃2(τ2(ξ), ξ)−

∫ τ̃2

τ2

(Ũ 2
− P(Θ̃))q̃2(t ′, ξ) dt ′

6 −w̃2(τ2(ξ), ξ)+ C(M̄)
∫ τ̃2

τ2

q̃2(τ2(ξ), ξ) dt ′

6 w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ)+ C(M̄)
∫ τ̃2

τ2

q̃2(τ2(ξ), ξ)− q2(τ2(ξ), ξ) dt ′

6 w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ)+ C(M̄)T ‖X2(·, ξ)− X̃2(·, ξ)‖L∞τ2

6 w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ)+ C(M̄)T ‖X2 − X̃2‖L∞T V̄ . (97)
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Combining the above estimates yields∫ τ̃2

τ2

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dt 6

∫ τ̃2

τ2

|h2(t, ξ)− h̃2(t, ξ)| dt +
∫ τ̃2

τ2

l1(ξ) dt

6 2
∫ τ̃2

τ2

|h2(t, ξ)− h̃2(t, ξ)| dt +
∫ τ̃2

τ2

¯̃h2(t, ξ) dt

6 2(w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ))

+ 2
∫ τ̃2

τ2

|h2(t, ξ)− h̃2(t, ξ)| dt + C(M̄)T ‖X2 − X̃2‖L∞T V̄ . (98)

For t ∈ [τ̃2(ξ), T ], we have h̄2(t, ξ) = h2(t, ξ) − l0(ξ) − l1(ξ) and ¯̃h2(t, ξ) =
h̃2(t, ξ)− l0(ξ)− l̃1(ξ), and, in particular,

|h̄2(t, ξ)−
¯̃h2(t, ξ)| 6 |h2(t, ξ)− h̃2(t, ξ)| + |l1(ξ)− l̃1(ξ)|, (99)

where l1(ξ) = α(h2(τ2(ξ), ξ)− l0(ξ)) and l̃1(ξ) = α(h̃2(τ̃2(ξ), ξ)− l0(ξ)). Thus
we can write

|l1(ξ)− l̃1(ξ)| = α|h2(τ2(ξ), ξ)− h̃2(τ̃2(ξ), ξ)| (100)

6 α(|h2(τ2(ξ), ξ)− h2(τ̃2(ξ), ξ)| + |h2(τ̃2(ξ), ξ)− h̃2(τ̃2(ξ), ξ)|).

The first term on the right-hand side can be estimated, using (54), as follows

|h2(τ2(ξ), ξ)− h2(τ̃2(ξ), ξ)| 6
∫ τ̃2

τ2

2|U 2
− P(Θ)|w2(t, ξ) dt

6 C(M̄)
∫ τ̃2

τ2

w2(t, ξ)− w̃2(t, ξ) dt

6 C(M̄)T ‖X2 − X̃2‖L∞T V̄ , (101)

where we used that w2(t, ξ) > 0 and w̃2(t, ξ) 6 0 for all t ∈ [τ2(ξ), τ̃2(ξ)].
Combining the above estimates yields∫ T

τ̃2

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dt 6

∫ T

τ̃2

|h2(t, ξ)− h̃2(t, ξ)| dt + T |l1(ξ)− l̃1(ξ)|

6
∫ T

τ̃2

|h2(t, ξ)− h̃2(t, ξ)| dt + αT (|h2(τ2(ξ), ξ)− h2(τ̃2(ξ), ξ)|

+ |h2(τ̃2(ξ), ξ)− h̃2(τ̃2(ξ), ξ)|)

6
∫ T

τ̃2

|h2(t, ξ)− h̃2(t, ξ)| dt + C(M̄)T ‖X2 − X̃2‖L∞T V̄ . (102)
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Adding (93), (98), and (102), we obtain∫ T

0
|h̄2(t, ξ)−

¯̃h2(t, ξ)| dt

6 2
∫ T

0
|h2(t, ξ)− h̃2(t, ξ)| dt + C(M̄)‖X2 − X̃2‖L∞T V̄ . (103)

Note that this inequality is true for all ξ ∈ κ1−γ . Since meas(κ1−γ ) 6 C(M̄), we
can apply Fubini’s theorem and use (103) to obtain∫ T

0

∫
κ1−γ

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dξ dt 6 C(M̄)‖X2 − X̃2‖L∞T V̄ . (104)

Combining (92) and (104) finally yields (87).
(iii) A close inspection of the proof of (ii) reveals that we only need to improve

(98). Let us consider ξ ∈ κ1−γ , and assume for the moment that 0 < τ2(ξ) <

τ̃2(ξ) 6 T , since all other cases can be derived from this one. For t ∈ [τ2(ξ),

τ̃2(ξ)), we have∫ τ̃2

τ2

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dt

6 2(w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ))+ C(M̄)T ‖X2 − X̃2‖L∞T V̄ .

In order to improve this estimate, we will use that Θ not only is an element of
C([0, T ], V̄ ) like in (ii), but also belongs to Im(P). From (54), we get that

w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ)

6
1
2

∫ τ2

0
|h̄2(t, ξ)−

¯̃h2(t, ξ)| dt

+

∫ τ2

0
|U 2
− P(Θ)|(t, ξ)|q2(t, ξ)− q̃2(t, ξ)| dt

+

∫ τ2

0
|U 2
− P(Θ)− Ũ 2

+ P(Θ̃)|(t, ξ)q̃2(t, ξ) dt

6
1
2

∫ τ2

0
|h2(t, ξ)− h̃2(t, ξ)| dt + C(M̄)T ‖X2 − X̃2‖L∞T V̄

+C(M̄)γ ‖U 2
− P(Θ)− Ũ 2

+ P(Θ̃)‖L1
T E

6 C(M̄)(T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ )+ γΓ (Θ, Θ̃)), (105)
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where we used (85) and that (q2/(q2 + h̄2))(t, ξ) 6 γ for all t ∈ [0, τ2(ξ)], and
therefore q2(t, ξ) = (q2 + h̄2)(t, ξ)(q2/(q2 + h̄2))(t, ξ) 6 C(M̄)γ for all t ∈ [0,
τ2(ξ)]. Thus∫ τ̃2

τ2

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dt

6 2(w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ))+ C(M̄)T ‖X2 − X̃2‖L∞T V̄

6 C(M̄)(T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ )+ γΓ (Θ, Θ̃)).

As in (ii), we can conclude that, for all ξ ∈ κ1−γ ,∫ T

0
|h̄2(t, ξ)−

¯̃h2(t, ξ)| dt

6 C(M̄)(T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ )+ γΓ (Θ, Θ̃)). (106)

Since meas(κ1−γ ) 6 C(M̄), we can apply Fubini’s theorem and use (106) to
obtain∫ T

0

∫
κ1−γ

|h̄2(t, ξ)−
¯̃h2(t, ξ)| dξ dt

6 C(M̄)(T (‖X2 − X̃2‖L∞T V̄ + ‖X − X̃‖L∞T V̄ )+ γΓ (Θ, Θ̃)). (107)

(iv) First, we estimate ‖Z2 − Z̃2‖L∞T W̄ (κc
1−γ )

. For ξ ∈ κc
1−γ , we have Z2 − Z̃2 =

Z̄2−
¯̃Z2, and, in particular, Z̄2,t = F(Θ)Z̄2 and ¯̃Z2,t = F(Θ̃) ¯̃Z2 for all t ∈ [0, T ].

Hence,

‖(Z2 − Z̃2)(t, ·)‖W̄ (κc
1−γ )
= ‖(Z̄2 −

¯̃Z2)(t, ·)‖W̄ (κc
1−γ )

6
∫ t

0
‖(F(Θ)− F(Θ̃))Z̄2(t ′, ·)‖W̄ (κc

1−γ )
dt ′

+

∫ t

0
‖F(Θ̃)(Z̄2 −

¯̃Z2)(t ′, ·)‖W̄ (κc
1−γ )

dt ′. (108)

We have that

(F(Θ)− F(Θ̃))Z̄2 = (0, ((U 2
− P(Θ))− (Ũ 2

− P(Θ̃)))q2,

2((U 2
− P(Θ))− (Ũ 2

− P(Θ̃)))w2, 0), (109)

and therefore

‖(F(Θ)− F(Θ̃))Z̄2‖L1
T W̄ 6 C(M̄)‖(U 2

− P(Θ))− (Ũ 2
− P(Θ̃))‖L1

T E . (110)
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Applying Gronwall’s lemma to (108), as ‖F(Θ̃)‖L∞T L∞ 6 C(M̄), we get

‖Z2 − Z̃2‖L∞T W̄ (κc
1−γ )

6 C(M̄)‖(F(Θ)− F(Θ̃))Z̄2‖L1
T W̄ . (111)

Hence, we get by (110) that

‖Z2 − Z̃2‖L∞T W̄ (κc
1−γ )

6 C(M̄)‖(P(Θ)−U 2)− (P(Θ̃)− Ũ 2)‖L1
T E . (112)

Thus, we have by (85) that

‖Z2 − Z̃2‖L∞T W̄ (κc
1−γ )

6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (113)

To estimate ‖Z2 − Z̃2‖L∞T W̄ (κ1−γ )
, we fix ξ ∈ κ1−γ , and assume without loss of

generality that 0 < τ2(ξ) < τ̃2(ξ) 6 T . For t ∈ [0, τ2(ξ)], we can conclude as for
ξ ∈ κc

1−γ to obtain

|Z2(t, ξ)− Z̃2(t, ξ)| 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (114)

For t ∈ [τ2(ξ), τ̃2(ξ)), we have Z̄2,t = F(Θ)Z̄2 and ¯̃Z2,t = F(Θ̃) ¯̃Z2, but h2(t,
ξ)− h̃2(t, ξ) = h̄2(t, ξ)−

¯̃h2(t, ξ)+ l1(ξ). Thus it follows, using (95), that

|(Z2 − Z̃2)(t, ξ)| 6 |(Z2 − Z̃2)(τ2(ξ), ξ)| +

∫ t

τ2

1
2

l1(ξ) dt ′

+

∫ t

τ2

|(F(Θ)− F(Θ̃))Z2(t ′, ξ)| dt ′ +
∫ t

τ2

|F(Θ̃)(Z2 − Z̃2)(t ′, ξ)| dt ′

6 |(Z2 − Z̃2)(τ2(ξ), ξ)| +

∫ t

τ2

1
2
¯̃h2(t ′, ξ) dt ′

+

∫ t

τ2

|(F(Θ)− F(Θ̃))Z2(t ′, ξ)| dt ′

+

∫ t

τ2

(|F(Θ̃)| + 1)|(Z2 − Z̃2)(t ′, ξ)| dt ′, (115)

where (F(Θ)−F(Θ̃))Z2 = (F(Θ)−F(Θ̃))Z̄2 is given by (109), which depends
neither on h2 and h̃2 nor on h̄2 and ¯̃h2. Applying Gronwall’s inequality then yields

|(Z2 − Z̃2)(t, ξ)| 6 C(M̄)
(
|(Z2 − Z̃2)(τ2(ξ), ξ)| +

∫ t

τ2

1
2
¯̃h2(t ′, ξ) dt ′

+

∫ t

τ2

|(F(Θ)− F(Θ̃))Z2(t ′, ξ)| dt ′
)
. (116)
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Then we get, from (114) and (110), together with∫ t

