Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T02:27:23.337Z Has data issue: false hasContentIssue false

Chapter 5 - Primaryprogressive aphasia

from Section 2 - Clinical phenotypes

Published online by Cambridge University Press:  05 May 2016

Bradford C. Dickerson
Affiliation:
Department of Neurology, Massachusetts General Hospital
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rogalski, E, Johnson, N, Weintraub, S, Mesulam, M. Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol 2008;65(2):244–8.CrossRefGoogle ScholarPubMed
Miller, ZA, Mandelli, ML, Rankin, KP, Henry, ML, Babiak, MC, Frazier, DT, et al. Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain 2013;136(Pt 11):3461–73.CrossRefGoogle ScholarPubMed
Luzzatti, C, Poeck, K. An early description of slowly progressive aphasia. Arch Neurol 1991;48(2):228–9.Google Scholar
Mesulam, MM. Slowly progressive aphasia without generalized dementia. Ann Neurol 1982;11:592–8.CrossRefGoogle ScholarPubMed
Mesulam, MM. Primary progressive aphasia and the language network: the 2013 H. Houston Merritt Lecture. Neurology 2013;81(5):456–62.Google Scholar
Mesulam, MM. Primary progressive aphasia. Ann Neurol 2001;49(4):425–32.Google Scholar
Mesulam, MM, Wieneke, C, Thompson, C, Rogalski, E, Weintraub, S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain 2012;135(Pt 5):1537–53.Google Scholar
Rabinovici, GD, Miller, BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010;24(5):375–98.Google Scholar
Harris, JM, Gall, C, Thompson, JC, Richardson, AM, Neary, D, du Plessis, D, et al. Classification and pathology of primary progressive aphasia. Neurology 2013;81(21):1832–9.Google Scholar
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, Kertesz, A, Mendez, M, Cappa, SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):1006–14.Google Scholar
Gorno-Tempini, ML, Dronkers, NF, Rankin, KP, Ogar, JM, Phengrasamy, L, Rosen, HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335–46.Google Scholar
Cappa, SF, Gorno-Tempini, ML. Clinical phenotypes of progressive aphasia. Fut Neurol 2009;4:153–60.Google Scholar
Kertesz, A. Western Aphasia Battery New York: Grune and Stratton; 1982.Google Scholar
Wilson, SM, Henry, ML, Besbris, M, Ogar, JM, Dronkers, NF, Jarrold, W, et al. Connected speech production in three variants of primary progressive aphasia. Brain 2010;133(Pt 7):2069–88.Google Scholar
Weintraub, S, Mesulam, MM, Wieneke, C, Rademaker, A, Rogalski, EJ, Thompson, CK. The northwestern anagram test: measuring sentence production in primary progressive aphasia. Am J Alzheimers Dis Other Demen 2009;24(5):408–16.Google Scholar
Hodges, JR, Graham, N, Patterson, K. Charting the progression in semantic dementia: implications for the organisation of semantic memory. Memory 1995;3(3–4):463–95.Google Scholar
Catricala, E, Della Rosa, PA, Ginex, V, Mussetti, Z, Plebani, V, Cappa, SF. An Italian battery for the assessment of semantic memory disorders. Neurol Sci 2013;34(6):985–93.Google Scholar
Wilson, SM, Galantucci, S, Tartaglia, MC, Gorno-Tempini, ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang 2012;122(3):190–8.Google Scholar
Wilson, SM, Brambati, SM, Henry, RG, Handwerker, DA, Agosta, F, Miller, BL, et al. The neural basis of surface dyslexia in semantic dementia. Brain 2009;132(Pt 1):7186.CrossRefGoogle ScholarPubMed
Rozzini, L, Bianchetti, A, Lussignoli, G, Cappa, SF, Trabucchi, M. Surface dyslexia in an Italian patient with semantic dementia. Neurocase 1997;3:307–12.Google Scholar
Sapolsky, D, Bakkour, A, Negreira, A, Nalipinski, P, Weintraub, S, Mesulam, MM, et al. Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology 2010;75(4):358–66.Google Scholar
Goodglass, H, Kaplan, E. Assessment of Aphasia and Related Disorders Philadelphia: Lea & Febiger; 1983.Google Scholar
Hodges, JR, Patterson, K. Nonfluent progressive aphasia and semantic dementia: a comparative neuropsychological study. J Int Neuropsychol Soc 1996;2(6):511–24.Google Scholar
