Skip to main content Accessibility help
×
  • Cited by 81
Publisher:
Cambridge University Press
Online publication date:
June 2011
Print publication year:
2011
Online ISBN:
9780511978012

Book description

What does it take for a volcanic eruption to really shake the world? Did volcanic eruptions extinguish the dinosaurs, or help humans to evolve, only to decimate their populations with a super-eruption 73,000 years ago? Did they contribute to the ebb and flow of ancient empires, the French Revolution and the rise of fascism in Europe in the 19th century? These are some of the claims made for volcanic cataclysm. Volcanologist Clive Oppenheimer explores rich geological, historical, archaeological and palaeoenvironmental records (such as ice cores and tree rings) to tell the stories behind some of the greatest volcanic events of the past quarter of a billion years. He shows how a forensic approach to volcanology reveals the richness and complexity behind cause and effect, and argues that important lessons for future catastrophe risk management can be drawn from understanding events that took place even at the dawn of human origins.

Reviews

'I have to thank God on my knees that Oppenheimer's book did not exist at the time I made my decision to become a filmmaker. I might have become a volcanologist instead.'

Werner Herzog - film director and producer

'With his characteristic sparkling brilliance, Oppenheimer expertly recasts the latest scientific findings on how volcanoes work as a compelling and readable account that conveys the enduring human fascination for nature’s fiery outbursts and their capacity to transform life on this planet.'

Professor Iain Stewart - geologist and BBC TV presenter

'In his explosive book, Clive Oppenheimer brilliantly shows how the history of volcanoes and people is a tangled account. From our earliest ancestors to travellers battling with the effects of ash clouds on airline flights, our evolutionary destiny has been played out in the shadow of volcanoes, often with disastrous results.'

Professor Clive Gamble - Royal Holloway, University of London

'This is forensic geology in the widest sense and an exciting guided tour of the major volcanic and climatic disasters experienced by human kind. Oppenheimer has a rare talent for bringing the science and history together in a clear and engaging way.'

Professor Michael Rampino - New York University

'Writing in his inimitably lively and witty style, Clive Oppenheimer takes us through deep time and deep into volcanoes, teaching us how they work and demonstrating how powerful eruptions have often jostled the human toehold on survival. This tour de force is an astonishingly provocative roadmap to the once and future history of Earth.'

Dr Dave Pieri - NASA Jet Propulsion Laboratory

'A fascinating work that will engage not just volcano experts but also those with an interest in history, climatology, archaeology, and geochronology.'

Source: Library Journal

'[Oppenheimer] tops them all with a new book, heavy on scientific detail and light on dramatic froth, chronicling eruptions that really did change the world … he thoughtfully makes his case that volcanoes and humankind have been intertwined throughout history, and will continue to be long after the next unpronounceable Icelandic volcano erupts.'

Source: ScienceNews

'From just the first chapter, the genius of Clive Oppenheimer in the world of volcanology shines in his book … For any reader interested in learning more about volcanology, whether it be the history or the science behind it, Oppenheimer’s book is a plethora of information … [his] passion and lifelong dedication to this subject is evident … It’s a subject anyone could approach with caution because of the force that drives these monstrous mountains. However, Oppenheimer takes it dead-on, fearlessly and boldly, pouring his research into the text that derives from a childlike imagination into a man’s ambition.'

Source: Red Orbit

'… a useful reference for earth science students … Oppenheimer romps through the geological past, detailing some of the major volcanic events and their global impact … well worth diving into … he is upbeat, suggesting that a super-eruption could bring out the best in humanity, inspiring altruism and collective political action.'

Kate Ravilious Source: New Scientist

'Oppenheimer uses all sorts of evidence to unravel the stories behind some of the greatest and most significant volcanic cataclysms. The book is well illustrated [and] each chapter starts with a well-selected quote and ends with a useful summary … I recommend Eruptions that Shook the World as motivational reading for physics students looking for a thesis topic in Earth or environmental sciences. The book may encourage physicists to take up the fascinating but challenging mission of understanding the workings of deep Earth and the claims that are made for it.'

Source: Physics Today

'[A] well-written book …'