τ2

1
2
¯̃h2(t ′, ξ) dt ′ 6 w2(τ2(ξ), ξ)− w̃2(τ2(ξ), ξ)

+C(M̄)T ‖X2(·, ξ)− X̃2(·, ξ)‖L∞τ2

6 C(M̄)(T (‖X2(·, ξ)− X̃2(·, ξ)‖L∞τ2

+‖X − X̃‖L∞T V̄ )+ γΓ (Θ, Θ̃))

6 C(M̄)(T ‖X − X̃‖L∞T V̄ + (T + γ )Γ (Θ, Θ̃)), (117)

where we used (97), (105), and (114), that

|(Z2 − Z̃2)(t, ξ)| 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (118)

For t ∈ [τ̃2(ξ), T ], we have Z̄2,t = F(Θ)Z̄2 and ¯̃Z2,t = F(Θ̃) ¯̃Z2, but h2(t,
ξ)− h̃2(t, ξ) = h̄2(t, ξ)−

¯̃h2(t, ξ)+ l1(ξ)− l̃1(ξ). Thus it follows that

|(Z2 − Z̃2)(t, ξ)| 6 |(Z2 − Z̃2)(τ̃2(ξ), ξ)| +

∫ t

τ̃2

1
2
|l1(ξ)− l̃1(ξ)| dt ′

+

∫ t

τ̃2

|(F(Θ)− F(Θ̃))Z2(t ′, ξ)| dt ′

+

∫ t

τ̃2

|F(Θ̃)(Z2 − Z̃2)(t ′, ξ)| dt ′, (119)

where (F(Θ) − F(Θ̃))Z2 = (F(Θ) − F(Θ̃))Z̄2 is given by (109). Applying
Gronwall’s inequality then yields

|(Z2 − Z̃2)(t, ξ)| 6 C(M̄)
(
|(Z2 − Z̃2)(τ̃2(ξ), ξ)| +

∫ t

τ̃2

1
2
|l1(ξ)− l̃1(ξ)| dt ′

+

∫ t

τ̃2

|(F(Θ)− F(Θ̃))Z2(t ′, ξ)| dt ′
)
. (120)

Then we get, from (118) and (110), together with

|l1(ξ)− l̃1(ξ)| 6 α|h2(τ̃2(ξ), ξ)− h̃2(τ̃2(ξ), ξ)|

+C(M̄)T ‖X2(·, ξ)− X̃2(·, ξ)‖L∞
τ̃2

6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)), (121)
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where we used (100), (101), and (118), that

|(Z2 − Z̃2)(t, ξ)| 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (122)

Combining (114), (118), and (122), we get

|(Z2 − Z̃2)(t, ξ)| 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)), (123)

for all t ∈ [0, T ]. Since meas(κ1−γ ) 6 C(M̄), the estimate (123) implies that

‖Z2 − Z̃2‖L∞T W̄ (κ1−γ )
6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (124)

Combining (113) and (124), we get

‖Z2 − Z̃2‖L∞T W̄ 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (125)

From (54), we obtain

‖U2 − Ũ2‖L∞T E 6 ‖Q(Θ)− Q(Θ̃)‖L1
T E

6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃))
(126)

and

‖ζ2 − ζ̃2‖L∞T L∞ 6 T ‖U2 − Ũ2‖L∞T L∞

6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (127)

Thus, adding (125), (126), and (127), we conclude that

‖X2 − X̃2‖L∞T V̄ 6 C(M̄)(T ‖X − X̃‖L∞T V̄ + Γ (Θ, Θ̃)). (128)

REMARK 14. Recall that, in the case of conservative solutions, that is, α = 0, we
have that h̄(t, ξ) = h(t, ξ) for all ξ ∈ R and t ∈ R, and hence the above proof
simplifies considerably in that case. In particular, it suffices to prove (iv), since
one can conclude that Γ (Θ, Θ̃) 6 C(M̄)T ‖X − X̃‖L∞T V̄ as in (91).

THEOREM 15 (Short-time solution). Given M > 0, for any initial dataΘ0 = (y0,

U0, y0,ξ ,U0,ξ , h̄0, h0, r0) ∈ G∩ BM , there exists a time T > 0, which depends only
on M, such that there exists a unique solutionΘ = (y,U, yξ ,Uξ , h̄, h, r) ∈ C([0,
T ], V̄ ) of (32) with Θ(0) = Θ0. Moreover, Θ(t) ∈ G for all t ∈ [0, T ].
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Proof. In order to prove the existence and uniqueness of the solution, we use an
iteration argument. By Lemma 11, there exist T and M̄ such that P is a mapping
from C([0, T ], BM̄) to C([0, T ], BM̄). Now, let Θ1(t, ξ) = Θ0(ξ) for all t ∈ [0,
T ], and setΘn+1 = P(Θn) andΘn(0, ξ) = Θ0(ξ) for all n ∈ N. ThenΘn belongs
to Im(P) for all n ∈ N, and, in particular, Θn(t) ∈ BM̄ for all t ∈ [0, T ]. We have

‖Xn+1 − Xn‖L∞T V̄ 6 C(M̄)(T ‖Xn − Xn−1‖L∞T V̄ + Γ (Θn,Θn−1))

6 C(M̄)(T (‖Xn − Xn−1‖L∞T V̄ + ‖Xn−1 − Xn−2‖L∞T V̄ )

+ γΓ (Θn−1,Θn−2))

6 C(M̄)(T + γ )(‖Xn − Xn−1‖L∞T V̄ + ‖Xn−1 − Xn−2‖L∞T V̄ ),

where we used Lemma 13. Hence, for T and γ small enough, we have

‖Xn+1 − Xn‖L∞T V̄ 6 1
4 (‖Xn − Xn−1‖L∞T V̄ + ‖Xn−1 − Xn−2‖L∞T V̄ ) for n > 3.

Summation over all n > 3 on the left-hand side then yields

N∑
n=3

‖Xn+1 − Xn‖L∞T V̄ 6
1
4

(N−1∑
n=2

‖Xn+1 − Xn‖L∞T V̄ +

N−2∑
n=1

‖Xn+1 − Xn‖L∞T V̄

)
and

1
2

N∑
n=1

‖Xn+1 − Xn‖L∞T V̄ 6 ‖X2 − X1‖L∞T V̄ + ‖X3 − X2‖L∞T V̄

independently of N . Thus, {Xn}
∞

n=1 is a Cauchy sequence which converges to a
unique limit X . In addition, Lemma 13(i)–(ii) implies that hn(t) converges to a
unique limit h(t) in L1(R) ∩ L2(R), and that h̄n(t) converges to a unique limit
h̄(t) in L1(R) ∩ L2(R).

Next, we want to show that, for almost every ξ ∈ R such that τ1(ξ) 6 T , we
have

X (τ1(ξ), ξ) = X (τ1(ξ)− 0, ξ) and h̄(τ1(ξ), ξ) = (1− α)h̄(τ1(ξ)− 0, ξ).

Let A be the following set:

A = {ξ ∈ R | |ζ0(ξ)| 6 ‖ζ0‖L∞, |U0(ξ)| 6 ‖U0‖L∞,

|q0(ξ)− 1| 6 ‖q0 − 1‖L∞, |w0(ξ)| 6 ‖w0‖L∞,

|h0(ξ)| 6 ‖h0‖L∞, |r0(ξ)| 6 ‖r0‖L∞}. (129)
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We have that A has full measure; that is, meas(Ac) = 0. Recall that

‖X (·, ξ)‖L∞T = sup
t∈[0,T ]
{|y(t, ξ)− ξ | + |U (t, ξ)| + |q(t, ξ)|

+ |w(t, ξ)| + |h(t, ξ)| + |r(t, ξ)|}.

Since both P(Θn)(t, ξ) and Q(Θn)(t, ξ) belong to H 1(R) for all t ∈ [0, T ], we
have that

sup
t∈[0,T ]
{|P(Θn)(t, ξ)| + |Q(Θn)(t, ξ)|} 6 ‖P(Θn)‖L∞T E + ‖Q(Θn)‖L∞T E 6 C(M̄).

Moreover, following closely the proof of Lemma 11, we obtain that, for any ξ ∈
A,

‖Xn(·, ξ)‖L∞T 6 ‖Xn‖L∞T V̄ 6 C(M̄),

which implies that Xn(t, ξ) is continuous with respect to time. In particular, one
obtains that, for any ξ ∈ A,

‖Xn(·, ξ)− Xn−1(·, ξ)‖L∞T 6 ‖Xn − Xn−1‖L∞T V̄ . (130)

Thus ‖Xn(·, ξ) − Xn−1(·, ξ)‖L∞T → 0, and Xn(ξ) converges to the unique limit
X (ξ) for almost every ξ ∈ R. Thus, if we can show that

h̄(τ1(ξ), ξ) = h̄(τ1(ξ)+ 0, ξ) = (1− α)h̄(τ1(ξ)− 0, ξ), (131)

for all ξ ∈ A that experience wave breaking within [0, T ],Θ will be a solution of
(32) in the sense of Definition 1. Recall that for any n ∈ N we have that

h̄n(τ1,n(ξ), ξ) = h̄n(τ1,n(ξ)+ 0, ξ) = (1− α)h̄n(τ1,n(ξ)− 0, ξ). (132)

Thus, if we can show that τ1,n(ξ) converges to a unique limit τ1(ξ), the claim will
follow, since ‖Xn(·, ξ)− X (·, ξ)‖L∞T → 0. We assume without loss of generality
that 0 < τ1,n−1(ξ) < τ1,n(ξ) 6 T , since all other possible cases can be handled
similarly. Moreover, we assume that q0(ξ) + h0(ξ) − l0(ξ) = C > 0, since
otherwise h̄0(ξ) = 0 = q0(ξ), and (131) is obviously satisfied. Then, as in the
proof of Lemma 10(ii), we can find a strictly positive constant CT such that
CT < q(t, ξ)+ h(t, ξ)− l0(ξ) for all t ∈ [0, T ]. In particular, we get

τ1,n(ξ)− τ1,n−1(ξ) =

∫ τ1,n(ξ)

τ1,n−1(ξ)

qn(s, ξ)+ h̄n(s, ξ)
qn(s, ξ)+ h̄n(s, ξ)

ds

6 C−1
T

∫ τ1,n(ξ)

τ1,n−1(ξ)

(qn + h̄n)(s, ξ) ds, (133)
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where we used that h̄n(t, ξ) = hn(t, ξ) − l0(ξ) for t ∈ [0, τ1,n(ξ)). We split the
integral on the right-hand side into two parts, and study them separately. For the
first integral, we get∫ τ1,n(ξ)

τ1,n−1(ξ)

qn(s, ξ) ds =
∫ τ1,n(ξ)

τ1,n−1(ξ)

(qn(s, ξ)− qn(τ1,n−1(ξ), ξ)+ qn(τ1,n−1(ξ), ξ)) ds

6
∫ τ1,n(ξ)

τ1,n−1(ξ)

qn(τ1,n−1(ξ), ξ) ds

=

∫ τ1,n(ξ)

τ1,n−1(ξ)

