Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:47:59.895Z Has data issue: false hasContentIssue false

Chap 13 - FIBROBLASTIC AND MYOFIBROBLASTIC NEOPLASMS WITH MALIGNANT POTENTIAL

Published online by Cambridge University Press:  01 March 2011

Markku Miettinen
Affiliation:
Armed Forces Institute of Pathology, Washington DC
Get access

Summary

Fibroblastic and myofibroblastic neoplasms with malignant potential span a wide clinicopathological spectrum. Some of the entities listed here are nonmetastasizing and have recurrence potential only, whereas others have full metastatic potential. Solitary fibrous tumor is discussed in Chapter 12.

Dermatofibrosarcoma protuberans (DFSP) and its pigmented variant (Bednar tumor) are clinicopathologically distinctive CD34-positive fibroblastic tumors. Although typically they behave indolently if completely excised, they are capable of transformation to a more aggressive form that can metastasize. Giant cell fibroblastoma is the juvenile variant of DFSP, with a lower biologic potential.

Low-grade fibromyxoid sarcoma is a histologically distinctive tumor that can metastasize despite its bland appearance. This tumor also is capable of progressing to a more aggressive form.

Sclerosing epithelioid fibrosarcoma is the designation for a clinically heterogeneous group of tumors with histologically distinctive features, and some tumors in this category represent progressive forms of low-grade fibromyxoid sarcoma. Inflammatory fibrosarcoma belongs to the category of inflammatory myofibroblastic tumor and is discussed with fibroblastic tumors of children in Chapter 10.

Adult fibrosarcoma is the designation for a nonpleomorphic fibroblastic malignancy; this diagnosis is one of exclusion. This diagnosis is now rarely made because many tumors historically classified as adult fibrosarcomas are now diagnosed as monophasic synovial sarcoma, low-grade fibromyxoid sarcoma, desmoid fibromatosis, solitary fibrous tumor, and even benign conditions such as florid nodular fasciitis.

Acral myxoinflammatory fibroblastic sarcoma (inflammatory myxohyaline tumor of distal extremities) is a newly described fibroblastic lesion of low malignant potential.

Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 348 - 392
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Taylor, HB, Helwig, EB. Dermatofibrosarcoma protuberans: a study of 115 cases. Cancer 1962;15:717–725.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
McPeak, CJ, Cruz, T, Nicastri, AD. Dermatofibrosarcoma protuberans: an analysis of 86 cases – Five with metastasis. Ann Surg 1968;166:803–816.CrossRefGoogle Scholar
Pappo, AS, Rao, BN, Cain, A, Bodner, S, Pratt, CB. Dermatofibrosarcoma protuberans: the pediatric experience at St. Jude Children's Research Hospital. Pediatr Hematol Oncol 1997;14:563–568.CrossRefGoogle ScholarPubMed
Terrier-Lacombe, MJ, Guillou, L, Maire, G, Terrier, P, Vince, DR, Saint Aubain Somerhausen, N. Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data – a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 2003;27:27–39.CrossRefGoogle Scholar
Ghorbani, RP, Malpica, A, Ayala, A. Dermatofibrosarcoma protuberans of the vulva: a clinicopathologic and immunohistochemical analysis of four cases, one with fibrosarcomatous change, and review of the literature. Int J Gynecol Pathol 1999;18:366–373.CrossRefGoogle ScholarPubMed
Bowne, WB, Antonescu, CR, Leung, DH, Katz, SC, Hawkins, WG, Woodruff, JM. Dermatofibrosarcoma protuberans: A clinicopathologic analysis of patients treated and followed at a single institution. Cancer 2000;88:2711–2720.3.0.CO;2-M>CrossRefGoogle Scholar
Parlette, E, Smith, KJ, Germain, M, Rolfe, A, Skelton, H. Accelerated growth of dermatofibrosarcoma protuberans during pregnancy. J Am Acad Dermatol 1999;41:773–778.CrossRefGoogle ScholarPubMed
Ratner, D, Thomas, CO, Johnson, TM, Sondak, VK, Hamilton, TA, Nelson, BR. Mohs micrographic surgery for the treatment of dermatofibrosarcoma protuberans: Results of a multiinstitutional series with an analysis of the extent of microscopic spread. J Am Acad Dermatol 1997;37:600–613.CrossRefGoogle ScholarPubMed
Wrotnowski, U, Cooper, PH, Shmookler, BM. Fibrosarcomatous change in dermatofibrosarcoma protuberans. Am J Surg Pathol 1988;13:287–293.CrossRefGoogle Scholar
Ding, J, Hashimoto, H, Enjoji, M. Dermatofibrosarcoma protuberans with fibrosarcomatous areas: A clinicopathologic study of nine cases and comparison with allied tumors. Cancer 1989;64:721–729.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Connelly, JH, Evans, HL. Dermatofibrosarcoma protuberans: A clinicopathologic review with emphasis on fibrosarcomatous areas. Am J Surg Pathol 1992;16:921–925.CrossRefGoogle ScholarPubMed
Mentzel, T, Beham, A, Katenkamp, D, Dei Tos, AP, Fletcher, CDM. Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance. Am J Surg Pathol 1998;22:576–587.CrossRefGoogle ScholarPubMed
Goldblum, JR, Reith, JD, Weiss, SW. Sarcomas arising in dermatofibrosarcoma protuberans: A reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow-up. Am J Surg Pathol 2000;24:1125–1130.CrossRefGoogle ScholarPubMed
Gloster, HM. Derrmatofibrosarcoma protuberans. J Am Acad Dermatol 1996;35:355–374.CrossRefGoogle ScholarPubMed
Diaz-Cascajo, C, Weyers, W, Rey-Lopez, A, Borghi, S. Deep dermatofibrosarcoma protuberans: a subcutaneous variant. Histopathology 1998;32:552–555.CrossRefGoogle ScholarPubMed
Shen, WQ, Hashimoto, H, Okamoto, S, Ishida, T, Meis-Kindblom, JM, Kindblom, LG. Expression of COLIAI-PDGFB fusion transcripts in superficial adult fibrosarcoma suggests close relationship to dermatofibrosarcoma protuberans. J Pathol 2001;194:88–94.CrossRefGoogle Scholar
Frierson, HF, Cooper, PH. Myxoid variant of dermatofibrosarcoma protuberans. Am J Surg Pathol 1983;7:445–450.CrossRefGoogle ScholarPubMed
Reimann, JD, Fletcher, CD. Myxoid dermatofibrosarcoma protuberans: a rare variant analyzed in a series of 23 cases. Am J Surg Pathol 2007;31:1371–1377.CrossRefGoogle Scholar
Calonje, E, Fletcher, CDM. Myoid differentiation in dermatofibrosarcoma protuberans and its fibrosarcomatous variant: clinicopathologic analysis of 5 cases. J Cutan Pathol 1996;23:30–36.CrossRefGoogle ScholarPubMed
Morimitsu, Y, Hisaoka, M, Okamoto, S, Hashimoto, H, Ushijima, M. Dermatofibrosarcoma protuberans and its fibrosarcomatous variant with areas of myoid differentiation: a report of three cases. Histopathology 1998;32:547–551.CrossRefGoogle ScholarPubMed