Source: Environmental History

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Scrope, G. P. (1862) Volcanos, London: Longman, Green, Longmans & Roberts.
Courtillot, V., Davaille, A., Besse, J. & Stock, J. (2003) Three distinct types of hotspots in the Earth's mantle, Earth Planet. Sci. Lett., 205, 295–308.
Lowenstern, J. B. & Hurwitz, S. (2008) Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone caldera, Elements, 4, 35–40.
Bas, M. J., Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 27, 745–750.
Mason, B. G., Pyle, D. M. & Oppenheimer, C. (2004) The size and frequency of the largest explosive eruptions on Earth, Bull.Volcanol., 66, 735–748.
Witham, C. S. (2005) Volcanic disasters and incidents: a new database, J. Volcanol. Geotherm. Res., 148, 191–233.
Simkin, T., Siebert, L. & Blong, R. (2001) Volcano fatalities – lessons from the historical record, Science, 291, 255.
Cronin, S. J., Hedley, M. J., Neall, V. E. & Smith, R. G. (1998) Agronomic impact of ash fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand, Environ. Geol., 34, 21–30.
Horwell, C. J., Sparks, R. S. J., Brewer, T. S., Llewellin, E. W. & Williamson, B. J. (2003) Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards, Bull.Volcanol., 65, 346–362.
Cook, R. J., Barron, J. C., Papendick, R. I. & Williams, G. J. (1981) Impacts on agriculture of Mount St Helens eruption, Science, 211, 16–22.
Rolett, B. & Diamond, J. (2004) Environmental predictors of pre-European deforestation on Pacific islands, Nature, 431, 443–446.
Langmann, B., Zakšek, K., Hort, M. & Duggen, S. (2010) Volcanic ash as fertiliser for the surface ocean, Atmos. Chem. Phys., 10, 711–734.
Manville, V., Németh, K. & Kano, K. (2009) Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards, Sed. Geol., 220, 136–161.
Maeno, F. & Taniguchi, H. (2009) Sedimentation and welding processes of dilute pyroclastic density currents and fallout during a large-scale silicic eruption, Kikai caldera, Japan, Sed. Geol., 220, 227–242.
Delmelle, P., Delfosse, T. & Delvaux, B. (2003) Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions, Environ. Pollution, 126, 445–457.
Allibone, R. J., Cronin, S. J., Charley, D. T.et al. (2010) Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway, Environ. Geochem. Health, doi: 10.1007/s10653–010– 9338–2.
Longo, B. M., Rossignol, A. & Green, J. B. (2008) Cardiorespiratory health effects associated with sulphurous volcanic air pollution, Public Health, 122, 809–820.
Tanguy, J.-C., Ribière, C., Scarth, A. & Tjetjep, W. S. (1998) Victims from volcanic eruptions: a revised database, Bull.Volcanol., 60, 137–144.
McCormick, M. P., Thomason, L. W. & Trepte, C. R. (1995) Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399–404.
Read, W. G., Froidevaux, L. & Waters, J. W. (1993) Microwave Limb Sounder measurements of stratospheric SO2 from the Mt. Pinatubo eruption, Geophys. Res. Lett., 20, 1299–1302.
Minnis, P., Harrison, E. F., Stowe, L. L.et al. (1993) Radiative climate forcing by the Mount Pinatubo eruption, Science, 259, 1411–1415.
Parker, D. E., Wilson, H., Jones, P. D., Christy, J. R. & Folland, C. K. (1996) The impact of Mount Pinatubo on world-wide temperatures, Int. J. Climatol., 16, 487–497.
Trenberth, K. E. & Dai, A. (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering, Geophys. Res. Lett., 34, L15702, doi:10.1029/2007GL030524.
Stenchikov, G., Robock, A., Ramaswamy, V.et al. (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107(D24), 4803, 10.1029/2002JD002090.
Stenchikov, G., Delworth, T. L., Ramaswamy, V.et al. (2009) Volcanic signals in oceans, J. Geophys. Res., 114, D16104, doi:10.1029/2008JD011673.
Gleckler, P. J., Wigley, T. M., Santer, B. D.et al. (2006) Volcanoes and climate: Krakatoa's signature persists in the ocean, Nature, 439, 675.
Mercado, L. M., Bellouin, N., Sitch, S.et al. (2009) Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458, 1014–1017.
Gu, L., Baldocchi, D., Verma, S. B.et al. (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity, J. Geophys. Res., 107(D6), 4050, doi:10.1029/2001JD001242.
Timmreck, C., Lorenz, S. J., Crowley, T. J.et al. (2009) Limited temperature response to the very large AD 1258 volcanic eruption, Geophys. Res. Lett., 36, L21708, doi:10.1029/2009GL040083.
Kravitz, B., Robock, A. & Bourassa, A. (2010) Negligible climatic effects from the 2008 Okmok and Kasatochi volcanic eruptions, J. Geophys. Res., 115, D00L05, doi:10.1029/2009JD013525.
Oman, L., Robock, A., Stenchikov, G., Schmidt, G. A. & Ruedy, R. (2005) Climatic response to high-latitude volcanic eruptions, J. Geophys. Res., 110, D13103, doi:10.1029/2004JD005487.
Graf, H.-F. & Timmreck, C. (2001) A general climate model simulation of the aerosol radiative effects of the Laacher See eruption, J. Geophys. Res., 106, 14,747–14,756.
Kravitz, B. & Robock, A. (2011) The climate effects of high latitude volcanic eruptions: role of time of year, J. Geophys. Res., 116, doi:10.1029/2010JD014448.
Schmidt, A., Carslaw, K. S., Mann, G. W.et al. (2010) The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, Atmos. Chem. Phys., 10, 6025–6041.
Timmreck, C. & Graf, H.-F. (2006) The initial dispersal and radiative forcing of a northern hemisphere mid-latitude super volcano: a model study, Atmos. Chem. Phys., 6, 35–49, doi:10.5194/acp-6-35-2006.
Crowley, T. J. (2000) Causes of climate change over the past 1000 years, Science, 289, 270–277.
Carey, S. & Sigurdsson, H. (1989) The intensity of plinian eruptions, Bull.Volcanol., 51, 28–40.
Pyle, D. M. (1989) The thickness, volume and grainsize of tephra fall deposits, Bull.Volcanol., 51, 1–15.
Walker, G. P. L. (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J.Volcanol. Geotherm. Res., 8, 69–94.
Carey, S. N. & Sparks, R. S. J. (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bull.Volcanol., 48, 109–125.
Turney, C. S. M., Harkness, D. D. & Lowe, J. J. (1997) The use of microtephra to correlate Late-glacial lake sediment successions in Scotland, J. Quat. Sci., 12, 525–531.
Blockley, S. P. E., Lane, C. S., Lotter, A. F. & Pollard, A. M. (2007) Evidence for the presence of the Vedde Ash in central Europe, Quat. Sci. Rev., 26, 3030–3036.
Pearce, N. J. G., Bendall, C. A. & Westgate, J. A. (2008) Comment on “Some numerical considerations in the geochemical analysis of distal microtephra” by Pollard, A. M., Blockley, S. P. E. & Lane, C. S., Appl. Geochem., 23, 1353–1364.