(qn(τ1,n−1(ξ), ξ)− qn−1(τ1,n−1(ξ), ξ)) ds

6 T ‖qn(·, ξ)− qn−1(·, ξ)‖L∞T

6 T ‖Xn − Xn−1‖L∞T V̄ , (134)

where we used that qn(s, ξ) is decreasing on the interval [τ1,n−1(ξ), τ1,n(ξ)],
since qn,t(s, ξ) = wn(s, ξ) 6 0 for all s ∈ [τ1,n−1(ξ), τ1,n(ξ)], and that
qn−1(τ1,n−1(ξ), ξ) = 0. As far as the second integral is concerned, we can
conclude as follows:∫ τ1,n(ξ)

τ1,n−1(ξ)

h̄n(s, ξ) ds = 2(wn(τ1,n(ξ), ξ)− wn(τ1,n−1(ξ), ξ))

− 2
∫ τ1,n(ξ)

τ1,n−1(ξ)

(U 2
n−1 − P(Θn−1))qn(s, ξ) ds

6 −2wn(τ1,n−1(ξ), ξ)+ C(M̄)T qn(τ1,n−1(ξ), ξ)

6 2(wn−1(τ1,n−1(ξ), ξ)− wn(τ1,n−1(ξ), ξ))

+C(M̄)T (qn(τ1,n−1(ξ), ξ)− qn−1(τ1,n−1(ξ), ξ))

6 ‖wn(·, ξ)− wn−1(·, ξ)‖L∞T

+C(M̄)T ‖qn(·, ξ)− qn−1(·, ξ)‖L∞T

6 (1+ T C(M̄))‖Xn − Xn−1‖L∞T V̄ , (135)

where we used wn(τ1,n(ξ), ξ) = wn−1(τ1,n−1(ξ), ξ) = qn−1(τ1,n−1(ξ), ξ) = 0.
Thus, the sequence τ1,n(ξ) converges to a unique limit τ1(ξ) for every ξ ∈ A,
and, in particular, limn→∞ hn(τ1,n(ξ), ξ) = h(τ1(ξ), ξ) for all ξ ∈A. This implies,
since h̄(t, ξ) = limn→∞ h̄n(t, ξ) for t 6= τ1(ξ), that

h̄(τ1(ξ), ξ) = lim
s↓τ1(ξ)

h̄(s, ξ)

= lim
s↓τ1(ξ)

lim
n→∞

h̄n(s, ξ)

= lim
s↓τ1(ξ)

lim
n→∞

(hn(s, ξ)− l1,n(ξ)− l0(ξ))
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= lim
s↓τ1(ξ)

lim
n→∞

(hn(s, ξ)− α(hn(τ1,n(ξ), ξ)− l0(ξ))− l0(ξ))

= lim
s↓τ1(ξ)

(h(s, ξ)− α(h(τ1(ξ), ξ)− l0(ξ))− l0(ξ))

= h(τ1(ξ), ξ)− α(h(τ1(ξ), ξ)− l0(ξ))− l0(ξ)

= (1− α)(h(τ1(ξ), ξ)− l0(ξ)) (136)

and

h̄(τ1(ξ)− 0, ξ) = lim
s↑τ1(ξ)

h̄(s, ξ)

= lim
s↑τ1(ξ)

lim
n→∞

h̄n(s, ξ)

= lim
s↑τ1(ξ)

lim
n→∞

(hn(s, ξ)− l0(ξ))

= lim
s↑τ1(ξ)

h(s, ξ)− l0(ξ)

= h(τ1(ξ), ξ)− l0(ξ). (137)

Thus,

h̄(τ1(ξ), ξ) = (1− α)(h(τ1(ξ), ξ)− l0(ξ)) = (1− α)h̄(τ1(ξ)− 0, ξ), (138)

and, in particular,

h̄(t, ξ) =

{
h(t, ξ)− l0(ξ) for t < τ1(ξ),

h(t, ξ)− l0(ξ)− l1(ξ) otherwise,
(139)

where l1(ξ) = α(h(τ1(ξ), ξ)− l0(ξ)) = limn→∞ l1,n(ξ).
It is left to prove that U and y are differentiable, and that Uξ = w and yξ = q .

Recall that Q(Θ) is defined via (40), and choose ξ1, ξ2 ∈ R such that ξ1 < ξ2.
Then we have∫ ξ2

−∞

e−|y(t,ξ2)−y(t,η)|(2U 2q + h̄)(t, η) dη

−

∫ ξ1

−∞

e−|y(t,ξ1)−y(t,η)|(2U 2q + h̄)(t, η) dη

=

∫ ξ1

−∞

(e−|y(t,ξ2)−y(t,η)|
− e−|y(t,ξ1)−y(t,η)|)(2U 2q + h̄)(t, η) dη

+

∫ ξ2

ξ1

e−|y(t,ξ2)−y(t,η)|(2U 2q + h̄)(t, η) dη

6 C(M̄)(|y(t, ξ2)− y(t, ξ1)| + ξ2 − ξ1). (140)
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Here, we used that

|e−|y(t,ξ2)−y(t,η)|
− e−|y(t,ξ1)−y(t,η)|

| =

∣∣∣∣∫ −|y(t,ξ2)−y(t,η)|

−|y(t,ξ1)−y(t,η)
ex dx

∣∣∣∣
6 ||y(t, ξ1)− y(t, η)| − |y(t, ξ2)− y(t, η)||
6 |y(t, ξ1)− y(t, ξ2)|. (141)

Thus (140) implies that Q(Θ) is differentiable almost everywhere according to
Rademacher’s theorem if y(t, ξ) is Lipschitz continuous, since

Q(Θ)(t, ξ2)− Q(Θ)(t, ξ1) 6 C(M̄)(|y(t, ξ2)− y(t, ξ1)| + ξ2 − ξ1). (142)

Therefore, observe that

y(t, ξ2)− y(t, ξ1) =

∫ t

0
(U (s, ξ2)−U (s, ξ1)) ds + y(0, ξ2)− y(0, ξ1) (143)

and

U (t, ξ2)−U (t, ξ1) = −

∫ t

0
(Q(Θ)(s, ξ2)−Q(Θ)(s, ξ1)) ds+U (0, ξ2)−U (0, ξ1),

(144)
where U (0, ξ) and y(0, ξ) are Lipschitz continuous due to the assumptions on the
initial data. Combining these two inequalities and (142) yields

|y(t, ξ2)− y(t, ξ1)| 6
∫ t

0
|U (s, ξ2)−U (s, ξ1)| ds + |y(0, ξ2)− y(0, ξ1)|

6
∫ t

0

∫ s

0
|Q(Θ)(r, ξ2)− Q(Θ)(r, ξ1)| dr ds

+

∫ t

0
|U (0, ξ2)−U (0, ξ1)| ds + |y(0, ξ2)− y(0, ξ1)|

6 C(M̄)
(∫ t

0
|y(s, ξ2)− y(s, ξ1)| ds + ξ2 − ξ1

)
. (145)

Applying Gronwall’s inequality yields

|y(t, ξ2)− y(t, ξ1)| 6 C(M̄)|ξ2 − ξ1|. (146)

Thus y(t, ξ) is Lipschitz continuous and differentiable almost everywhere. As
an immediate consequence, we get from (142) and (144) that also Q and U are
Lipschitz continuous and therefore differentiable almost everywhere.
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We are now ready to show thatw = Uξ and q = yξ . Therefore, recall that Q(Θ)
is defined via (40), and note that Q(Θ) is differentiable since y is differentiable.
A direct computation gives us that

Qξ (Θ) = −
1
2 h̄ −U 2q + P(Θ)yξ . (147)

In addition, as q(t, ξ) and w(t, ξ) are both continuous with respect to time, we
have

(q − yξ )t = (w −Uξ ), (148a)
(w −Uξ )t = −P(Θ)(q − yξ ). (148b)

In particular, this means that, if q0 = y0,ξ and w0 = U0,ξ , then

‖(q − yξ )(t, ·)‖E + ‖(w −Uξ )(t, ·)‖E

6 C(M̄)
∫ t

0
(‖(q − yξ )(t ′, ·)‖E + ‖(w −Uξ )(t ′, ·)‖E) dt ′,

and thus using Gronwall’s inequality yields that yξ = q and Uξ = w.
Let us prove that X (t) ∈ G for all t . From (58) and (59), we get q(t, ξ) > 0,

h(t, ξ) > 0, and qh̄ = w2
+ r 2 for all t and almost all ξ , and therefore, since

Uξ = w and yξ = q , conditions (37d) and (37g) are fulfilled, and y is an increasing
function. Since ζ(t, ξ) = ζ(0, ξ) +

∫ t
0 U (t, ξ) dt , we obtain by the Lebesgue

dominated convergence theorem that limξ→−∞ ζ(t, ξ) = 0, because U ∈ H 1(R).
Hence, since in addition X (t) ∈ BM̄ , the function X (t) fulfills all the conditions
listed in (37), and thus X (t) ∈ G.

Note that the set G ∩ BM is closed with respect to the topology of V̄ . We have

yξ,t = Uξ ,

ht = 2(U 2
− P(Θ))Uξ ,

rt = 0,

for all ξ ∈ R and t ∈ R+. In particular, this means that yξ , h, and r are
differentiable with respect to time in the classical sense almost everywhere.

In order to obtain global solutions, we want to apply Theorem 15 iteratively,
which is possible if we can show that ‖X‖V̄ + ‖h‖L1 + ‖1/(yξ + h)‖L∞ does
not blow up within finite time. The corresponding estimate is contained in the
following lemma.

LEMMA 16. Given M and T0, then there exists a constant M0 which depends
only on M and T0 such that, for anyΘ0 = (y0,U0, y0,ξ ,U0,ξ , h̄0, h0, r0) ∈ BM , the
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following hold for all t ∈ [0, T0]:

‖X (t)‖V̄ + ‖h(t)‖L1 +

∥∥∥∥ 1
yξ + h

(t)
∥∥∥∥

L∞
6 M0 (149)

and ∫
R
(U 2 yξ (t, ξ)+ h(t, ξ)) dξ =

∫
R
(U 2

0 y0,ξ (ξ)+ h0(ξ)) dξ. (150)

Proof. This proof follows the same lines as the one in [27]. To simplify the
notation, we will generically denote by C constants, and by C(M, T0) constants
which in addition depend on M and T0. Let us introduce

Σ(t) =
∫
R
(U 2 yξ + h)(t, ξ) dξ.

Since h > 0, we have ‖h‖L1
R
=
∫
R h dξ <∞. After some computation, (32) yields

that
Σ(t) = Σ(0) for all t ∈ R+, (151)

which implies that
‖h(t, ·)‖L1 6 Σ(0). (152)

Moreover, we have

U 2(t, ξ) = 2
∫ ξ

−∞

UUξ (t, η) dη

6
∫
{η|yξ (η)>0}

(
U 2 yξ +

U 2
ξ

yξ

)
(t, η) dη

6
∫
{η|yξ (η)>0}

(U 2 yξ + h)(t, η) dη

6 Σ(t) = Σ(0),

where we used that yξ (η) = 0 implies that Uξ (η) = 0, and therefore the integrand
in the integral in the first line vanishes whenever yξ (ξ) = 0. Thus it suffices to
integrate over {η ∈ R | yξ (η) > 0} ∩ {η 6 ξ}, which justifies the subsequent
estimate. Thus

‖U (t, ·)‖2
L∞ 6 Σ(0). (154)

Moreover, P and Q satisfy

‖P(Θ)(t, ·)‖L∞ 6 2Σ(0) and ‖Q(Θ)(t, ·)‖L∞ 6 2Σ(0). (155)
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From (32), we obtain that

|ζ(t, ξ)| 6 |ζ(0, ξ)| +
∫ t

0
|U (t ′, ξ)| dt ′, (156)

and hence
‖ζ(t, ·)‖L∞ 6 ‖ζ(0, ·)‖L∞ + T (1+Σ(0)). (157)

Applying Young’s inequality to (33) and (34), and following the proof of
Lemma 8, we get

‖P(Θ)(t, ·)‖L2 + ‖Q(Θ)(t, ·)‖L2 6 Ce2‖ζ(t,·)‖L∞Σ(0). (158)

Let

α(t) = ‖U (t, ·)‖E + ‖ζξ (t, ·)‖E + ‖Uξ (t, ·)‖E + ‖h(t, ·)‖E + ‖r(t, ·)‖E .