Ogar, J, Slama, H, Dronkers, N, Amici, S, Gorno-Tempini, ML. Apraxia of speech: an overview. Neurocase 2005;11(6):427–32.Google Scholar
Rohrer, JD, Rossor, MN, Warren, JD. Apraxia in progressive nonfluent aphasia. J Neurol 2010;257(4):569–74.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, Machulda, MM, Senjem, ML, Lowe, VJ, et al. Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology 2013;81(4):337–45.CrossRefGoogle ScholarPubMed
Hillis, AE, Oh, S, Ken, L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann Neurol 2004;55(2):268–75.Google Scholar
Cotelli, M, Borroni, B, Manenti, R, Alberici, A, Calabria, M, Agosti, C, et al. Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology 2006;20(5):558–65.CrossRefGoogle ScholarPubMed
Ash, S, Moore, P, Antani, S, McCawley, G, Work, M, Grossman, M. Trying to tell a tale: discourse impairments in progressive aphasia and frontotem-poral dementia. Neurology 2006;66(9):1405–13.Google Scholar
Ash, S, Evans, E, O'Shea, J, Powers, J, Boller, A, Weinberg, D, et al. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology 2013;81(4):329–36.Google Scholar
Grossman, M, Mickanin, J, Onishi, K, Hughes, E, D'Esposito, M, Ding, XS, et al. Progressive nonfluent aphasia: language, cognitive, and PET measures contrasted with probable Alzheimer's disease. J Cogn Neurosci 1996;8(2):135–54.CrossRefGoogle ScholarPubMed
Charles, D, Olm, C, Powers, J, Ash, S, Irwin, DJ, McMillan, CT, et al. Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. J Neurol Neurosurg Psychiatry 2014;85(3):249–56.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, Machulda, MM, Senjem, ML, Master, AV, et al. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 2012;135(Pt 5):1522–36.Google Scholar
Josephs, KA, Duffy, JR, Strand, EA, Whitwell, JL, Layton, KF, Parisi, JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(Pt 6):1385–98.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR. Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol 2008;21(6):688–92.Google Scholar
Gorno-Tempini, ML, Murray, RC, Rankin, KP, Weiner, MW, Miller, BL. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase 2004;10(6):426–36.Google Scholar
Kertesz, A, Martinez-Lage, P, Davidson, W, Munoz, DG. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology 2000;55(9):1368–75.Google Scholar
Rogalski, E, Cobia, D, Harrison, TM, Wieneke, C, Weintraub, S, Mesulam, MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76(21):1804–10.Google Scholar
Nestor, PJ, Graham, NL, Fryer, TD, Williams, GB, Patterson, K, Hodges, JR. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 2003;126(Pt 11):2406–18.Google Scholar
Rohrer, JD, Warren, JD, Modat, M, Ridgway, GR, Douiri, A, Rossor, MN, et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 2009;72(18):1562–9.Google Scholar
Galantucci, S, Tartaglia, MC, Wilson, SM, Henry, ML, Filippi, M, Agosta, F, et al. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain 2011;134(Pt 10):3011–29.Google Scholar
Whitwell, JL, Avula, R, Senjem, ML, Kantarci, K, Weigand, SD, Samikoglu, A, et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 2010;74(16):1279–87.CrossRefGoogle ScholarPubMed
Wilson, SM, Galantucci, S, Tartaglia, MC, Rising, K, Patterson, DK, Henry, ML, et al. Syntactic processing depends on dorsal language tracts. Neuron 2011;72(2):397403.Google Scholar
Cappa, SF, Perani, D, Messa, C, Miozzo, A, Fazio, F. Varieties of progressive non-fluent aphasia. Ann N Y Acad Sci 1996;777:243–8.Google Scholar
Grossman, M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol 2012;11(6):545–55.Google Scholar
Mackenzie, IR, Neumann, M, Baborie, A, Sampathu, DM, Du Plessis, D, Jaros, E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 2011;122(1):111–13.Google Scholar