Wulf, S., Kraml, M., Brauer, A., Keller, J. & Negendank, J. F. W. (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy), Quat. Int., 122, 7–30.
Devine, J. D., Sigurdsson, H., Davis, A. N. & Self, S. (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects, J. Geophys. Res., 89(B7), 6309–6325, doi:10.1029/JB089iB07p06309.
Scaillet, B. & Pichavant, M. (2003) Experimental constraints on volatile abundance in arc magmas and their implications for degassing processes, Geol. Soc., London, Spec. Publ., 213, 23–52.
Wolff, E. W., Barbante, C., Becagli, S.et al. (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, Quat. Sci. Rev., 29, 285–295.
Hammer, C. U., Clausen, H. B. & Dansgaard, W. (1980) Greenland ice sheet evidence of postglacial volcanism and its climatic impact, Nature, 288, 230–235.
Steffensen, J. P., Andersen, K. K., Bigler, M.et al. (2008) High-resolution Greenland ice core data show abrupt climate change happens in a few years, Science, 321, 680–684.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1994) Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano–climate system, Science, 264, 948–952.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. & Twickler, M. S. (1996) A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core, Quat. Res., 45, 109–118.
Traversi, R., Becagli, S., Castellano, E.et al. (2009) Sulfate spikes in the deep layers of EPICA-Dome C ice core: evidence of glaciological artifacts. Env. Sci.Technol., 43, 8737–8743.
Dai, J., Mosley-Thompson, E. & Thompson, L. G. (1991) Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora, J. Geophys. Res., 96, 17,361–17,366.
Silva, S. L. & Zielinski, G. A. (1998) Global influence of the AD 1600 eruption of Huaynaputina, Peru, Nature, 393, 455–458.
Abbott, P. M., Davies, S. M., Steffensen, J.-P.et al. A detailed framework of Marine Isotope Stage 4 and 5 volcanic events recorded in two Greenland ice-cores, Quat. Sci. Rev., in review.
Gao, C., Robock, A. & Ammann, C. (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.
LaMarche, V. C., Jr. & Hirschboeck, K. K. (1984) Frost rings in trees as records of major volcanic eruptions, Nature, 307, 121–126.
Baillie, M. G. L. & Munro, M. A. R. (1988) Irish tree rings, Santorini and volcanic dust veils, Nature, 332, 344–346.
Salzer, M. W. & Hughes, M. K. (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 years, Quat. Res., 67, 57–68.
Briffa, K. R., Jones, P. D., Schweingruber, F. H. & Osborn, T. J. (1998) Influence of volcanic eruptions on northern hemisphere summer temperatures over 600 years, Nature, 393, 450–455.
Briffa, K. R., Osborn, T. J. & Schweingruber, F. H. (2004) Large-scale temperature inferences from tree rings: a review, Global Planet. Change, 40, 11–26.
Allison, P. M. (2002) Recurring tremors: the continuing impact of the AD 79 eruption of Mt Vesuvius, in Torrence, R. and Grattan, J. (eds.), Natural Disasters and Cultural Change, London: Routledge, pp. 107–125.
Khalidi, L., Oppenheimer, C., Gratuze, B.et al. (2010) Obsidian sources in highland Yemen and their relevance to archaeological research in the Red Sea region, J. Archaeol. Sci., 37, 2332–2345.
Sheets, P. (2008) Armageddon to the Garden of Eden: explosive volcanic eruptions and societal resilience in ancient Middle America, in Sandweiss, D. & Quilter, J. (eds.), El Niño: Catastrophism, and Culture Change in Ancient America, Washington, DC: Harvard University Press, pp. 167–186.
Specht, J. & Torrence, R. (2007) Lapita all over: land-use on the Willaumez Peninsula, Papua New Guinea, Terra Australis, 26, 71–96.
Torrence, R., Neall, V. & Boyd, W. E. (2009) Volcanism and historical ecology on the Willaumez Peninsula, Papua New Guinea, Pacific Sci., 63, 507–535.
Parr, J. F., Boyd, W. E., Harriott, V. & Torrence, R. (2009) Human adaptive responses to catastrophic landscape disruptions during the Holocene, Numundo, PNG, Geogr. Res., 47, 155–174.
Neall, V. E., Wallace, R. C. & Torrence, R. (2008) The volcanic environment for 40,000 years of human occupation on the Willaumez Isthmus, West New Britain, Papua New Guinea, J. Volcanol. Geotherm. Res., 176, 330–343.
Lentfer, C. & Torrence, R. (2007) Holocene volcanic activity, vegetation succession, and ancient human land use: unraveling the interactions on Garua Island, Papua New Guinea, Rev. Palaeobotany Palynol., 143, 83–105.
McKee, C. O., Neall, V. E. & Torrence, R. (2011) A remarkable pulse of large-scale volcanism on New Britain Island, Papua New Guinea, Bull.Volcanol., 73, 27–37.
Rodolfo, K. S. & Umbal, J. V. (2008) A prehistoric lahar-dammed lake and eruption of Mount Pinatubo described in a Philippine aborigine legend, J. Volcanol. Geotherm. Res., 176, 432–437.
Frierson, P. (1991) The Burning Island: A Journey Through Myth and History in Volcano Country, Hawai'i, San Francisco: Sierra Club Books.
Swanson, D. A. (2008) Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea, J. Volcanol. Geotherm. Res., 176, 427–431.
Mandeville, C. W., Webster, J. D., Tappen, C.et al. (2009) Stable isotope and petrologic evidence for open-system degassing, Geochim. Cosmochim. Acta, 73, 2978–3012.
Clark, E. E. (1953) Indian Legends of the Pacific Northwest, Berkeley, CA: University of California Press.
Symons, G. J. (ed.) (1888) The Eruption of Krakatoa and Subsequent Phenomena, London: Harrison & Sons.
Helmholtz, R. (1883) The remarkable sunsets, Nature, 29, 130.
Lamb, H. H. (1970) Volcanic dust in the atmosphere with a chronology and assessment of its meteorological significance, Philos. Trans. R. Soc. London A, 266, 425–533.
Stothers, R. B. & Rampino, M. R. (1983) Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, J. Geophys. Res., 88, 6357–6371.
Stothers, R. B. (2002) Cloudy and clear stratospheres before A.D. 1000 inferred from written sources, J. Geophys. Res., 107, 4718, 10.1029/2002JD002105.
Mellaart, J. (1967) Catal Huyuk, a Neolithic Town in Anatolia, New York, NY: McGraw Hill.
Meece, S. (2006) A bird's eye view – of a leopard's spots: the Çatalhöyük ‘map’ and the development of cartographic representation in prehistory, Anatolian Stud., 56, 1–16.
Zerefos, C. S., Gerogiannis, V. T., Balis, D., Zerefos, S. C. & Kazantzidis, A. (2007) Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings, Atmosph. Chem. Phys., 7, 4027–4042.
Wiart, P. A. M. & Oppenheimer, C. (2000) Largest known historic eruption in Africa: Dubbi volcano, Eritrea, 1861, Geology, 28, 291–294.