Then

α(t) 6 α(0)+ C(M, T0)+ C(M, T0)

∫ t

0
α(t ′) dt ′. (159)

Hence, Gronwall’s lemma gives us α(t) 6 C(M, T0). It remains to prove that
‖1/(yξ + h)‖L∞T L∞ can be bounded by some constant depending on M and T0, but
this follows immediately from (60). This completes the proof.

We can now prove global existence of solutions.

THEOREM 17 (Global solution). For any initial data Θ0 = (y0,U0, y0,ξ ,U0,ξ ,

h0, h̄0, r0) ∈ G, there exists a unique global solution Θ = (y,U, yξ ,Uξ , h̄, h,
r) ∈ C(R+,G) of (32) with Θ(0) = Θ0.

Proof. By assumption, Θ0 ∈ G, and therefore there exists a constant M such that
Θ0 ∈ BM . By Theorem 15, there exists a T > 0, dependent on M , such that we
can find a unique solutionΘ(t) ∈ G on [0, T ]. Thus, we can find a global solution
to (32) if and only if ‖X (t)‖V̄ + ‖h(t)‖L1 + ‖1/(yξ + h)(t)‖L∞ does not blow up
within a finite time interval, but this follows from Lemma 16.

Observe that (ζ,U, ζξ ,Uξ , h̄, h, r) is a fixed point of P , and that the results of
Lemma 10 hold for Θ = Θ̃ = (ζ,U, ζξ ,Uξ , h̄, h, r). Since this lemma contains
important information about which points will experience wave breaking in the
near future, we rewrite it for the fixed-point solution Θ . For this purpose, we
redefine BM and κ1−γ , see (43) and (56), as

BM =

{
Θ

∣∣∣∣ ‖X‖V̄ + ‖h‖L1 +

∥∥∥∥ 1
yξ + h

∥∥∥∥
L∞

6 M
}
,
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where X = (ζ,U, ζξ ,Uξ , h, r), and

κ1−γ =

{
ξ ∈ R

∣∣∣∣ h̄0

y0,ξ + h̄0
(ξ) > 1− γ , U0,ξ (ξ) 6 0, and r0(ξ) = 0

}
,

γ ∈

[
0,

1
2

]
. (160)

Note that every condition imposed on points ξ ∈ κ1−γ is motivated by what is
known about wave breaking. If wave breaking occurs at some time tb, then energy
is concentrated on sets of measure zero in Eulerian coordinates, which correspond
to the sets where (h/(yξ + h))(tb, ξ) = 1 = (h̄/(yξ + h̄))(tb−0, ξ) in Lagrangian
coordinates. Furthermore, it is well known that wave breaking in the context of
the 2CH system means that the spatial derivative becomes unbounded from below,
and hence Uξ (t, ξ) 6 0 for tb − δ 6 t 6 tb for such points; see [11, 20]. Finally,
it has been shown in [15, Theorem 6.1] that wave breaking within finite time can
only occur at points ξ where r0(ξ) = 0.

Lemma 10 can be rewritten, due to (154) and (155), as follows.

COROLLARY 18. Let M0 be a constant, and consider initial data Θ0 ∈ G ∩ BM .
Denote byΘ = (ζ,U, ζξ ,Uξ , h̄, h, r) ∈ C(R+,G) the global solution of (32) with
initial data Θ0. Then the following statements hold.

(i) We have ∥∥∥∥ 1
yξ + h

(t, ·)
∥∥∥∥

L∞
6 2eC(M)T

∥∥∥∥ 1
y0,ξ + h0

∥∥∥∥
L∞
, (161)

and
‖(yξ + h)(t, ·)‖L∞ 6 2eC(M)T

‖y0,ξ + h0‖L∞ (162)

for all t ∈ [0, T ] and a constant C(M) which depends on M.
(ii) There exists a γ ∈ (0, 1

2 ) depending only on M such that, if ξ ∈ κ1−γ , then
Θ(t, ξ) ∈ Ω1 for all t ∈ [0,min(τ1(ξ), T )], (yξ/(yξ + h̄))(t, ξ) is a decreasing
function, and (Uξ/(yξ + h̄))(t, ξ) is an increasing function, both with respect to
time for t ∈ [0,min(τ1(ξ), T )]. Therefore, we have

U0,ξ

y0,ξ + h̄0
(ξ) 6

Uξ

yξ + h̄
(t, ξ) 6 0 and 0 6

yξ
yξ + h̄

(t, ξ) 6
y0,ξ

y0,ξ + h̄0
(ξ),

(163)
for t ∈ [0,min(τ1(ξ), T )]. In addition, for γ sufficiently small, depending only on
M and T , we have

κ1−γ ⊂ {ξ ∈ R | 0 6 τ1(ξ) < T }. (164)
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(iii) Moreover, for any given γ > 0, there exists T̂ > 0 such that

{ξ ∈ R | 0 < τ1(ξ) < T̂ } ⊂ κ1−γ . (165)

Although we have now constructed a new class of solutions in Lagrangian
coordinates, there is one more fact we want to point out. The construction of
α-dissipative solutions involves the sequence of breaking times {τ j(ξ)} for every
point ξ . At first sight, it is not clear that this possibly infinite sequence does not
accumulate.

COROLLARY 19. Denote byΘ(t) = (y,U, yξ ,Uξ , h̄, h, r)(t) the global solution
of (32) with Θ(0) = Θ0 ∈ G ∩ BM in C(R+,G). For any ξ ∈ R, the possibly
infinite sequence τ j(ξ) cannot accumulate.

In particular, there exists a time T̂ depending on M such that any point ξ can
experience wave breaking at most once within the time interval [T0, T0 + T̂ ] for
any T0 > 0. More precisely, given ξ ∈ R, we have

τ j+1(ξ)− τ j(ξ) > T̂ for all j. (166)

In addition, for T̂ sufficiently small, we get that in this case Uξ (t, ξ) > 0 for all
t ∈ [τ j(ξ), τ j(ξ)+ T̂ ].

Proof. In the proof of Lemma 16, we showed that

‖P(Θ)‖L∞∞L∞ + ‖Q(Θ)‖L∞∞L∞ + ‖U‖2
L∞∞L∞ 6 5Σ(0), (167)

where L∞
∞
= L∞T=∞. This means, in particular, that the constant C(M̄) in the proof

of Lemma 12, for the global solution, can be chosen to be independent of time.
Thus we can conclude from Lemma 12 that there exists a constant T̂ such that
τ j+1(ξ)− τ j(ξ) > T̂ for all j .

3. From Eulerian to Lagrangian variables and vice versa

Let us define in detail our variables in Eulerian coordinates. As explained in
the introduction, the energy distribution can concentrate, and therefore our set of
Eulerian variables contains not only the functions u(t) and ρ(t) but also a measure
µ(t), which properly describes the concentrated amount of energy at breaking
times. This measure µ(t), which describes only part of the energy in general, is
treated as an independent variable, but still remains strongly connected to u(t) and
ρ(t) through its absolutely continuous part; see (168) below. In addition, in order
to enable the construction of the semigroup, we add to the set of Eulerian variables
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the measure ν(t), which allows us, together with µ(t), to determine how much
energy has been dissipated. For the solution we construct (see Section 4), the
measure µ(t) is in general discontinuous in time, while ν(t) remains continuous.

DEFINITION 4 (Eulerian coordinates). The set D is composed of all (u, ρ, µ, ν)
such that the following hold:

(i) u ∈ H 1(R);

(ii) ρ ∈ L2(R);

(iii) µ is a positive finite Radon measure whose absolutely continuous part, µac,
satisfies

µac = (u2
x + ρ

2) dx; (168)

(iv) ν is a positive finite Radon measure such that µ 6 ν.

Note that µ 6 ν implies that µ is absolutely continuous with respect to ν, and
therefore there exists a measurable function f such that

µ = f ν and 0 6 f 6 1. (169)

REMARK 20. At first sight, it might seem surprising that we need two measures
to be able to construct a semigroup of solutions, but both of them play an essential
role.

The measure µ, on the one hand, describes the concentrated amount of energy
at breaking times, and is therefore, in general, discontinuous with respect to time.
Moreover, it helps to measure the total energy E(t) at any time, since

E(t) =
∫
R

u2(t, x) dx + µ(t,R). (170)

Thus also the energy is in general a discontinuous function, and, in particular, it
drops suddenly at breaking times if α 6= 0, while it is preserved for all times in
the conservative case.

The measure ν, on the other hand, is continuous with respect to time, and
plays a key role when identifying equivalence classes. Moreover, it enables us
to determine how much energy has dissipated from the system up to a certain
time, since ∫

R
u2(t, x) dx + ν(t,R) (171)

is independent of time.
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For conservative solutions, no energy vanishes from the system, and therefore it
is natural to impose that µ = ν. In the case of dissipative solutions, all the energy
that concentrates at isolated points where wave breaking takes place vanishes
from the system. The measure µ, which corresponds to the energy, is purely
absolutely continuous, while ν − µ describes how much energy we already lost.
If α ∈ (0, 1], we can initially choose the two measures to be equal, ν0 = µ0, but,
as soon as wave breaking takes place, they will differ. In particular, ν does not
coincide with the measure µcons for conservative solutions.

DEFINITION 5 (Relabeling functions). We denote by G the subgroup of the group
of homeomorphisms from R to R such that

f − Id and f −1
− Id both belong to W 1,∞(R), (172a)

fξ − 1 belongs to L2(R), (172b)

where Id denotes the identity function. Given κ > 0, we denote by Gκ the subset
Gκ of G defined by

Gκ = { f ∈ G | ‖ f − Id ‖W 1,∞ + ‖ f −1
− Id ‖W 1,∞ 6 κ}. (173)

Note that, for κ = 0, the set G0 reduces to one element, the identity; that is,

G0 = {Id}.

DEFINITION 6 (Lagrangian coordinates). The subsets F and Fκ of G are defined
as

Fκ = {Θ = (y,U, yξ ,Uξ , h̄, h, r) ∈ G | y + H ∈ Gκ},

and
F = {Θ = (y,U, yξ ,Uξ , h̄, h, r) ∈ G | y + H ∈ G},

where H(t, ξ) is defined by

H(t, ξ) =
∫ ξ

−∞

h(t, ξ̃ ) d ξ̃ .

In addition, it should be pointed out that the condition on y + H is closely
linked to ‖1/(yξ + h)‖L∞ , as the following lemma shows.