Mesulam, MM, Wieneke, C, Hurley, R, Rademaker, A, Thompson, CK, Weintraub, S, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain 2013;139(Pt 2):601–18.Google Scholar
Meteyard, L, Patterson, K. The relation between content and structure in language production: an analysis of speech errors in semantic dementia. Brain Lang 2009;110(3):121–34.CrossRefGoogle ScholarPubMed
Gainotti, G. Why are the right and left hemisphere conceptual representations different? Behav Neurol 2014;2014:603134.Google Scholar
Agosta, F, Henry, RG, Migliaccio, R, Neuhaus, J, Miller, BL, Dronkers, NF, et al. Language networks in semantic dementia. Brain 2010;133(Pt 1):286–99.Google Scholar
Mummery, CJ, Patterson, K, Price, CJ, Ashburner, J, Frackowiak, RSJ, Hodges, JR. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic dementia. Ann Neurol 2000;47:3645.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Galton, CJ, Patterson, K, Graham, K, Lambon-Ralph, MA, Williams, G, Antoun, N, et al. Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology 2001;57(2):216–25.Google Scholar
Chan, D, Fox, NC, Scahill, RI, Crum, WR, Whitwell, JL, Leschziner, G, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 2001;49(4):433–42.Google Scholar
Rosen, HJ, Allison, SC, Ogar, JM, Amici, S, Rose, K, Dronkers, N, et al. Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology 2006;67(10):1752–6.Google Scholar
Diehl, J, Grimmer, T, Drzezga, A, Riemenschneider, M, Forstl, H, Kurz, A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 2004;25(8):1051–6.CrossRefGoogle ScholarPubMed
Rosen, HJ, Gorno-Tempini, ML, Goldman, WP, Perry, RJ, Schuff, N, Weiner, M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 2002;58(2):198208.CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Knopman, DS, Boeve, BF, Vemuri, P, Senjem, ML, et al. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 2009;73(18):1443–50.Google Scholar
Hodges, JR, Mitchell, J, Dawson, K, Spillantini, MG, Xuereb, JH, McMonagle, P, et al. Semantic dementia: demography, familial factors and survival in a consecutive series of 100 cases. Brain 2010;133(Pt 1):300–6.CrossRefGoogle Scholar
Gorno-Tempini, ML, Brambati, SM, Ginex, V, Ogar, J, Dronkers, NF, Marcone, A, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology 2008;71(16):1227–34.Google Scholar
Kohn, SE. Conduction Aphasia Hillsdale: Lawrance Erlbaum Associates; 1992.Google Scholar
Josephs, KA, Duffy, JR, Fossett, TR, Strand, EA, Claassen, DO, Whitwell, JL, et al. Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Arch Neurol 2010;67(5):596605.Google Scholar
Rabinovici, GD, Jagust, WJ, Furst, AJ, Ogar, JM, Racine, CA, Mormino, EC, et al. Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 2008;64(4):388401.Google Scholar
Mesulam, M, Wicklund, A, Johnson, N, Rogalski, E, Léger, GC, Rademaker, A, et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 2008;63(6):709–19.Google Scholar
Teichmann, M, Kas, A, Boutet, C, Ferrieux, S, Nogues, M, Samri, D, et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain 2013;136(Pt 11):3474–88.Google Scholar
Sajjadi, SA, Patterson, K, Arnold, RJ, Watson, PC, Nestor, PJ. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology 2012;78(21):1670–7.Google Scholar
Rohrer, JD, Rossor, MN, Warren, JD. Alzheimer's pathology in primary progressive aphasia. Neurobiol Aging 2012;33(4):744–52.Google Scholar
Caffarra, P, Gardini, S, Cappa, S, Dieci, F, Concari, L, Barocco, F, et al. Degenerative jargon aphasia: unusual progression of logopenic/phonological progressive aphasia? Behav Neurol 2013;26(1–2):8993.Google Scholar
Perez, DL, Dickerson, BC, McGinnis, SM, Sapolsky, D, Johnson, K, Searl, M, et al. You don't say: dynamic aphasia, another variant of primary progressive aphasia? J Alzheimers Dis 2013;34(1):139–44.Google Scholar
Cerami, C, Scarpini, E, Cappa, SF, Galimberti, D. Frontotemporal lobar degeneration: current knowledge and future challenges. J Neurol 2012;259(11):2278–86.Google Scholar