Sanz-Trelles, A, Ayala-Carbonero, A, Rodrigo-Fernandez, I, Weil-Lara, B. Leiomyomatous nodules and bundles of vascular origin in the fibrosarcomatous variant of dermatofibrosarcoma protuberans. J Cutan Pathol 1998;25:44–49.CrossRefGoogle ScholarPubMed
O'Dowd, J, Laidler, P. Progression of dermatofibrosarcoma protuberans to malignant fibrous histiocytoma: Report of a case with implications for tumor histogenesis. Hum Pathol 1988;19:368–370.CrossRefGoogle ScholarPubMed
Dupree, WB, Langloss, JM, Weiss, SW. Pigmented dermatofibrosarcoma protuberans (Bednar tumor): A pathologic, ultrastructural, and immunohistochemical study. Am J Surg Pathol 1985;9:630–639.CrossRefGoogle ScholarPubMed
Fletcher, CD, Theaker, JM, Flanagan, A, Krausz, T. Pigmented dermatofibrosarcoma protuberans (Bednar tumour): melanocytic colonization or neuroectodermal differentiation? A clinicopathologic and immunohistochemical study. Histopathology 1988;13:631–643.CrossRefGoogle ScholarPubMed
Ding, JA, Hashimoto, H, Sugimoto, T, Tsuneyoshi, M, Enjoji, M. Bednar tumor (pigmented dermatofibrosarcoma protuberans): An analysis of six cases. Acta Pathol Jpn 1990;40:744–754.Google ScholarPubMed
Abdul-Karim, FV, Evans, HL, Silva, EG. Giant cell fibroblastoma: A report of three cases. Am J Clin Pathol 1985;83:165–170.CrossRefGoogle ScholarPubMed
Dymock, RB, Allen, PW, Stirling, JW, Gilbert, EF, Thornbery, JM. Giant cell fibroblastoma: A distinctive, recurrent tumor of childhood. Am J Surg Pathol 1987;11:263–271.CrossRefGoogle ScholarPubMed
Shmookler, BM, Enzinger, FM, Weiss, SW. Giant cell fibroblastoma: A juvenile form of dermatofibrosarcoma protuberans. Cancer 1989;64:2154–2161.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Jha, P, Moosavi, C, Fanburg-Smith, JC. Giant cell fibroblastoma: an update and addition of 86 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger. Ann Diagn Pathol 2007;11:81–88.CrossRefGoogle Scholar
Chadarevian, JP, Coppola, D, Billmire, DF. Bednar tumor pattern in recurring giant cell fibroblastoma. Am J Clin Pathol 1993;100:164–166.CrossRefGoogle ScholarPubMed
Aiba, S, Tabata, N, Ishii, H, Ootani, H, Tagami, H. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. Br J Dermatol 1992;127:79–84.CrossRefGoogle ScholarPubMed
Altman, DA, Nickoloff, BJ, Fivenson, DP. Differential expression of factor XIIIa and CD34 in cutaneous mesenchymal tumors. J Cutan Pathol 1993;20:154–158.CrossRefGoogle ScholarPubMed
Kutzner, H. Expression of the human progenitor cell antigen (CD34, HPCA1) distinguishes dermatofibrosarcoma protuberans from fibrous histiocytoma in formalin-fixed, paraffin-embedded tissue. J Am Acad Dermatol 1993;28:613–617.CrossRefGoogle ScholarPubMed
Sato, N, Kimura, K, Tomita, Y. Recurrent dermatofibrosarcoma protuberans with myxoid and fibrosarcomatous changes paralleled by loss of CD34 expression. J Dermatol 1995;22:665–672.CrossRefGoogle ScholarPubMed
Goldblum, JR, Tuthill, RJ. CD34 and Factor XIIIa immunoreactivity in dermatofibrosarcoma protuberans and dermatofibroma. Am J Dermatopathol 1997;19:147–153.CrossRefGoogle ScholarPubMed
Fanburg-Smith, JF, Miettinen, M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protuberans and other non-neural tumors. A study of 1150 tumors and fetal and adult normal tissues. Hum Pathol 2001;32:976–983.CrossRefGoogle Scholar
Kahn, HJ, Fekete, E, From, L. Tenascin differentiates dermatofibroma from dermatofibrosarcoma protuberans: comparison with CD34 and factor XIIIa. Hum Pathol 2001;32:50–56.CrossRefGoogle ScholarPubMed
West, RB, Harvell, J, Linn, SC, Liu, CL, Prapong, W, Hernandez-Boussard, D. APO D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 2004;28:1063–1069.CrossRefGoogle ScholarPubMed
Sasaki, M, Ishida, T, Horiuchi, H, Machinami, R. Dermatofibrosarcoma protuberans: an analysis of proliferative activity, DNA flow cytometry and p53 overexpression with emphasis on its progression. Pathol Int 1999;49:799–806.CrossRefGoogle ScholarPubMed