LEMMA 21 [27, Lemma 3.2]. Let κ > 0. If f belongs to Gκ , then 1/(1 + κ) 6
fξ 6 1+κ almost everywhere. Conversely, if f is absolutely continuous, f −Id ∈
W 1,∞(R), f satisfies (172b), and there exists d > 1 such that 1/d 6 fξ 6 d
almost everywhere, then f ∈ Gκ for some κ depending only on d and ‖ f −
Id ‖W 1,∞ .
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An immediate consequence of (37f ) is therefore the following result.

LEMMA 22. The space G is preserved by the governing equations (32).

For the sake of simplicity, for any Θ = (y,U, yξ ,Uξ , h̄, h, r) ∈ F and any
function f ∈ G, we denote (y ◦ f,U ◦ f, yξ ◦ f fξ ,Uξ ◦ f fξ , h̄ ◦ f fξ , h ◦ f fξ ,
r ◦ f fξ ) by Θ ◦ f .

PROPOSITION 23. The map from G ×F to F given by ( f,Θ) 7→ Θ ◦ f defines
an action of the group G on F .

Since G is acting on F , we can consider the quotient space F/G of F with
respect to the action of the group G. The equivalence relation on F is defined as
follows: for any Θ,Θ ′ ∈ F , we say that Θ and Θ ′ are equivalent if there exists
a relabeling function f ∈ G such that Θ ′ = Θ ◦ f . We denote by Π(Θ) = [Θ]
the projection of F into the quotient space F/G, and introduce the mapping
Λ : F → F0 given by

Λ(Θ) = Θ ◦ (y + H)−1

for anyΘ = (y,U, yξ ,Uξ , h̄, h, r) ∈ F . We haveΛ(Θ) = Θ whenΘ ∈ F0. It is
not hard to prove thatΛ is invariant under the G action; that is,Λ(Θ ◦ f ) = Λ(Θ)
for any Θ ∈ F and f ∈ G. Hence, there corresponds to Λ a mapping Λ̃ from the
quotient space F/G to F0 given by Λ̃([Θ]) = Λ(Θ), where [Θ] ∈ F/G denotes
the equivalence class of Θ ∈ F . For anyΘ ∈ F0, we have Λ̃ ◦Π(Θ) = Λ(Θ) =
Θ . Hence, Λ̃ ◦Π |F0 = Id |F0 .

Denote by S : F×[0,∞)→ F the semigroup which to any initial dataΘ0 ∈ F
associates the solution Θ(t) of the system of differential equations (32) at time
t . As indicated earlier, the two-component Camassa–Holm system is invariant
with respect to relabeling. More precisely, using our terminology, we have the
following result.

THEOREM 24. For any t > 0, the mapping St : F → F is G-equivariant; that
is,

St(Θ ◦ f ) = St(Θ) ◦ f (174)

for any Θ ∈ F and f ∈ G. Hence, the mapping S̃t from F/G to F/G given by

S̃t([Θ]) = [StΘ]

is well defined and generates a semigroup.
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We have the following diagram:

F0
Π // F/G

Fα

Λ

OO

F0

St

OO

Π // F/G

S̃t

OO

(175)

Next, we describe the correspondence between Eulerian coordinates (functions in
D) and Lagrangian coordinates (functions in F/G). In order to do so, we have
to take into account the facts that the set D allows the energy density to have
a singular part and that a positive amount of energy can concentrate on a set of
Lebesgue measure zero.

We first define the mapping L from D to F which to any initial data in D
associates an initial data for the equivalent system in F .

DEFINITION 7. For any (u, ρ, µ, ν) in D, let

y(ξ) = sup{y | ν((−∞, y))+ y < ξ}, (176a)
h(ξ) = 1− yξ (ξ), (176b)
U (ξ) = u ◦ y(ξ), (176c)

r(ξ) = ρ ◦ y(ξ)yξ (ξ), (176d)
h̄(ξ) = f ◦ y(ξ)h(ξ), (176e)

where f is given through (169). Then (y,U, yξ ,Uξ , h̄, h, r) ∈ F . We denote
by L : D → F the mapping which to any element (u, ρ, µ, ν) ∈ D associates
Θ = (y,U, yξ ,Uξ , h̄, h, r) ∈ F given by (176).

Proof. (Well posedness of Definition 7) We have to prove that (y,U, yξ ,Uξ , h̄, h,
r) ∈ F . The proof follows the same lines as in [27, Theorem 3.8]. The properties
(37a)–(37f ) are proved in the same way, and we do not reproduce the proofs here.
It remains to prove (37g) and (37h). Since f 6 1, see (169), we have that h̄ 6 h
follows from (176e). Let us prove (37g). First, we show that

ν = y#(h(ξ) dξ) and µ = y#(h̄(ξ) dξ). (177)
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For any given x ∈ R, let us define ξ as

ξ = sup{ξ̄ | y(ξ̄ ) = x}.

We know that y is increasing and Lipschitz (we refer to [27]), so y is continuous.
Hence, y(ξ) = x . Moreover, by (176a) and (176b), the definitions of y and h, we
have for ξ ∈ R that

y(ξ) = sup{y | ν((−∞, y))+ y < ξ}, (178)

and

y(ξ)+
∫ ξ

−∞

h(ξ̄ ) d ξ̄ = ξ. (179)

Thus we have, for any ȳ > y(ξ),

y(ξ)+
∫ ξ

−∞

h(ξ̄ ) d ξ̄ 6 ν((−∞, ȳ))+ ȳ. (180)

Letting ȳ tend to y(ξ) = x then yields∫ ξ

−∞

h(ξ̄ ) d ξ̄ 6 ν((−∞, x]). (181)

For any ε > 0, by the definition of ξ , we have that y(ξ + ε) > y(ξ). Hence,
following the same lines as before, we get

y(ξ)+ ν((−∞, y(ξ)]) 6 y(ξ + ε)+
∫ ξ+ε

−∞

h(ξ̄ ) d ξ̄

which, after letting ε tend to zero, yields

ν((−∞, x]) 6
∫ ξ

−∞

h(ξ̄ ) d ξ̄ . (182)

Combining (181), (182), and the definition of ξ , we get

ν((−∞, x]) =
∫

y−1((−∞,x])
h(ξ̄ ) d ξ̄ ,

which proves the first identity in (177). Let us prove the second one. For any Borel
set A, we have

µ(A) =
∫

A
f dν =

∫
y−1(A)

f (y(ξ)) h(ξ) dξ,
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because ν = y#(h(ξ) dξ). Then, using (176e), we get µ(A) =
∫

y−1(A) h̄(ξ) dξ ,
which concludes the proof of (177). We introduce the sets

B =
{

x ∈ R
∣∣∣∣ lim
δ→0

1
2δ
µ(x − δ, x + δ) = (u2

x + ρ
2)(x)

}
and

A = {ξ ∈ y−1(B) | yξ (ξ) > 0}.

From Besicovitch’s derivation theorem [1], we have meas(Bc) = 0. For almost
every ξ ∈ A, we denote x = y(ξ), and define ξ δ

−
and ξ δ

+
as

ξ δ
−
= sup{ξ̄ | y(ξ̄ ) = x − δ} and ξ δ

+
= inf{ξ̄ | y(ξ̄ ) = x + δ}, (183)

for any δ > 0. The continuity of y implies that y(ξ δ
−
) = x − δ and y(ξ δ

+
) = x + δ.

From (177), we obtain

µ(x − δ, x + δ) =
∫ ξ δ+

ξ δ−

h̄(ξ̄ ) d ξ̄ ,

as Definition (183) implies that y−1((x − δ, x + δ)) = (ξ δ
−
, ξ δ
+
). Since yξ (ξ) > 0,

we have ξ δ
−
< ξ δ

+
, limδ→0 ξ

δ
+
= limδ→0 ξ

δ
+
= ξ , and

1
2δ
µ(x − δ, x + δ) =

∫ ξ δ+
ξ δ−

h̄(ξ̄ ) d ξ̄

ξ δ+ − ξ
δ
−

ξ δ
+
− ξ δ
−∫ ξ δ+

ξ δ−
yξ (ξ̄ ) d ξ̄

.

Letting δ tend to zero, we get

u2
x(y(ξ))+ ρ

2(y(ξ)) =
h̄(ξ)
yξ (ξ)

.

As Uξ = ux ◦ yyξ and r = ρ ◦ yyξ almost everywhere, we obtain that

yξ h̄ = U 2
ξ + r 2, (184)

for almost every ξ ∈ A. However, as meas(Bc) = 0, we can prove that
meas({ξ ∈ R | yξ (ξ) > 0 and y(ξ) ∈ Bc

})= 0, see [27, Lemma 3.9], and therefore
(184) holds also for almost every ξ ∈ R such that yξ (ξ) > 0.

It is left to show that (184) is also true for almost all ξ such that yξ (ξ) = 0.
Following closely the proof of [27, Theorem 3.8], one obtains that the function

ξ 7→

∫ y(ξ)

−∞

(u2
x + ρ

2) dx (185)
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is Lipschitz continuous with Lipschitz constant at most one. Thus we have, for all
ξ , ξ̃ ∈ R, using the Cauchy–Schwarz inequality,

|U (ξ̃ )−U (ξ)| =
∣∣∣∣∫ y(ξ̃ )

y(ξ)
ux dx

∣∣∣∣
6
√
|y(ξ̃ )− y(ξ)|

√∣∣∣∣∫ y(ξ̃ )

y(ξ)
u2

x dx
∣∣∣∣

6
√
|y(ξ̃ )− y(ξ)|

√∣∣∣∣∫ y(ξ̃ )

y(ξ)
u2

x + ρ
2 dx

∣∣∣∣
6 |ξ − ξ̃ |, (186)

because y and ξ 7→
∫ y(ξ)
−∞

(u2
x + ρ

2) dx are Lipschitz with Lipschitz constant at
most one. Hence, U is Lipschitz and therefore differentiable almost everywhere.
Let

B2 =

{
x ∈ B

∣∣∣∣ lim
δ→0

1
δ

∫ x+δ

x−δ
ux(s) ds = ux(x)

}
. (187)

From Besicovitch’s derivation theorem, we have that {ξ | yξ (ξ) = 0} ⊂ Bc
2 and

meas(Bc
2) = 0. Then (186) implies that∣∣∣∣U (ξ̃ )−U (ξ)

ξ̃ − ξ

∣∣∣∣ 6
√

y(ξ̃ )− y(ξ)

ξ̃ − ξ
, (188)

due to the Lipschitz continuity with Lipschitz constant of at most one of y and
ξ 7→

∫ y(ξ)
−∞

(u2
x + ρ

2) dx . Hence, for almost every ξ in y−1(Bc
2), we have

|Uξ (ξ)| 6
√

yξ (ξ). (189)

A similar argument yields that

|r(ξ)| 6
√

yξ (ξ). (190)

Since meas(Bc
2)= 0, we have, by [27, Lemma 3.9], that yξ = 0 almost everywhere

on y−1(Bc
2). Hence Uξ = 0 and r = 0 almost everywhere on y−1(Bc

2). Thus yξ h̄ =
U 2
ξ + r 2 almost everywhere on y−1(Bc

2), which is (184). This finishes the proof
of (37h).

In fact, L is a mapping from D to the set F0 ⊂ F , which contains exactly one
element of each equivalence class.