Villa, C, Ghezzi, L, Pietroboni, AM, Fenoglio, C, Cortini, F, Serpente, M, et al. A novel MAPT mutation associated with the clinical phenotype of progressive nonfluent aphasia. J Alzheimers Dis 2011;26(1):1926.Google Scholar
Lee, SE, Tartaglia, MC, Yener, G, Genc, S, Seeley, WW, Sanchez-Juan, P, et al. Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. Alzheimer Dis Assoc Disord 2013;27(4):302–9.Google Scholar
Rohrer, JD, Guerreiro, R, Vandrovcova, J, Uphill, J, Reiman, D, Beck, J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009;73(18):1451–6.Google Scholar
Seelaar, H, Rohrer, JD, Pijnenburg, YA, Fox, NC, van Swieten, JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 2011;82(5):476–86.Google Scholar
van der Zee, J, Rademakers, R, Engelborghs, S, Gijselinck, I, Bogaerts, V, Vandenberghe, R, et al. A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain 2006;129(Pt 4):841–52.Google Scholar
Le Ber, I, Camuzat, A, Hannequin, D, Pasquier, F, Guedj, E, Rovelet-Lecrux, A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 2008;131(Pt 3):732–46.Google Scholar
Cerami, C, Marcone, A, Galimberti, D, Villa, C, Fenoglio, C, Scarpini, E, et al. Novel missense progranulin gene mutation associated with the semantic variant of primary progressive aphasia. J Alzheimers Dis 2013;36(3):415–20.Google Scholar
Seelaar, H, Kamphorst, W, Rosso, SM, Azmani, A, Masdjedi, R, de Koning, I, et al. Distinct genetic forms of frontotemporal dementia. Neurology 2008;71(16):1220–6.Google Scholar
Goldman, JS, Farmer, JM, Wood, EM, Johnson, JK, Boxer, A, Neuhaus, J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 2005;65(11):1817–19.Google Scholar
Rohrer, JD, Crutch, SJ, Warrington, EK, Warren, JD. Progranulin-associated primary progressive aphasia: a distinct phenotype? Neuropsychologia 2010;48(1):288–97.Google Scholar
Calvo, A, Moglia, C, Canosa, A, Cistaro, A, Valentini, C, Carrara, G, et al. Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive-compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. J Neurol 2012;259(12):2723–5.Google Scholar
Renton, AE, Majounie, E, Waite, A, Simon-Sanchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS and FTD. Neuron 2011;72(2):257–68.Google Scholar
DeJesus-Hernandez, M, Desaro, P, Johnston, A, Ross, OA, Wszolek, ZK, Ertekin-Taner, N, et al. Novel p.Ile151Val mutation in VCP in a patient of African American descent with sporadic ALS. Neurology 2011;77(11):1102–3.Google Scholar
Gijselinck, I, Van Langenhove, T, van der Zee, J, Sleegers, K, Philtjens, S, Kleinberger, G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 2012;11(1):5465.Google Scholar
Dobson-Stone, C, Hallupp, M, Bartley, L, Shepherd, CE, Halliday, GM, Schofield, PR, et al. C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 2012;79(10):9951001.Google Scholar
Galimberti, D, Fenoglio, C, Serpente, M, Villa, C, Bonsi, R, Arighi, A, et al. Autosomal dominant frontotempo-ral lobar degeneration due to the C9ORF72 hexanucleotide repeat expansion: late-onset psychotic clinical presentation. Biol Psychiatry 2013;74(5):384–91.Google Scholar
Cerami, C, Marcone, A, Galimberti, D, Zamboni, M, Fenoglio, C, Serpente, M, et al. Novel evidence of phenotypical variability in the hexanucleotide repeat expansion in chromosome 9. J Alzheimers Dis 2013;35(3):455–62.Google Scholar
Snowden, JS, Rollinson, S, Thompson, JC, Harris, JM, Stopford, CL, Richardson, AM, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(Pt 3):693708.Google Scholar
Farrajota, L, Maruta, C, Maroco, J, Martins, IP, Guerreiro, M, de Mendonca, A. Speech therapy in primary progressive aphasia: a pilot study. Dement Geriatr Cogn Dis Extra 2012;2(1):321–31.Google Scholar
Henry, ML, Meese, MV, Truong, S, Babiak, MC, Miller, BL, Gorno-Tempini, ML. Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behav Neurol 2013;26(1–2):7788.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×