Schmincke, H.-U., Kutterolf, S., Perez, W.et al. (2009) Walking through volcanic mud: the 2,100-year-old Acahualinca footprints (Nicaragua), Bull. Volcanol., 71, 479–493.
Rampino, M. R. (2010) Mass extinctions of life and catastrophic flood basalt volcanism, Proc. Natl. Acad. Sci. USA, 107, 6555–6556.
Campbell, I. H. (2005) Large igneous provinces and the mantle plume hypothesis, Elements, 1, 265–269.
Bryan, S. E. & Ernst, R. E. (2008) Revised definition of large igneous provinces (LIPs), Earth Sci. Rev., 86, 175–202.
Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. (2008) Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release, Science, 319, 1654–1657.
Stothers, R. B. (1993) Flood basalts and extinction events, Geophys. Res. Lett., 20, 1399–1402.
Christenson, G. L., Collins, G. S., Morgan, J. V.et al. (2009) Mantle deformation beneath the Chicxulub impact crater, Earth Planet. Sci. Lett., 284, 249–257.
Schulte, P., Alegret, L., Arenillas, I.et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary, Science, 327, 1214–1218.
Kring, D. A. (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 255, 4–21.
Keller, G., Adatte, T., Berner, Z.et al. (2007) Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas, Earth Planet. Sci. Lett., 255, 339–356.
Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. (2007) 40K–40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration, Earth Planet. Sci. Lett., 263, 1–15.
Schulte, P., Speijer, R. P., Brinkuis, H.et al. (2008) Comment on the paper ‘Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas’ by Keller, et al. (2007), Earth Planet. Sci. Lett., 269, 614–620.
Keller, G., Adatte, T., Baum, G. & Berner, Z. (2008) Reply to ‘Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas’ Comment by Schulte et al., Earth Planet. Sci. Lett., 269, 621–629.
Sills, J. (ed.) (2010) Letters, Science, 328, 973–976.
Jones, A. P., Price, G. D., Price, N. J., DiCarli, P. S. & Clegg, R. A. (2002) Impact induced melting and the development of large igneous provinces, Earth Planet. Sci. Lett., 202, 551–561.
Courtillot, V. and Olsen, P. (2007) Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events, Earth Planet. Sci. Lett., 260, 495–504.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. (2007) Paleophysiology and end-Permian mass extinction, Earth Planet. Sci. Lett., 256, 295–313.
Ries, J. B., Cohen, A. L. & McCorkle, D. C. (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131–1134.
Wille, M., Nägler, T. F., Lehmann, B., Schröder, S. & Kramers, J. D. (2008) Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary, Nature, 453, 767–769.
Whiteside, J. H., Olsen, P. E., Eglington, T., Brookfield, M. E. & Sambrotto, R. N. (2010) Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction, Proc. Nat. Acad. Sci., 107, 6721–6725.
Cockell, C. S. (1999) Crises and extinction in the fossil record; a role for ultraviolet radiation, Paleobiology, 25, 212–225.
Vogelmann, A. M., Ackerman, T. P. & Turco, R. P. (1992) Enhancements in biologically effective ultraviolet radiation following volcanic eruptions, Nature, 359, 47–49.
Cather, S. M., Dunbar, N., McDowell, F. W., McIntosh, W. C. & Schole, P. A. (2009) Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis, Geosphere, 5, 315–324.
Stern, R. J., Avigad, D., Miller, N. & Beyth, M. (2008) From volcanic winter to snowball Earth: an alternative explanation for Neoproterozoic biosphere stress, in Dilek, Y., Furnes, H. & Muehlenbachs, K. (eds.), Links Between Geological Processes, Microbial Activities & Evolution of Life, Berlin: Springer, pp. 313–337.
King, G. & Bailey, G. (2006) Tectonics and human evolution, Antiquity, 80, 265–286.
UkstinsPeate, I. Peate, I., Baker, J. A., Kent, A. J. R.et al. (2003) Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro–Arabian flood volcanism, Earth Planet. Sci. Lett., 211, 311–327.
Pik, R., Marty, B., Carignan, J., Yirgu, G. & Ayalew, T. (2009) Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography, Geology, 36, 167–170.
Biggs, J., Anthony, E. Y. & Ebinger, C. J. (2009) Multiple inflation and deflation events at Kenyan volcanoes, East African Rift, Geology, 37, 979–982.
Raichlen, D. A., Gordon, A. D., Harcourt-Smith, W. E. H., Foster, A. D. & Haas, W. R. (2010) Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics, PLoS ONE, 5(3): e9769. doi:10.1371/journal.pone.0009769.
Sauer, C. O. (1962) Seashore – primitive home of man? Proc. Am. Philos. Soc., 106, 41–47.
King, G., Bailey, G. & Sturdy, D. (1994) Active tectonics and human survival strategies, J. Geophys. Res., 99(B10), 20,063–20,078, doi:10.1029/94JB00280.
McDougall, I., Brown, F. H. & Fleagle, J. G. (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia, Nature, 433, 733–736.
Basell, L. S. (2008) Middle Stone Age (MSA) site distributions in eastern Africa and their relationship to Quaternary environmental change, refugia and the evolution of Homo sapiens, Quat. Sci. Rev., 27, 2484–2498.
Mohr, P., Mitchell, J. G. & Raynolds, R. G. H. (1980) Quaternary volcanism and faulting at O'a caldera, Central Ethiopian Rift, Bull. Volcanol., 43, 173–189.
Grün, R., Stringer, C., McDermott, F.et al. (2005) U-series and ESR analyses of bones and teeth relating to the human burials from Skhul, J. Human Evolution, 49, 316–334.
Oppenheimer, S. (2009) The great arc of dispersal of modern humans: Africa to Australia, Quat. Int., 202, 2–13.
Endicott, P., Ho, S. Y. W., Metspalu, M. & Stringer, C. (2009) Evaluating the mitochondrial timescale of human evolution, Trends Ecol. Evol., 24, 515–521.
Soares, P., Ermini, L., Thomson, N.et al. (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock, Am. J. Hum. Gen., 84, 740–759.
Green, R. E., Krause, J., Briggs, A. W.et al. (2010) A draft sequence of the Neandertal genome, Science, 328, 710–722.
Ambrose, S. H. (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans, J. Hum. Evol., 34, 623–651.
Rose, W. I. & Chesner, C. A. (1987) Dispersal of ash in the great Toba eruption, 75 kyr, Geology, 15, 913–917.
Vazquez, J. A. & Reid, M. R. (2004) Probing the accumulation history of the voluminous Toba magma, Science, 305, 991–994.
Chesner, C. A. & Rose, W. I. (1991) Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia, Bull. Volcanol., 53, 343–356.
Rose, W. I. & Chesner, C. A. (1990) Worldwide dispersal of ash and gases from Earth's largest known eruption: Toba, Sumatra, 75 kyr, Palaeogeogr. Palaeoclimatol. Palaeoecol., 89, 269–275.