On the other hand, to any element in F there corresponds a unique element in
D which is given by the mapping M defined below.
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DEFINITION 8. Take any element Θ = (y,U, yξ ,Uξ , h̄, h, r) ∈ F . Then, the
measure y#(r(ξ) dξ) is absolutely continuous, and we define (u, ρ, µ, ν) as
follows:

u(x) = U (ξ) for any ξ such that x = y(ξ), (191a)
µ = y#(h̄(ξ) dξ), (191b)
ν = y#(h(ξ) dξ), (191c)

ρ(x) dx = y#(r(ξ) dξ). (191d)

We have that (u, ρ, µ, ν) belongs to D. We denote by M : F → D the mapping
which to any Θ in F associates the element (u, ρ, µ, ν) ∈ D as given by (191).
In particular, the mapping M is invariant under relabeling.

Finally, we identify the connection between the equivalence classes in
Lagrangian coordinates and the set of Eulerian coordinates. The proof is similar
to the one found in [27], and we do not reproduce it here.

THEOREM 25. The mappings M and L are invertible. We have

L ◦ M = IdF/G and M ◦ L = IdD .

4. Semigroup of solutions

In the previous section, we defined the connection between Eulerian and
Lagrangian coordinates, which is the main tool when defining weak solutions of
the 2CH system. The aim of this section is to show that we obtained a semigroup
of solutions. Accordingly, we define Tt as

Tt = M ◦ St ◦ L . (192)

DEFINITION 9. Assume that u : [0,∞) × R → R and ρ : [0,∞) × R → R
satisfy the following.
(i) u ∈ L∞([0,∞), H 1(R)), and ρ ∈ L∞([0,∞), L2(R)),
(ii) the equations∫∫

[0,∞)×R
[−u(t, x)φt(t, x)+ (u(t, x)ux(t, x)+ Px(t, x))φ(t, x)] dx dt

=

∫
R

u(0, x)φ(0, x) dx, (193)∫∫
[0,∞)×R

[
(P(t, x)− u2(t, x)−

1
2

u2
x(t, x)−

1
2
ρ2(t, x))φ(t, x)
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+ Px(t, x)φx(t, x)
]

dx dt = 0, (194)

and ∫∫
[0,∞)×R

[−ρ(t, x)φt(t, x)− u(t, x)ρ(t, x)φx(t, x)] dx dt

=

∫
R
ρ(0, x)φ(0, x) dx, (195)

hold for all φ ∈ C∞0 ([0,∞)×R). Then we say that (u, ρ) is a weak global solution
of the two-component Camassa–Holm system.

THEOREM 26. The mapping Tt is a semigroup of solutions of the 2CH system.
Given some initial data (u0, ρ0, µ0, ν0) ∈ D, let (u(t, ·), ρ(t, ·), µ(t, ·), ν(t, ·)) =
Tt(u0, ρ0, µ0, ν0). Then (u, ρ) is a weak solution to (14), and (u, ρ, µ) is a weak
solution to

(u2
+ µ)t + (u(u2

+ µ))x 6 (u3
− 2Pu)x . (196)

The function

F(t) =
∫
R

d(ν(t, x)− µ(t, x))−
∫
R

d(ν(0, x)− µ(0, x)), (197)

which is an increasing semicontinuous function, equals the amount of energy that
has vanished from the solution up to time t.

Proof. This proof follows essentially the same lines as the one in [18] and of
the proof of (196), which we present here. Let φ ∈ C∞0 ((0,∞) × R) such that
φ(t, x) > 0. Since U (t, ξ) is continuous with respect to time, we have∫∫

R+×R
u2φt(t, x) dx dt

= −

∫∫
R+×R

(U 2(t, ξ)Uξ (t, ξ)− 2U (t, ξ)Q(t, ξ)yξ (t, ξ))φ(t, y(t, ξ)) dξ dt

−

∫∫
R+×R

U 3(t, ξ)φξ (t, y(t, ξ)) dξ dt. (198)

The measure µ in Eulerian coordinates corresponds to the function h̄(t, ξ),
which is discontinuous with respect to time, in Lagrangian coordinates. Thus
it is important for the following calculations to keep in mind that h̄(t, ξ) can
be rewritten as h(t, ξ) = h̄(t, ξ) +

∑
∞

j=0 χ{τ j (ξ)6t}(ξ)l j(ξ), where h(t, ξ) is
continuous with respect to time and corresponds to the measure ν in Eulerian
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coordinates, by Definition 8 and τ0(ξ) = 0. Thus

∫∫
R+×R

φt(t, x) dµ(t, x) dt

=

∫∫
R+×R

φt(t, y(t, ξ))h̄(t, ξ) dξ dt

=

∫∫
R+×R
[(φ(t, y(t, ξ)))t − φx(t, y(t, ξ))yt(t, ξ)]h̄(t, ξ) dξ dt

=

∫∫
R+×R

(φ(t, y(t, ξ)))t h̄(t, ξ) dt dξ

−

∫∫
R+×R

U (t, ξ)h̄(t, ξ)φx(t, y(t, ξ)) dξ dt

=

∫∫
R+×R

(φ(t, y(t, ξ)))t h(t, ξ) dt dξ

−

∫∫
R+×R

(φ(t, y(t, ξ)))t
∞∑
j=0

χ{τ j (ξ)6t}(ξ)l j(ξ) dt dξ

−

∫∫
R+×R

U (t, ξ)h̄(t, ξ)φx(t, y(t, ξ)) dξ dt

= −

∫∫
R+×R

2(U 2(t, ξ)− P(t, ξ))Uξ (t, ξ)φ(t, y(t, ξ)) dξ dt

−

∫∫
R+×R

U (t, ξ)h̄(t, ξ)φx(t, y(t, ξ)) dξ dt

+

∫
R

∞∑
j=1

φ(τ j(ξ), y(τ j(ξ), ξ))l j(ξ) dξ. (199)

Note that the integral in the seventh line is well defined since, by construction, 0 6∑
∞

j=0 χ{τ j (ξ)6t}(ξ)l j(ξ) 6 h(t, ξ), and therefore the integrand belongs to L1(R)
for each fixed t . In addition, φ ∈ C∞0 ((0,∞)×R), and hence this integral exists.
Similar conclusions hold for the integral with respect to ξ in the last line.

Observe that we have∫∫
R+×R

(2PUξ + 2U Qyξ − 3U 2Uξ )(t, ξ)φ(t, y(t, ξ)) dξ dt

= −

∫∫
R+×R

(2PU −U 3)(t, ξ)φξ (t, y(t, ξ)) dξ dt. (200)
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Gathering (198), (199), and applying (200) yields∫∫
R+×R

u2φt(t, x) dx dt +
∫∫

R+×R
φt(t, x) dµ(t, x) dt

= −

∫∫
R+×R

2P(t, x)u(t, x)φx(t, x) dt dx

−

∫∫
R+×R

u(t, x)φx(t, x)dµ(t, x) dt

+

∫
R

∞∑
j=0

φ(τ j(ξ), y(τ j(ξ), ξ))l j(ξ) dξ.

The integral in the last line is finite and positive, and hence we have proved (196).

We have now shown that this new solution concept yields global weak solutions
of the 2CH system. However, there is one more question which is of great interest.
Recall that (u, ρ) satisfies the same equation, namely (14), independently of the
value α, yet we have carefully constructed a solution for a given α. One can turn
this around and ask: given a solution (u, ρ), can we determine α? The answer is
contained in the following theorem.

THEOREM 27. Let (u, ρ, µ, ν) be a weak solution of the 2CH system. The limits
from the future and the past of the measure µ exist for all times, and we denote
them as follows:

µ−(t) = lim
t ′↑t
µ(t ′) and µ+(t) = lim

t ′↓t
µ(t ′).

We have that the measure µ is continuous backward in time; that is,

µ+ = µ

for all t . In the other direction, going forward in time, we have that

µ = µ−ac + (1− α)µ
−

s , (201)

for all t; that is,
µac = µ

−

ac and µs = (1− α)µ−s .

Moreover, we have that, for almost every time t,

µ+(t) = µ−(t) = µ(t) = µac(t). (202)
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Proof. We prove the theorem first for α < 1. Given t ∈ R+, we define

˜̄h(t, ξ) =


1

1− α
h̄(t, ξ) if yξ (t, ξ) = 0,

h̄(t, ξ) otherwise.
(203)

We claim that, for almost every ξ ,

h̄(t − 0, ξ) = lim
t ′↑t

h̄(t ′, ξ) = ˜̄h(t, ξ) and lim
t ′↓t

h̄(t ′, ξ) = h̄(t, ξ). (204)

Indeed, if yξ (t, ξ) > 0, then τn(ξ) < t < τn+1(ξ), and h̄(t ′, ξ) is differentiable in
t ′. It is therefore continuous, and we have

lim
t ′↑t

h̄(t ′, ξ) = lim
t ′↓t

h̄(t ′, ξ) = h̄(t, ξ).

If yξ (t, ξ) = 0, there exists n such that t = τn(ξ). In [τn−1(ξ), τn(ξ)), the
function t ′ 7→ h̄(t ′, ξ) satisfies the ordinary differential equation (32f ). Hence,
limt ′↑t h̄(t ′, ξ) exists, and, by the jump conditions (32h), (32i), we have ˜̄h(t − 0,
ξ) = limt ′↑t h̄(t ′, ξ) = (1/(1− α))h̄(τn(ξ), ξ). For t ′ ∈ [τn(ξ), τn+1(ξ)), h̄(t ′, ξ)
also satisfies (32f ), and we then directly have limt ′↓t h̄(t ′, ξ) = h̄(τn(ξ), ξ). This
concludes the proof of (204). Let us now define the measure µ− as

µ−(t) = y#(h̄(t − 0) dξ). (205)

We claim that

lim
t ′↑t
µ(t ′) = µ−(t) and lim

t ′↓t
µ(t ′) = µ(t). (206)

Here, we use the weak star topology for the measure. For any continuous function
φ ∈ C(R) with compact support, we have∫

R
φ(x) dµ(t ′, x) =

∫
R
φ(y(t ′, ξ)) h̄(t ′, ξ) dξ. (207)

For almost every given ξ , we have that limt ′→t y(t ′, ξ) = y(t, ξ), and, from (204),
we have limt ′↑t h̄(t ′, ξ) = ˜̄h(t, ξ). Hence, the integrand in (207) tends to φ(y(t,

ξ)) ˜̄h(t, ξ) when t ′ converges to t from below. Moreover, since ‖y(t, ·) − Id ‖L∞

is bounded and φ has compact support, we can restrict the integration domain in
(207) to a bounded domain. Then, the first proposition in (206) follows from the
Lebesgue dominated convergence theorem applied to (207) by letting t ′ tend to t .
The second proposition is proved in a similar way. Let us define

B = {ξ ∈ R | yξ (t, ξ) > 0} (208)
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and A = y(t, B). Let us prove that

µ−ac(t) = µ
−
|A(t) and µ−s (t) = µ

−
|Ac(t). (209)

Here, µ|A(t) denotes the restriction of µ(t) to A; that is, µ|A(t, E) = µ(t, E ∩
A) for any Borel set E . We have meas(Ac) = 0. Indeed, since y is surjective,
Ac
⊂ y(t, Bc) and meas(y(t, Bc)) =

∫
Bc yξ (t, ξ) dξ = 0, from the definition of

B. Let us prove that µ−|A(t) is absolutely continuous. We consider a set E of zero
measure. We have

µ−|A(t, E) =
∫

y−1(t,A∩E)
h̄(t, ξ) dξ.