Fetsch, JF, Michal, M, Miettinen, M. Pigmented (melanotic) neurofibroma: A clinicopathologic and immunohistochemical analysis of 19 lesions from 17 patients. Am J Surg Pathol 2000;24:331–343.CrossRefGoogle Scholar
Naeem, R, Lux, ML, Huang, SF, Naber, SP, Corson, JM, Fletcher, JA. Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 1995;147:1553–1558.Google ScholarPubMed
Pedeutour, F, Simon, MP, Minoletti, F, Sozzi, G, Pierotti, MA, Hecht, F, Turc-Carel, C. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res 1995;55:2400–2403.Google ScholarPubMed
Mandahl, N, Limon, J, Mertens, F, Arheden, K, Mitelman, F. Ring marker containing 17q and chromosome 22 in a case of dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 1996;89:88–91.CrossRefGoogle Scholar
Simon, MP, Pedeutour, F, Sirvent, N, Grosgeorge, J, Minoletti, F, Coindre, JM. Deregulation of the platelet-derived growth factor B-chain via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant cell fibroblastoma. Nat Genet 1997;15:95–98.CrossRefGoogle ScholarPubMed
Greco, A, Fusetti, L, Villa, R, Sozzi, G, Minoletti, F, Mauri, P, Pierotti, MA. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene 1998;17:1313–1319.CrossRefGoogle ScholarPubMed
Shimizu, A, O'Brien, KP, Sjoblom, T, Pietras, K, Buchdunger, E, Collins, VP. The dermatofibrosarcoma protuberans-associated collagen type I alpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:3719–3723.Google Scholar
Wang, J, Hisaoka, M, Shimajiri, S, Morimitsu, Y, Hashimoto, H. Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol 1999;8:113–119.CrossRefGoogle ScholarPubMed
Patel, KU, Szabo, SS, Hernandez, VS, Prieto, VG, Abruzzo, LV, Lazar, AJ. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcriptase polymerase chain reaction and in situ hybridization assays. Hum Pathol 2008;39:184–193.CrossRefGoogle ScholarPubMed
Bianchini, L, Maire, G, Guillot, B, Joujoux, JM, Follana, P, Simon, MP. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008 [Epub ahead of print].CrossRefGoogle Scholar
Greco, A, Roccato, E, Miranda, C, Cleris, L, Formelli, F, Pierotti, MA. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer 2001;92:354–360.CrossRefGoogle ScholarPubMed
Sjöblom, T, Shimizu, A, O'Brien, KP, Pietras, K, Dal Cin, P, Buchdeunger, E. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61:5778–5783.Google ScholarPubMed
Rubin, BP, Schuetze, SM, Eary, JF, Norwood, TH, Mirza, S, Conrad, EU. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 2002;20:3586–3591.CrossRefGoogle Scholar
Maki, RG, Awan, RA, Dixon, RH, Jhanwar, S, Antonescu, CR. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer 2002;100:623–626.CrossRefGoogle ScholarPubMed
McArthur, G. Dermatofibrosarcoma protuberans: recent clinical progress. Ann Surg Oncol 2007;14:2876–2886.CrossRefGoogle ScholarPubMed
Evans, HL. Low-grade fibromyxoid sarcoma: A report of 12 cases. Am J Surg Pathol 1993;17:595–600.CrossRefGoogle ScholarPubMed
Goodlad, JR, Mentzel, T, Fletcher, CDM. Low-grade fibromyxoid sarcoma: clinicopathological analysis of eleven new cases in support of a distinct entity. Histopathology 1995; 26:229–237.CrossRefGoogle ScholarPubMed
Folpe, AL, Lane, KL, Paull, G, Weiss, SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: A clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol 2000;24:1353–1360.CrossRefGoogle ScholarPubMed
Zamecnik, M, Michal, M. Low-grade fibromyxoid sarcoma: A report of eight cases with histologic, immunohistochemical, and ultrastructural study. Ann Diagn Pathol 2000;4:207–217.CrossRefGoogle ScholarPubMed
Billings, SD, Fanburg-Smith, JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): A clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol 2005;29:204–210.CrossRefGoogle Scholar
Guillou, L, Benhattar, J, Gengler, C, Gallagher, G, Reanchere-Vince, D, Collin, F. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting a potential relationship with sclerosing epithelioid fibrosarcoma: a study from the French sarcoma group. Am J Surg Pathol 2007;31:1887–1402.CrossRefGoogle ScholarPubMed
Reid, R, Chandu de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol 2003;27:1229–1236.CrossRefGoogle Scholar
Lane, KL, Shannon, RJ, Weiss, SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol 1997;21:1481–1488.CrossRefGoogle ScholarPubMed