Baines, P. G. & Sparks, R. S. J. (2005) Dynamics of giant volcanic ash clouds from supervolcanic eruptions, Geophys. Res. Lett., 32, L24808, doi:10.1029/2005GL024597.
Herzog, M. & Graf, H.-F. (2010) Applying the three-dimensional model ATHAM to volcanic plumes: dynamic of large co-ignimbrite eruptions and associated injection heights for volcanic gases, Geophys. Res. Lett., 37, L19807, doi:10.1029/2010GL044986.
Ledbetter, M. & Sparks, R. S. J. (1979) Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers, Geology, 7, 240–244.
Carey, S. (1997) Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea, Geology, 25, 839–842.
Weisner, M., Wang, Y. & Zheng, L. (1995) Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo, Philippines, Geology, 23, 885–888.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1996) Potential atmospheric impact of the Toba mega-eruption ~71,000 years ago, Geophys. Res. Lett., 23(8), 837–840.
Scaillet, B., Clemente, B., Evans, B. W. & Pichavant, M. (1998) Redox control of sulphur degassing in silicic magmas, J. Geophys. Res., 103, 23,937–23,949.
Chesner, C. A. & Luhr, J. F. (2010) A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia, J. Volcanol. Geotherm. Res., 197, 259–278.
Niemeier, U., Timmreck, C., Graf, H.-F.et al. (2009) Initial fate of fine ash and sulfur from large volcanic eruptions, Atmos. Chem. Phys., 9, 9043–9057, doi:10.5194/acp-9–9043–2009.
Rampino, M. R. & Self, S. (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption, Nature, 359, 50–52.
Rampino, M. R. & Ambrose, S. H. (2000) Volcanic winter in the Garden of Eden: the Toba super-eruption and the Late Pleistocene human population crash, Geol. Soc. Am. Spec. Paper, 345, 71–82.
Rampino, M. R. & Self, S. (1993) Climate–volcanism feedback and the Toba eruption of ~74,000 years ago, Quat. Res., 40, 269–280.
Jones, G. S., Gregory, J. M., Stott, P. A., Tett, S. F. & Thorpe, R. B. (2005) An AOGCM simulation of the climate response to a volcanic super-eruption, Clim. Dyn., 25, 725–738.
Robock, A., Ammann, C. M., Oman, L.et al. (2009) Did the Toba volcanic eruption of ~74 ka B.P. produce widespread glaciation? J. Geophys. Res., 114, D10107, doi:10.1029/2008JD011652.
Timmreck, C., Graf, H.-F., Lorenz, S. J.et al. (2010) Aerosol size confines climate response to volcanic super-eruptions, Geophys. Res. Lett., 37, L24705, doi:10.1029/2010GL045464.
Williams, M. A. J., Ambrose, S. H., Kaars, S.et al. (2009) Environmental impact of the 73 ka Toba super-eruption in South Asia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 284, 295–314.
Ambrose, S. H. (2003) Did the super-eruption of Toba cause a human population bottleneck? Reply to Gathorne-Hardy and Harcourt-Smith, J. Hum. Evol., 45, 231–237.
Rossano, M. J. (2009) Ritual behaviour and the origins of modern cognition, Cambridge Archaeol. J., 19, 243–256.
Gagneux, P., Wills, C., Gerloff, U.et al. (1999) Mitochondrial sequences show diverse evolutionary histories of African hominoids, Proc. Natl. Acad. Sci., 96, 5077–5082.
Louys, J. (2007) Limited effect of the Quaternary's largest super-eruption (Toba) on land mammals from Southeast Asia, Quat. Sci. Rev., 26, 3108–3117.
Brumm, A., Jensen, G. M., Bergh, G. D.et al. (2010) Hominins on Flores, Indonesia, by one million years ago, Nature, 464, 748–752.
Jones, S. C. (2010) Palaeoenvironmental response to the ~74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India, Quat. Res., 73, 336–350.
Haslam, M., Clarkson, C., Petraglia, M.et al. (2010) The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3, J. Archaeol. Sci. 37, 3370–3384.
Riede, F. (2008) The Laacher See eruption (12,920 BP) and material culture change at the end of the Allerød in Northern Europe, J. Archaeol. Sci., 35, 591–599.
Banks, W. E., d'Errico, F., Peterson, A. T.et al. (2008) Neanderthal extinction by competitive exclusion, PLoS ONE, 3(12), e3972, doi:10.1371/journal.pone.0003972.
Chazan, M. (2010) Technological perspectives on the Upper Paleolithic, Evol. Anthropol., 19, 57–65.
Sinitsyn, A. A. (2003) A Palaeolithic ‘Pompeii’ at Kostenki, Russia, Antiquity, 77, 9–14.
Hoffecker, J. F., Holliday, V. T., Anikovich, M. V.et al. (2008) From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe, J. Hum. Evol., 55, 858–870.
Fedele, F. G., Giaccio, B. & Hajdas, I. (2008) Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, western Eurasia, J. Hum. Evol., 55, 834–857.
Fedele, F. G., Giaccio, B., Isaia, R. & Orsi, G. (2002) Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe, Quat. Res., 57, 420–424.
Golovanova, L. V., Doronichev, V. B., Cleghorn, N. E.et al. (2010) Significance of ecological factors in the Middle to Upper Paleolithic Transition, Curr. Anthropol., 51, 655–691.
Schmincke, H.-U., Park, C. & Harms, E. (2009) Evolution and environmental impacts of the eruption of Laacher See volcano (Germany) 12 900 a BP, Quat. Int., 61, 61–72.
Baales, M. (2006) Final Palaeolithic environment and archaeology in the central Rhineland (Rhineland-Palatinat, western Germany): conclusions of the last 15 years of research, L'Anthropologie, 110, 418–444.
Graf, H.-F. & Timmreck, C. (2001) A general climate model simulation of the aerosol radiative effects of the Laacher See eruption (10,900 B.C.), J. Geophys. Res., 106, 14,747–14,756, doi:10.1029/2001JD900152.
Klerk, P., Janke, W., Kühn, P. & Theuerkauf, M. (2008) Environmental impact of the Laacher See eruption at a large distance from the volcano: integrated palaeoecological studies from Vorpommern (NE Germany), Palaeogeogr. Palaeoclimatol. Palaeoecol., 270, 196–214.
Henrich, J. (2004) Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case, Am. Antiquity, 69, 197–214.
Powell, A., Shennan, S. & Thomas, M. G. (2009) Late Pleistocene demography and the appearance of modern human behaviour, Science, 324, 1298–1301.
Sigurdsson, H., Carey, S., Alexandri, M.et al. (2006) Marine investigations of Greece's Santorini volcanic field, EOS Trans. Am. Geophys. Union, 87, 337–342.
Bietak, M. (2004) Review of Manning's ‘A test of time’, Bibliotheca Orientalis 61, 200–222.
Ramsey, C. B., Manning, S. W. & Galimberti, M. (2004) Dating the volcanic eruption at Thera, Radiocarbon, 46, 325–344.
Friedrich, W. L., Kromer, B., Friedrich, M.et al. (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C., Science, 312, 548.
Bronk Ramsey, C., Dee, M. W., Rowland, J. M.et al. (2010) Radiocarbon-based chronology for Dynastic Egypt, Science, 328, 1554–1557.