We define KM = {ξ ∈ R | (h̄(t, ξ))/(yξ (t, ξ)) 6 M}. Let us prove that yξ (t,
ξ) > 0 for almost every ξ ∈ y−1(t, A). Assume the opposite. Then, since y is
surjective, there exist ξ̄ ∈ Bc and ξ ∈ B such that y(t, ξ) = y(t, ξ̄ ). Since y is
increasing, we have yξ (t, ξ) = yξ (t, ξ̄ ) = 0, which is a contradiction to the fact
that ξ ∈ B. Thus, the indicator function of the set KM , which we denote χKM ,
converges to one, almost everywhere in y−1(t, A ∩ E), as M tends to infinity. We
have∫

y−1(t,A∩E)
χKM (ξ)h̄(t, ξ) dξ 6 M

∫
y−1(t,A∩E)

yξ (t, ξ) dξ = M meas(A ∩ E) = 0,

and, by the monotone convergence theorem, it follows that
∫

y−1(t,A∩E) h̄(t, ξ) dξ =
0. Let us now prove (201). We have, for any Borel set E ,

µ(t, E) =
∫

y−1(t,E)
h̄(t, ξ) dξ

=

∫
y−1(t,E)∩B

h̄(t, ξ) dξ +
∫

y−1(t,E)∩Bc
h̄(t, ξ) dξ

=

∫
y−1(t,E∩A)

˜̄h(t, ξ) dξ +
∫

y−1(t,E∩Ac)

(1− α) ˜̄h(t, ξ) dξ, (210)

by Definition (203) of h̄(t − 0) and the fact that y−1(t, A) = B. Then,

µ(t, E) =
∫

y−1(t,E∩A)

˜̄h(t, ξ) dξ + (1− α)
∫

y−1(t,E∩Ac)

˜̄h(t, ξ) dξ

= µ−ac(t, E)+ (1− α)µ−s (t, E),

by (209) and (205). This concludes the proof of the theorem for α < 1. In the case
where α = 1, Definition (203) cannot be used. However, the limit limt ′↑t h̄(t ′, ξ)
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still exists, and we denote it by ˜̄h(t, ξ). The rest of the proof is the same up to
(210), which is replaced by

µ(t, E) =
∫

y−1(t,E)
h̄(t, ξ) dξ

=

∫
y−1(t,E)∩B

h̄(t, ξ) dξ +
∫

y−1(t,E)∩Bc
h̄(t, ξ) dξ

=

∫
y−1(t,E∩A)

˜̄h(t, ξ) dξ, (211)

because, in the fully dissipative case α = 1, we have h̄(t, ξ) = 0 when yξ (t,
ξ) = 0. Then, we obtain that µ(t, E) = µ−ac(t, E). We turn to the proof of (202).
Let us introduce the set

A = {t ∈ R+ | for almost every ξ , either yξ (t, ξ) > 0 or
(yξ (t, ξ) = 0 and h̄(t − 0, ξ) = 0)}.

For t ∈ A, using (209), we get

µ−s (t)(R) =
∫

y−1(y(t,B)c)
h̄(t − 0, ξ) dξ

=

∫
y−1(y(t,B)c)∩B

h̄(t − 0, ξ) dξ

6
∫

Bc∩B
h̄(t − 0, ξ) dξ = 0.

Thus, (202) will be proved once we have proved that A has full measure. For
a given ξ ∈ R, we know from Corollary 19 that the collision times do not
accumulate. For α < 1, this means that yξ (t, ξ) = 0 only at isolated times t .
For α = 1, assuming that a collision occurs at the point ξ , we have yξ (t, ξ) > 0
for t < τ1(ξ), yξ (t, ξ) = 0 for t > τ1(ξ), but h̄(t, ξ) = 0 for all t > τ1(ξ). Hence,
in both cases, we have

meas({t ∈ R+ | yξ (t, ξ) = 0 and h̄(t − 0, ξ) > 0}) = 0.

Using Fubini’s theorem, we get∫
R+

meas({ξ ∈ R | yξ (t, ξ) = 0 and h̄(t − 0, ξ) > 0}) dt

=

∫
R

meas({t ∈ R+ | yξ (t, ξ) = 0 and h̄(t − 0, ξ) > 0}) dξ = 0,

so meas({ξ ∈ R | yξ (t, ξ) = 0 and h̄(t − 0, ξ) > 0}) = 0 for almost every time.
It follows that A has full measure, which concludes the proof of (202).
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Figure 1. The peakon–antipeakon solution at times 0 and t0 for three different
values of α. (The curves coincide.)
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Figure 2. The peakon–antipeakon solution at times 0 and t > t0 for three different
values of α.

5. The peakon–antipeakon example

The best-known explicit solution, and a key example for the dichotomy
between conservative and dissipative solutions, as well as a source for intuition
in the general case, is the peakon–antipeakon solution. See Figures 1 and 2.
Here, we present a detailed analysis applied to this example. See, for example,
[3, 26, 28, 36].

Consider the initial data

u(0, x) =

{
sgn(x)A(0)e−|x | for |x | > γ (0),
B(0) sinh x for |x | 6 γ (0),

(212)
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where we have introduced

A(t) =
E
2

sinh
(

E
2
(t − t0)

)
, B(t) = E sinh−1

(
E
2
(t − t0)

)
,

γ (t) = ln cosh
(

E
2
(t − t0)

)
,

(213)

where, sinh−1 denotes the multiplicative inverse of sinh. Similar conventions
apply to cosh−1 and tanh−1. Here, t0 > 0 is a given time where the wave breaking
will occur. For t < t0, the function

u(t, x) =

{
sgn(x)A(t)e−|x | for |x | > γ (t),
B(t) sinh x for |x | 6 γ (t),

(214)

will be the peakon–antipeakon solution of the Camassa–Holm equation (1) with
κ = 0 and ρ identically zero; see [26, Theorem 4.1, Example 4.2(ii)]. Define the
two Radon measures by

µ(t) = ν(t) = u2
x(t, x) dx, ux(t, x) =

{
−A(t)e−|x | for |x | > γ (t),
B(t) cosh x for |x | 6 γ (t).

(215)

Observe that ∫
R
(u2(t, x)+ u2

x(t, x)) dx = E2 for all t < t0. (216)

At t = t0, we see that A(t0) = γ (t0) = 0, and thus u(t0, x) = ux(t0, x) = 0
almost everywhere, while µ(t), ν(t) → E2δ0 as t ↑ t0. Indeed, let M ⊂ R be a
measurable set. Then

µ(t)(M) =
∫

M
u2

x(t, x) dx →
t↑t0

{
E2 for 0 ∈ M,
0 for 0 6∈ M,

(217)

since γ (t)→ 0 and ux(t, x)→ 0 (x 6= 0) as t ↑ t0, and∫ γ (t)

−γ (t)
u2

x(t, x) dx = B2(t)
∫ γ (t)

−γ (t)
cosh2(x) dx

= B2(t)
(
γ (t)+

1
2

sinh(2γ (t))
)
→
t↑t0

E2. (218)

Next, we turn to the Lagrangian variables, which are solutions of the following
system of ordinary differential equations (see (32)) for t < t0,

yt = U, (219a)
Ut = −Q, (219b)
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yt,ξ = Uξ , (219c)
Ut,ξ =

1
2 h + (U 2

− P)yξ , (219d)
ht = 2(U 2

− P)Uξ , (219e)
h̄t = ht , (219f )

where P and Q are given by (33) and (34), respectively. However, this system is
difficult to solve directly, even in the case of a peakon–antipeakon solution. The
initial data have to be judiciously chosen, and we will return to this shortly. Instead
of solving (219) directly, we will determine the solution by using the connection
between Eulerian and Lagrangian variables directly. The key relations are

yt = u ◦ y, U = u ◦ y, h = u2
x ◦ yyξ . (220)

We have to determine the characteristics initially (here denoted by ȳ0), given by
(176a); that is, ȳ0(ξ) = sup{y | ν((−∞, y)) + y < ξ} (we write ȳ0 rather than
y0, as we will modify it shortly). In this case, where the measure ν is absolutely
continuous, we find that the characteristics are given by∫ ȳ0(ξ)

−∞

u2
x(0, x) dx + ȳ0(ξ) = ξ, (221)

which appears to be difficult to solve, even in this case. Fortunately, its derivative
is straightforward:

ȳ′0(ξ) =
1

1+ u2
x(0, ȳ0(ξ))

=

{
(1+ A2(0)e− sgn(ξ)2ȳ0(ξ))−1 for ξ 6∈ [ξ−, ξ+],
(1+ B2(0) cosh2(ȳ0(ξ)))

−1 for ξ ∈ [ξ−, ξ+],
(222)

where we introduced ξ±, the solution of ȳ0(ξ±) = ±γ (0). For reasons that
will become clear later, we will benefit from having characteristics that satisfy
y0(±γ (0)) = ±γ (0), which is not automatically satisfied by (221). We use the
freedom given to us by relabeling to modify ȳ0. To that end, define

f (z) =
∫ z

−∞

u2
x(0, x) dx + z. (223)

Then f is a relabeling function in the sense of Definition 5. Observe that, with
this definition, ξ± = f (±γ (0)) and f ′(z) = u2

x(0, z)+ 1. Introduce

y0(z) = ȳ0( f (z)), (224)
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which implies that

y0(±γ (0)) = ȳ0( f (±γ (0))) = ȳ0(ξ±) = ±γ (0). (225)

Hence
y′0(ξ) = ȳ′0 ◦ f (ξ) f ′(ξ) = 1. (226)

Thus the relabeled initial characteristics are simply y0(ξ) = ξ . Clearly, we could
have chosen this function immediately, and the above argument shows that one
can always use the identity as the initial characteristics when the initial data
contains no singular part. However, the above argument illustrates the possible
use of relabeling.

The Lagrangian variables are then given, using (220) for t < t0, by

y(t, ξ) =


ξ + sgn(ξ) ln

(
1+

(
cosh

(
E
2
(t − t0)

)
− cosh

(
E
2

t0

))
e−|ξ |

)
for |ξ | > γ (0),

2 artanh
(

tanh
(
ξ

2

)
tanh2(E/4(t − t0))

tanh2(−(E/4)t0)

)
for |ξ | 6 γ (0),

U (t, ξ) =



sgn(ξ)A(t)e−|ξ |

×

(
1+

(
cosh

(
E
2
(t − t0)

)
− cosh

(
E
2

t0

))
e−|ξ |

)−1

for |ξ | > γ (0),

2B(t) tanh
(
ξ

2

)
tanh2(E/4(t − t0))

tanh2(−E/4t0)

×

(
1− tanh2

(
ξ

2

)
tanh4(E/4(t − t0))

tanh4(−E/4t0)

)−1

for |ξ | 6 γ (0),

h(t, ξ) =



A(t)2e−2|ξ |

×

(
1+

(
cosh

(
E
2
(t − t0)

)
− cosh

(
E
2

t0

))
e−|ξ |

)−3

for |ξ | > γ (0),

B(t)2
(

1+ tanh2
(
ξ

2

)
tanh4(E/4(t − t0))

tanh4(−(E/4)t0)

)2

×

(
1− tanh2

(
ξ

2

)
tanh4(E/4(t − t0))

tanh4(−(E/4)t0)

)−3

× cosh−2
(
ξ

2

)
tanh2(E/4(t − t0))

tanh2(−(E/4)t0)
for |ξ | 6 γ (0),
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h̄(t, ξ) = h(t, ξ),

P(t, ξ) =
1
4

∫
R

e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h)(t, η) dη,

Q(t, ξ) = −
1
4

∫
R

sgn (ξ − η)e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h)(t, η) dη. (227)

With the choice of initial characteristics, we obtain

y(t,±γ (0)) = ±γ (t), (228)

and hence at the peaks

U (t,±γ (0)) = u(t,±γ (t)) = ±
E
2

tanh
(

E
2
(t − t0)

)
. (229)

As expected,

τ(ξ) =

{
∞ for |ξ | > γ (0),
t0 for |ξ | < γ (0).