Oda, Y, Takahara, T, Kawaguchi, K, Yamamoto, H, Tamiya, S, Matsuda, S. Low-grade fibromyxoid sarcoma versus low-grade myxofibrosarcoma in the extremities and trunk: A comparison of clinicopathological and immunohistochemical features. Histopathology 2004;45:29–38.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, Fletcher, JA, Nascimento, A, Domanski, HA. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218–228.CrossRefGoogle ScholarPubMed
Mertens, F, Fletcher, CDM, Antonescu, CR, Coindre, JM, Colecchia, M, Domanski, HA. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408–415.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Moller, E, Dahlen, A, Isaksson, M, Mandahl, N, Vlamis-Gardikas, A. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181–191.CrossRefGoogle ScholarPubMed
Matsuyama, A, Hisaoka, M, Shimajiri, S, Hayashi, T, Imamura, T, Ishida, T. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol 2006;30:1077–1084.CrossRefGoogle ScholarPubMed
Downs-Kelly, F, Goldblum, JR, Patel, RM, Weiss, SW, Folpe, AL, Mertens, F. The utility of fluorescence in-situ hybridization in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol 2008;32:8–13.CrossRefGoogle Scholar
Meis-Kindblom, JM, Kindblom, LG, Enzinger, FM. Sclerosing epithelioid fibrosarcoma: A variant of fibrosarcoma simulating carcinoma. Am J Surg Pathol 1995;19:979–993.CrossRefGoogle ScholarPubMed
Eyden, BP, Manson, C, Banerjee, SS, Roberts, IS, Harris, M. Sclerosing epithelioid fibrosarcoma: a study of five cases emphasizing diagnostic criteria. Histopathology 1998;33:354–360.CrossRefGoogle ScholarPubMed
Antonescu, C, Rosenblum, MK, Pereira, P, Nascimento, AG, Woodruff, JM. Sclerosing epithelioid fibrosarcoma: A study of 16 cases and confirmation of a clinicopathologic entity. Am J Surg Pathol 2001;25:699–709.CrossRefGoogle Scholar
Gisselsson, D, Andreasson, P, Meis-Kindblom, JM, Kindblom, LG, Mertens, F, Mandahl, N. Amplification of 12q13 and 12q15 sequences in a sclerosing epithelioid fibrosarcoma. Cancer Genet Cytogenet 1998;107:102–106.CrossRefGoogle Scholar
Scott, SM, Reiman, HM, Pritchard, DJ, Ilstrup, DM. Soft tissue fibrosarcoma: a clinicopathologic study of 132 cases. Cancer 1989;64:925–931.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Mentzel, T, Dry, S, Katenkamp, D, Fletcher, CDM. Low-grade myofibroblastic sarcoma: Analysis of 18 cases in the spectrum of myofibroblastic tumors. Am J Surg Pathol 1998;22:1228–1238.CrossRefGoogle ScholarPubMed
Montgomery, EA, Goldblum, JR, Fisher, C. Myofibrosarcoma: A clinicopathologic study. Am J Surg Pathol 2001;25:219–228.CrossRefGoogle ScholarPubMed
Meis-Kindblom, JM, Kindblom, LG. Acral myxoinflammatory fibroblastic sarcoma: A low grade tumor of the hands and feet. Am J Surg Pathol 1998;22:911–924.CrossRefGoogle ScholarPubMed
Montgomery, EA, Devaney, KO, Giordano, TJ, Weiss, SW. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: A distinctive lesion with features simulating inflammatory conditions, Hodgkin's disease, and various sarcomas. Mod Pathol 1998;11:384–391.Google ScholarPubMed
Lambert, I, Debiec-Rychter, M, Guelinckx, P, Hagemeijer, A, Sciot, R. Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch 2001;438:509–512.CrossRefGoogle ScholarPubMed
Mansoor, A, Fidda, N, Himoe, E, Payne, M, Lawce, H, Magenis, RE. Myxoinflammatory fibroblastic sarcoma with complex supernumerary ring chromosomes composed of chromosome 3 segments. Cancer Genet Cytogenet 2004;142:61–65.CrossRefGoogle Scholar
Ida, CM, Rolig, KA, Hulshizer, RL, Dyke, DL, Randolph, JL, Jenkins, RB. Myxoinflammatory fibroblastic sarcoma showing t(2;6)(q31;p21.3) as a sole cytogenetic abnormality. Cancer Genet Cytogenet 2007;177:139–142.CrossRefGoogle Scholar
Angervall, L, Kindblom, LG, Merck, C. Myxofibrosarcoma: A study of 30 cases. Acta Pathol Microbiol Scand 1977;85:127–140.Google Scholar
Weiss, SW, Enzinger, FM. Myxoid variant of malignant fibrous histiocytoma. Cancer 1977;39:1672–1685.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Mentzel, T, Berg, E, Molenaar, WM. Myxofibrosarcoma. In: Pathology and Genetics of Tumours of Soft Tissue and Bone, Fletcher, CDM, Unni, KK, Mertens, F (eds). Lyon, World Health Organization, 2002, pp. 102–103.Google Scholar