Pearson, C. L., Dale, D. S., Brewer, P. W.et al. (2009) Dendrochemical analysis of a tree-ring growth anomaly associated with the Late Bronze Age eruption of Thera, J. Archaeol. Sci., 36, 1206–1214.
Wiener, M. H. & Allen, J. P. (1998) Separate lives: the Ahmose Tempest Stela and the Theran eruption, J. Near Eastern Stud., 57, 1–28.
McCoy, F. W. & Heiken, G. (2000) Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece, Pure Appl. Geophys., 157, 1227–1256.
Bruins, H. J., MacGillivray, J. A., Synolakis, C. E.et al. (2008) Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini, J. Archaeol. Sci., 35, 191–212.
Driessen, J. (2002) Towards an archaeology of crisis: defining the long-term impact of the Bronze Age Santorini eruption, in Torrence, R. and Grattan, J. (eds.) Natural Disasters and Cultural Change, London: Routledge, pp. 250–263.
Bicknell, P. (2000) Late Minoan IB marine ware, the marine environment of the Aegean and the Bronze Age eruption of Thera volcano, Geol. Soc. London Spec. Publ., 171, 95–103.
Plunket, P. & Uruñuela, G. (1998) Preclassic household patterns preserved under volcanic ash at Tetimpa, Puebla, Latin Am. Antiquity, 9, 287–309.
Plunket, P. & Uruñuela, G. (2000) The quick and the dead: decision making in the abandonment of Tetimpa, Mayab, 13, 78–87.
Plunket, P. & Uruñuela, G. (2008) Mountain of sustenance, mountain of destruction: the prehispanic experience with Popocatépetl volcano, J. Volcanol. Geotherm. Res., 170, 111–120.
Plunket, P. & Uruñuela, G. (2006) Social and cultural consequences of a late Holocene eruption in central Mexico, Quat. Int., 151, 19–28.
Plunket, P. and Uruñuela, G. (1998) Appeasing the volcano gods, Archaeology, 54, 36–42.
Panfil, M. S., Gardner, T. W. & Hirth, K. G. (1999) Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatépetl Volcano, central Mexico, Geol. Soc. Am. Bull., 111, 204–218.
Kutterolf, S., Freundt, A. & Peréz, W. (2008) Pacific offshore record of Plinian arc volcanism in central America: 2. Tephra volumes and erupted masses, Geochem. Geophys. Geosystems, 9, Q02S02, doi:10.1029/2007GC001791.
Mehringer, P. J., Sarna-Wojcicki, A. M., Wollwage, L. K. & Sheets, P. (2005) Age and extent of the Ilopango TBJ tephra inferred from a Holocene chronostratigraphic reference section, Lago de Yojoa, Honduras, Quat. Res. 63, 199–205.
Dull, R. A. (2004) An 8000-year record of vegetation, climate, and human disturbance from the Sierra de Apaneca, El Salvador, Quat. Res., 61, 159–167.
Price, T. D., Burton, J. H., Sharer, R. J.et al. (2010) Kings and commoners at Copán: isotopic evidence for origins and movement in the Classic Maya period, J. Anthropol. Archaeol., 29, 15–32.
Dull, R. A., Southon, J. R. & Sheets, P. (2001) Volcanism, ecology and culture: a reassessment of the Volcán Ilopango TBJ eruption in the southern Maya realm, Latin Am. Antiquity, 12, 25–44.
Pfister, C. (2010) The vulnerability of past societies to climatic variation: a new focus for historical climatology in the twenty-first century, Climatic Change, 200, 25–31.
Stothers, R. B. (1984) Mystery cloud of AD 536, Nature, 307, 344–345.
Larsen, L. B., Vinther, B. M., Briffa, K. R.et al. (2008) New ice core evidence for a volcanic cause of the A.D. 536 dust veil, Geophys. Res. Lett., 35, L04708, doi:10.1029/2007GL032450.
Dull, R., Southon, J. R., Kutterolf, S.et al. (2010) Did the TBJ Ilopango eruption cause the AD 536 event? American Geophysical Union Fall Meeting, Abstract #V13C-2370.
Drancourt, M., Roux, V., Dang, L. V.et al. (2004) Genotyping, Orientalis-like Yersinia pestis, and plague pandemics, Emerging Infectious Diseases, 10, 1585–1592.
Heather, P. (1995) The Huns and the end of the Roman Empire in Western Europe, English Historical Rev., 110, 4–41.
Dijkstra, J. H. F. (2004) A cult of Isis at Philae after Justinian? Reconsidering P. Cair. Masp. I 67004, Zeit. Papyrologie Epigraphik, 146, 137–154.
Sarris, P. (2002) The Justinianic plague: origins and effects, Continuity Change, 17, 169–182.
Baillie, M. G. L. (1994) Dendrochronology raises questions about the nature of the AD 536 dust-veil event, The Holocene, 4, 212–217.
Fei, J., Zhou, J. & Hou, Y. (2007) Circa A.D. 626 volcanic eruption, climatic cooling, and the collapse of the Eastern Turkic Empire, Climatic Change, 81, 469–475.
Palais, J. M., Germani, M. S. & Zielinski, G. A. (1992) Interhemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets, Geophys. Res. Lett., 19, 801–804.
Kellerhals, T., Tobler, L., Brütsch, S.et al. (2010) Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia, Environ. Sci. Technol., 44, 888–893.
Mothes, P. A. & Hall, M. L. (2008) The Plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes, J. Volcanol. Geotherm. Res., 176, 56–69.
Stothers, R. B. (2000) Climatic and demographic consequences of the massive volcanic eruption of 1258, Climatic Change, 45, 361–374.
Jones, P. D., Briffa, K. R., Barnett, T. P. & Tett, S. F. B. (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures, The Holocene, 8, 455–471.
Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R. & Haug, G. H. (2008) Volcanoes and ENSO over the past millennium, J. Climate, 21, 3134–3148.
Crowley, T. J., Zielinski, G., Vinther, B.et al. (2008) Volcanism and the Little Ice Age, PAGES News, 16, 22–23.
Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L. & Kaufman, S. S. (2009) Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model, J. Geophys. Res., 114, D15101, doi:10.1029/2008JD011222.
Jackson, P. (1978) The dissolution of the Mongol empire, Central Asiatic J., 22, 186–244. Also published in Jackson, P. (2009) Studies on the Mongol Empire and Early Muslim India, Burlington, VT: Ashgate.
Morgan, D. (2009) The decline and fall of the Mongol Empire, J. R. Asiatic Soc., 19, 427–437.
D'Arrigo, R., Jacoby, G., Frank, D. & Pederson, N. (2001) Spatial response to major volcanic events in or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence from Mongolia, Climatic Change, 49, 239–246.
Fletcher, J. (1986) The Mongols: ecological and social perspectives, Harvard J. Asiatic Stud., 46, 11–50.
Thordarson, Th. & Larsen, G. (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history, J. Geodynamics, 43, 118–152.
Thordarson, Th., Larsen, G., Steinþórsson, S. & Self, S. (2003) The 1783–1785 A. D. Laki-Grímsvötn eruptions II: Appraisal based on contemporary accounts, Jökull, 53, 11–48.