(230)

The important quantity is the first time there is wave breaking. By construction,

t0 = inf
ξ
τ(ξ). (231)

Next, we consider the limits of these variables as t ↑ t0:

lim
t↑t0

y(t, ξ) =

ξ + sgn(ξ) ln
(

1+
(

1− cosh
(

E
2

)
t0

)
e−|ξ |

)
for |ξ | > γ (0),

0 for |ξ | < γ (0),
lim
t↑t0

U (t, ξ) = 0,

lim
t↑t0

h(t, ξ) =

0 for |ξ | > γ (0),
E2

4
cosh−2

(
ξ

2

)
tanh−2

(
−

E
4

t0

)
for |ξ | 6 γ (0),

lim
t↑t0

P(t, ξ) =


E2

4

(
1+

(
1− cosh

(
E
2

t0

))
e−|ξ |

)−1

e−|ξ | for |ξ | > γ (0),

E2

4
for |ξ | 6 γ (0),
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lim
t↑t0

Q(t, ξ) = −



sgn(ξ)
E2

4

(
1+

(
1− cosh

(
E
2

t0

))
e−|ξ |

)−1

e−|ξ |

for |ξ | > γ (0),
E2

4
tanh−2

(
−

E
4

t0

)
tanh

(
ξ

2

)
for |ξ | 6 γ (0). (232)

At t = t0, we introduce the parameter α ∈ [0, 1], and define

h̄(t0, ξ) = (1− α) lim
t↑t0

h(t, ξ), h(t0, ξ) = lim
t↑t0

h(t, ξ). (233)

This implies that, in Eulerian variables,

u(t0, x) = 0, µ(t0) = (1− α)E2δ0, and ν(t0) = E2δ0, (234)

using Definitions (191b) and (191c), namely, µ = y#(h̄(ξ) dξ) and ν =

y#(h(ξ) dξ).
We will show that for t > t0 the solution coincides with the peakon–antipeakon

solution with the energy E replaced by

Ẽ =
√

1− α E . (235)

For t > t0, the Lagrangian system reads (see (32))

yt = U, (236a)
Ut = −Q, (236b)
yt,ξ = Uξ , (236c)

Ut,ξ =
1
2 h̄ + (U 2

− P)yξ , (236d)
ht = 2(U 2

− P)Uξ , (236e)
h̄t = ht , (236f )

where P and Q are given by (33) and (34), respectively.
In the fully dissipative case with α = 1, we get h̄(t0) = 0, but also (U 2

−

P)(t0) = Uξ (t0) = Q(t0) = 0, and hence we have, for t > t0,

y(t, ξ) = y(t0, ξ),

U (t, ξ) = 0,
h(t, ξ) = h(t0, ξ),

h̄(t, ξ) = 0.

(237)
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This implies that, in Eulerian variables,

u(t, x) = 0, µ(t) = 0, ν(t) = E2δ0, t > t0. (238)

In the general case α ∈ [0, 1), it is difficult, as it was for t < t0, to solve system
(236) explicitly. However, we proceed as follows. Given (234), we use (176a),
denoting the characteristics by ỹ(t0), to determine the new initial characteristics.
We find that

ỹ(t0, ξ) =


ξ for ξ 6 0,
0 for 0 6 ξ < Ẽ2,

ξ − Ẽ2 for ξ > Ẽ2.

(239)

Note that this function is related by relabeling to the characteristics we already
have at t = t0, given by (232), namely

y(t0, ξ) =

ξ + sgn(ξ) ln
(

1+
(

1− cosh
(

E
2

t0

))
e−|ξ |

)
for |ξ | > γ (0),

0 for |ξ | < γ (0).
(240)

To that end, define

g(ξ) = y(t0, ξ)+ H̄(t0, ξ) = y(t0, ξ)+

∫ ξ

−∞

h̄(t0, η) dη

=



ξ − ln
(

1+
(

1− cosh
(

E
2

t0

))
eξ
)

for ξ 6 −γ (0),

Ẽ2

2

(
tanh−2

(
−

E
4

t0

)
tanh

(
ξ

2

)
+ 1

)
for −γ (0) 6 ξ < γ (0),

ξ + Ẽ2
+ ln

(
1+

(
1− cosh

(
E
2

t0

))
e−ξ
)

for ξ > γ (0).

(241)
Observe that g is a monotonically increasing relabeling function that satisfies

lim
ξ→−γ (0)

g(ξ) = 0, lim
ξ→γ (0)

g(ξ) = Ẽ2, (242)

and thus
y(t0, ξ) = ỹ(t0, g(ξ)). (243)

We are now given initial data y(t0), as well as U (t0) = 0 and h(t0). We claim that
the solution, in Eulerian variables, is

u(t, x) =

{
sgn(x) Ã(t)e−|x | for |x | > γ̃ (t),
B̃(t) sinh x for |x | 6 γ̃ (t),

t > t0, (244)
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Figure 3. The characteristics y(t,±γ (0)) describing the location of the peaks of
the peakon–antipeakon solution for three different values of α.

where

Ã(t) =
Ẽ
2

sinh
(

Ẽ
2
(t − t0)

)
,

B̃(t) = Ẽ sinh−1
(

Ẽ
2
(t − t0)

)
, γ̃ (t) = ln cosh

(
Ẽ
2
(t − t0)

)
. (245)

To determine the characteristics, we solve the equation yt = u ◦ y. We provide
some details. Consider first the case ξ 6 −γ (0). Integrating, we find that

e−y(t,ξ)
− e−y(t0,ξ) = cosh

(
Ẽ
2
(t − t0)

)
− 1. (246)

Inserting the expression (240), we find that

y(t, ξ) = ξ − ln
(

1+
(

cosh
(

Ẽ
2
(t − t0)

)
− cosh

(
E
2

t0

))
eξ
)
. (247)

A similar calculation determines the case ξ > γ (0). Assume now that −γ (0) 6
ξ 6 γ (0). Integrating the equation, we find, for any small positive ε, that

ln tanh
(

1
2

y(t, ξ)
)
− ln tanh

(
1
2

y(t0 + ε, ξ)

)
= 2

(
ln tanh

(
Ẽ
4
(t − t0)

)
− ln tanh

(
Ẽ
4
ε

))
, (248)

which can be rewritten as

y(t, ξ) = 2 artanh
(

tanh
(

1
2

y(t0 + ε, ξ)

)
tanh2(Ẽ/4(t − t0))

tanh2((Ẽ/4)ε)

)
. (249)
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Taking ε ↓ 0, we find that

y(t, ξ) = 2 artanh
(

tanh
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)

)
. (250)

Note that this limit is rather delicate. As it involves repeated use of L’Hôpital’s
rule, one has to invoke equations (236) in order to compute the limit. We can now
determine the remaining Lagrangian quantities:

y(t, ξ) =


ξ + sgn(ξ) ln

(
1+

(
cosh

(
Ẽ
2
(t − t0)

)
− cosh

(
E
2

t0

))
e−|ξ |

)
for |ξ | > γ (0),

2 artanh
(

tanh
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)

)
for |ξ | 6 γ (0),

U (t, ξ) =



sgn(ξ) Ã(t)e−|ξ |
(

1+
(

cosh
(

Ẽ
2
(t − t0)

)
−cosh

(
E
2

t0

))
e−|ξ |

)−1

for |ξ | > γ (0),

2B̃(t) tanh
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)

×

(
1− tanh2

(
ξ

2

)
tanh4(Ẽ/4(t − t0))

tanh4(−(E/4)t0)

)−1

for |ξ | 6 γ (0),

h̄(t, ξ) =



Ã(t)2e−2|ξ |

(
1+

(
cosh

(
Ẽ
2
(t − t0)

)
− cosh

(
E
2

t0

))
e−|ξ |

)−3

for |ξ | > γ (0),

B̃(t)2
(

1+ tanh2
(
ξ

2

)
tanh4(Ẽ/4(t − t0))

tanh4(−(E/4)t0)

)2

×

(
1− tanh2

(
ξ

2

)
tanh4(Ẽ/4(t − t0))

tanh4(−(E/4)t0)

)−3

× cosh−2
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)

for |ξ | 6 γ (0),

h(t, ξ) =

h̄(t, ξ) for |ξ | > γ (0),

h̄(t, ξ)+ α
E2

4
cosh−2

(
ξ

2

)
tanh−2

(
−

E
4

t0

)
for |ξ | < γ (0),
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P(t, ξ) =
1
4

∫
R

e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h̄)(t, η) dη,

Q(t, ξ) = −
1
4

∫
R

sgn (ξ − η)e−|y(t,ξ)−y(t,η)|(2U 2 yξ + h̄)(t, η) dη. (251)

To complete the calculation of the Eulerian variables, we use Definitions (191b)
and (191c) to determine the measures. First, we find that

µ(t) = u2
x(t, x) dx, t > t0. (252)

To determine ν(t), we write h = h̄ + l1 (see (31)) with h̄ = u2
x ◦ yyξ . We want to

determine a function l such that l1 = l ◦ yyξ , which implies that ν = (h̄ + l) dx .
From (251), we see that l1(t, ξ) = 0 for |ξ | > γ (0). For |ξ | < γ (0), we first
observe from (251) that

yξ (t, ξ) =
(

1−
(

tanh
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)

)2)−1

× cosh−2
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)

=

(
1− tanh2

(
y(t, ξ)

2

))−1

cosh−2
(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)
,

using

tanh
(

y(t, ξ)
2

)
= tanh

(
ξ

2

)
tanh2(Ẽ/4(t − t0))

tanh2(−(E/4)t0)
.

Thus, for |ξ | < γ (0),

l(t, y(t, ξ)) =
l1(t, ξ)
yξ (t, ξ)

= α
E2

4
(1− tanh2(y(t, ξ)/2)) cosh2(ξ/2) tanh2(−(E/4)t0)

cosh2(ξ/2) tanh2(−(E/4)t0) tanh2(Ẽ/4(t − t0))

= α
E2

4

(
1− tanh2

(
y(t, ξ)

2

))
tanh−2(Ẽ/4(t − t0)),

and thus we infer that

l(t, x) =


0 for |x | > γ̃ (t),

α
E2

4

(
1− tanh2

(
x
2

))
tanh−2(

Ẽ
4
(t − t0)) for |x | 6 γ̃ (t).
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Finally, we get the following expression:

ν(t) =


u2

x(t, x) dx for |x | > γ̃ (t),(
u2

x(t, x)+ α
E2

4
tanh−2(

Ẽ
4
(t − t0))

(
1− tanh2

(
x
2

)))
dx

for |x | 6 γ̃ (t),

(253)

for t > t0.
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