Thordarson, Th. & Self, S. (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785, Bull.Volcanol., 55, 233–263.
Guilbaurd, M.-N., Self, S., Thordarson, Th. & Blake, S. (2005) Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784, Geol. Soc. Am. Spec. Paper, 396, 81–102.
Hamilton, C. W., Thordarson, Th. & Fagents, S. A. (2010) Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland, Bull. Volcanol., 72, 449–467.
Thordarson, Th. & Self, S. (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment, J. Geophys. Res., 108(D1), 4011, doi:10.1029/2001JD002042.
Franklin, B. (1785) Meteorological imaginations and conjectures, Memoirs of the Literary and Philosophical Society of Manchester, 2, 373–377.
Swinden, J. H. (1785) Observationes nebulam, quae mense Junio 1783 Apparuit, specantes in Ephemerides Societatis Meteorologicae Palatinae, translated by Linteman, S. & Thordarson, T., Jökull, 50, 73–80.
Met Office Hadley Centre Temperature (HadCET) datasets. See http://hadobs.metoffice.com/hadcet/
D'Arrigo, R., Mashig, E., Frank, D., Jacoby, G. & Wilson, R. (2004) Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska, Geophys. Res. Lett., 31, L09202, doi:10.1029/2004GL019756.
Grattan, J., Brayshay, M. & Sadler, J. (1998) Modelling the distal impacts of past volcanic gas emissions, Quaternaire, 9, 25–35.
Brázdil, R., Demarée, G. R., Deutsch, M.et al. (2010) European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’, Theor. Appl. Climatol., 100, 163–189.
Elleder, L. (2010) Reconstruction of the 1784 flood hydrograph for the Vltava River in Prague, Czech Republic, Global Planet. Change, 70, 117–124.
Oman, L., Robock, A., Stenchikov, G. L.et al. (2006) Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption, J.Geophys. Res., 111, D12209, doi:10.1029/2005JD006899.
Oman, L., Robock, A., Stenchikov, G. L. & Thordarson, Th. (2006) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile, Geophys. Res. Lett., 33, L18711, doi:10.1029/2006GL027665.
Eggertsson, T. (1998) Sources of risk, institutions for survival, and a game against nature in premodern Iceland, Explor. Econ. Hist., 35, 1–30.
Eggertsson, T. (1996) No experiments, monumental disasters: Why it took a thousand years to develop a specialized fishing industry in Iceland, J. Econ. Behavior Organisation, 30, 1–23.
Thorarinsson, S. (1979) On the damage caused by volcanic eruptions with special reference to tephra and gases, in Sheets, P. D & Grayson, D. K. (eds.), Volcanic Activity and Human Ecology, New York, NY: Academic Press, pp. 125–160.
Vasey, D. E. (1991) Population, agriculture, and famine – Iceland, 1784–1785, Hum. Ecol., 19, 323–350.
Wrigley, E. A. & Schofield, R. S. (1989) The Population History of England 1541–1871: A Reconstruction, Cambridge: Cambridge University Press.
Whitam, C. S. & Oppenheimer, C. (2005) Mortality in England during the 1783–4 Laki Craters eruption, Bull. Volcanol., 67, 15–26.
Grattan, J., Rabartin, R., Self, S. & Thordarson, Th. (2005) Volcanic air pollution and mortality in France 1783–1784, C. R. Geosci., 337, 641–651.
Carus, W. (1847) Memoirs of the Life of the Rev. Charles Simeon, London: Hatchard and Son.
Volney, M. C. -F. (1787) Travels Through Syria and Egypt in the Years 1783, 1784, and 1785, London: G. G. J. & J. Robinson.
Grove, R. H. (2007) The great El Niño of 1789–93 and its global consequences: reconstructing an extreme climate event in world environmental history, Mediev. Hist. J., 10, 75–98.
Yasui, M. & Koyaguchi, T. (2004) Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone, Bull. Volcanol., 66, 243–262.
Roy Ladurie, E. & Daux, V. (2008) The climate in Burgundy and elsewhere, from the fourteenth to the twentieth century, Interdiscipl. Sci. Rev., 33, 10–24.
Kington, J. A. (1980) Daily weather mapping from 1781: a detailed synoptic examination of weather and climate during the decade leading up to the French Revolution, Climatic Change, 3, 7–36.
Thordarson, Th., Miller, D. J., Larsen, G., Self, S. & Sigurdsson, H. (2001) New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland, J. Volcanol. Geotherm. Res., 108, 33–54.
Stanza from an epic poem (syair) from Sumbawa compiled in Malay around 1830. Chambert-Loir, H. (ed.) (1982) Syair kerajaan Bima, Jakarta and Bandung: Ecole Francaise d'Extrême-Orient.
Jong Boers, B. (1995) Mount Tambora in 1815: a volcanic eruption in Indonesia and its aftermath, Indonesia, 60, 37–60.
Radermacher, Korte beschrijving van het eiland Celebes ende eilanden Floris, Lombok en Bali, Sumbauwa, 1786, p. 186. Translated in Jong Boers, B. (1995) Mount Tambora in 1815: a volcanic eruption in Indonesia and its aftermath, Indonesia, 60, 37–60.
Raffles, T. S. (1817) The History of Java, London: Black, Parbury & Allen.
Raffles, T. S. (1830) Memoir of the life and public services of Sir Thomas Stamford Raffles, F. R. S. &c., particularly in the government of Java, 1811–1816, and of Bencoolen and its dependencies, 1817–1824: with details of the commerce and resources of the eastern archipelago, and selections from his correspondence, London: John Murray.
Crawfurd, J. (1856) A Descriptive Dictionary of the Indian Islands and Adjacent Countries, London, Bradbury and Evans.
Sigurdsson, H. & Carey, S. (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano, Bull. Volcanol., 51, 243–270.
Self, S., Rampino, M. R., Newton, M. S. & Wolff, J. A (1984) Volcanological study of the great Tambora eruption of 1815, Geology, 12, 659–663.
Self, S., Gertisser, R., Thordarson, Th., Rampino, M. R. & Wolff, J. A. (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora, Geophys. Res. Lett., 31, L20608, doi:10.1029/2004GL020925.
Baron, W. R. (1992) 1816 in perspective: the view from the northeastern United States, in Harington, C. R. (ed.), The Year Without a Summer? World Climate in 1816, Ottawa: Canadian Museum of Nature, pp. 124–144.
Stommel, H. M. & Stommel, E. (1983) Volcano Weather: The Story of 1816, the Year Without a Summer, Newport, RI: Seven Seas Press.
Dewey, (1821) Results of meteorological observations made at Williamstown, Massachusetts, Mem. Am. Acad. Arts Sci., 4, 387–392.
Surmieda, M. R., Lopez, J. M., Abad-Viola, G.et al. (1992) Surveillance in evacuation camps after the eruption of Mt. Pinatubo, Philippines, CDC Surveillance Summaries, CDC Morbidity Mortality Weekly Rep., 41, 9–12.
Petroeschevsky, W. A. (1949) A contribution to the knowledge of the unung Tambora (Sumbawa), Tijdschrift van het Koninklijk Nederlands Aardrijkskundig Genootschap, 66, 688–703.
Goethals, P. R. (1961) Aspects of Local Government in a Sumbawan Village (Eastern Indonesia), Ithaca, NY: Southeast Asia Programme, Department of Southeastern Studies, Cornell University.
Fries, A. L. (1947) Records of the Moravians in North Carolina 1752–1879, Raleigh, NC: Edwards & Broughton, vol. 7, pp. 3294–3313.
Clausewitz, C. (1922) Politische Schriften und Briefe, Rothfels, H. (ed.), Munich, Drei Masken Verlag, pp. 189–191.
Pant, G. B., Parthasarathy, B. & Sontakke, N. A. (1992) Climate over India during the first quarter of the nineteenth century, in Harington, C. R. (ed.), The Year Without a Summer? World Climate in 1816, Ottawa: Canadian Museum of Nature, pp. 429–435.
Harty, W. (1820) An Historic Sketch of the Causes, Progress, Extent, and Mortality of the Contagious Fever Epidemic in Ireland During the Years 1817, 1818 and 1819, London: Royal Geographical Society, Manuscripts Collection, pp. 113–115.
Webb, P. (2002) Emergency relief during Europe's famine of 1817 anticipated crisis-response mechanisms of today, J. Nutr., 132, 2092S–2095S.
Beck, U. (2009) World Risk Society, Cambridge: Polity Press.
Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R. &Rockström, J. (2005) Social–ecological resilience to coastal disasters, Science, 309, 1036–1039.
Self, S. & Blake, S. (2008) Consequences of explosive supereruptions, Elements, 4, 41–46.
Chu, R., Helmberger, D. V., Sun, D., Jackson, J. M. & Zhu, L. (2010) Mushy magma beneath Yellowstone, Geophys. Res. Lett., 37, L01306, doi:10.1029/2009GL041656.
Wilson, C. J. N. & Hildreth, W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy, J. Geol., 105, 407–440.
Jones, M. T., Sparks, R. S. J. & Valdes, P. J. (2007) The climatic impact of supervolcanic ash blankets, Clim. Dynam., 29, 553–564.
Rampino, M. R. (2002) Supereruptions as a threat to civilizations on Earth-like planets, Icarus, 156, 562–569.
White, G. F. & Haas, J. E. (1975) Assessment of Research on Natural Hazards, Cambridge, MA: MIT Press.
Button, G. (2010) Disaster Culture: Knowledge and Uncertainty in the Wake of Human and Environmental Catastrophe, Walnut Creek, CA: Left Coast Press, Inc.
Aspinall, W. P., Woo, G., Voight, B. V. & Baxter, P. J. (2003) Evidence-based volcanology: application to eruption crises, J. Volcanol. Geotherm. Res., 128, 273–285.
Sornette, D. (2009) Dragon kings, black swans and the prediction of crises, Int. J. Terraspace Sci. Eng., 2, 1–18.
Deligne, N. I., Coles, S. G. & Sparks, R. S. J. (2010) Recurrence rates of large explosive volcanic eruptions, J. Geophys. Res., 115, B06203, doi:10.1029/2009JB006554.
Pappalardo, L., Ottolini, L. & Mastrolorenzo, G. (2008) The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal, Contrib. Mineral. Petrol., 156, 1–26.
Woo, G. (2008) Probabilistic criteria for volcano evacuation decisions, Nat. Hazards, 45, 87–97.
Wigley, T. M. L. (2006) A combined mitigation/geoengineering approach to climate stabilization, Science, 314, 452–454.
Robock, A. (2008) 20 reasons why geoengineering may be a bad idea, Bull. Atomic Scientists, 64, 14–18.
Has the time come for geoengineering? See http://www.thebulletin.org/web-edition/roundtables/has-the-time-come-geoengineering
Robock, A., Bunzl, M., Kravitz, B. & Stenchiko, G. L. (2010) A test for geoengineering? Science, 327, 530–531.
Rampino, M. R., Self, S. & Fairbridge, R. W. (1979) Can rapid climate change cause volcanic eruptions? Science, 206, 826–829.
Huybers, P. & Langmuir, C. (2009) Feedback between deglaciation, volcanism, and atmospheric CO2, Earth Planet. Sci. Lett., 286, 479–491.
Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. (2002) The link between volcanism and deglaciation in Iceland, Geochem. Geophys.Geosystems, 3(11), 1062, doi:10.1029/2001GC000282.
Nakada, M. & Yokose, H. (1992) Ice age as a trigger of active Quaternary volcanism and tectonism, Tectonophysics, 212, 321–329.
Tuffen, H. (2010) How will melting of ice affect volcanic hazards in the twenty-first century? Philos. Trans. R. Soc. A, 368, 2535–2558.
Stelling, P., Gardner, J. E. & Begét, J. (2005) Eruptive history of Fisher Caldera, Alaska, USA, J. Volcanol. Geotherm. Res., 139, 163–183.
Ponomareva, V. V., Kyle, P. R., Melekestsev, I.et al. (2004) The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships, J. Volcanol. Geotherm. Res., 136, 199–222.
Maeno, F. & Taniguchi, H. (2007) Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: implication from near-vent eruptive deposits, J. Volcanol. Geotherm. Res., 167, 212–238.
Bacon, C. R. & Lanphere, M. A. (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon, Geol. Soc. Am. Bull., 118, 1131–1159.
Witter, J. B. & Self, S. (2006) The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release, Bull. Volcanol., 69, 301–318.
Druitt, T. H., Edwards, L., Mellors, R. M.et al. (1999) Santorini Volcano, Geol. Soc. London, Memoir, 19.
Macdonald, R. & Scaillet, B. (2006) The central Kenya peralkaline province: insights into the evolution of peralkaline salic magmas, Lithos, 91, 59–73.
Burgisser, A. (2005) Physical volcanology of the 2,050 BP caldera-forming eruption of Okmok caldera, Alaska, Bull. Volcanol., 67, 497–525.
Robin, C., Eissen, J.-P. & Monzier, M. (1993) Giant tuff cone and 12-km-wide associated caldera at Ambrym volcano (Vanuatu, New Hebrides arc), J.Volcanol. Geotherm. Res., 55, 225–238
Horn, S. & Schmincke, H.-U. (2000) Volatile emissions during the eruption of Baitoushan volcano (China/North Korea) ca. 969 AD, Bull. Volcanol., 61, 537–555.
Walker, G. P. L. (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption, J. Volcanol. Geotherm. Res., 8, 69–94.
Begét, J. E., Mason, O. K. & Andersen, P. M. (1992) Age, extent and climatic significance of the c. 3400 BP Aniakchak tephra, western Alaska, USA, Holocene, 2, 51–56.
Miller, T. P. & Smith, R. L. (1997) Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska, Geology, 15, 434–438.
Hildreth, W. (1983) The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska, J. Volcanol. Geotherm. Res., 18, 1–56.
Self, S. & Rampino, M. R. (1981) The 1883 eruption of Krakatau, Nature, 294, 699–704.
Pain, C. F., Blong, R. J. & McKee, C. O (1981) Pyroclastic deposits and eruptive sequences on Long Island, Papua New Guinea. 1. Lithology, stratigraphy, and volcanology, Geol. Survey Papua New Guinea, Memoirs, 10, 101–107.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.