Mentzel, T, Calonje, E, Wadden, C, Camplejohn, RS, Beham, A, Smith, MAS. Myxofibrosarcoma: Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol 1996;20:391–405.CrossRefGoogle ScholarPubMed
Merck, C, Angervall, L, Kindblom, LG, Oden, A. Myxofibro-sarcoma: A malignant soft tissue tumor of fibroblastic-histiocytic origin. A clinicopathologic and prognostic study of 110 cases using a multivariate analysis. APMIS 1983;91(Suppl 282):1–40.Google Scholar
Huang, HY, Lal, P, Qin, J, Brennan, MF, Antonecu, CR. Low-grade myxofibrosarcoma: A clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Hum Pathol 2004;35:612–621.CrossRefGoogle Scholar
Hisaoka, M, Morimitsu, Y, Hashimoto, H, Ishida, T, Mukai, H, Satoh, H. Retroperitoneal liposarcoma with combined well-differentiated and myxoid malignant fibrous histiocytoma-like myxoid areas. Am J Surg Pathol 1999; 23:1480–1492.CrossRefGoogle ScholarPubMed
Coindre, JM, Mariani, O, Chibon, F, Mairal, A, Saint Aubain Somerhausen, A, Favre-Guillevin, E. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: A review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol 2003;16:256–262.CrossRefGoogle ScholarPubMed
Lagace, R, Delage, C, Seemayer, TA. Myxoid variant of malignant fibrous histiocytoma: ultrastructural observations. Cancer 1979;43:526–534.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Kindblom, LG, Merck, C, Angervall, L. The ultrastructure of myxofibrosarcoma: A study of 11 cases. Virchows Arch Pathol Anat Histol 1979;381:121–139.CrossRefGoogle ScholarPubMed
Fukuda, T, Tsuneyoshi, M, Enjoji, M. Malignant fibrous histiocytoma of soft parts: an ultrastructural quantitative study. Ultrastruct Pathol 1988;12:117–129.CrossRefGoogle Scholar
Clawson, K, Donner, LR, Dobin, SM. Translocation t(2;15)(p23;q21.2) and interstitial deletion of 7q in one case of low-grade myxofibrosarcoma. Cancer Genet Cytogenet 2001;127:140–142.CrossRefGoogle Scholar
Willems, SM, Debiec-Rychter, M, Szuhai, K, Hogendoorn, PC, Sciot, R. Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol 2006;19:407–416.CrossRefGoogle ScholarPubMed
Ohquri, T, Hisaoka, M, Kawauchi, S, Sasaki, K, Aoki, T, Kanemitsu, S. Cytogenetic analysis of myxoid liposarcoma and myxofibrosarcoma by array-based comparative genomic hybridization. J Clin Pathol 2006;59:978–983.CrossRefGoogle Scholar
Wood, GS, Beckstead, JH, Turner, RR, Hendrickson, MR, Kempson, RL, Warnke, RA: Malignant fibrous histiocy toma tumor cells resemble fibroblasts. Am J Surg Pathol 1986;10:323–335.CrossRefGoogle Scholar
Suh, C, Ordonez, NG, Mackay, N. Malignant fibrous histiocytoma: an ultrastructural perspective. Ultrastruct Pathol 2001;24:243–250.Google Scholar
Erlandson, RA, Antonescu, CR. The rise and fall of malignant fibrous histioctoma. Ultrastruct Pathol 2004;28:283–289.CrossRefGoogle Scholar
Kindblom, LG, Jacobsen, GK, Jacobsen, M. Immunohistochemical investigations of tumors of supposed fibroblastic-histiocytic origin. Hum Pathol 1982;13:834–840.CrossRefGoogle ScholarPubMed
Binder, SW, Said, JW, Shintaku, IP, Pinkus, GS. A histiocyte-specific marker in the diagnosis of malignant fibrous histiocytoma: Use of monoclonal antibody KP-1 (CD68). Am J Clin Pathol 1992;97:759–763.CrossRefGoogle Scholar
Soini, Y, Miettinen, M: Alpha-1-antitrypsin and lysozyme: Their limited significance in fibrohistiocytic tumors. Am J Clin Pathol 1989;91:515–521.CrossRefGoogle ScholarPubMed
Weiss, LM, Arber, DA, Chang, KL. CD68: A review. Appl Immunohistochem 1994;2:2–8.Google Scholar
Iwasaki, H, Isayama, T, Johzaki, H, Kikuchi, M. Malignant fibrous histiocytoma: Evidence of perivascular mesenchymal cell origin. Immunocytochemical studies with monoclonal anti-MFH antibodies. Am J Pathol 1987;128:528–537.Google ScholarPubMed
Fletcher, CDM, Berg, E, Molenaar, WM. Pleomorphic malignant fibrous histiocytoma/Undifferentiated high grade pleomorphic sarcoma. In: Pathology and Genetics of Tumours of Soft Tissue and Bone, Fletcher, CDM, Unni, KK, Mertens, F (eds). Lyon, World Health Organization, 2002, pp. 120–122.Google Scholar
Fletcher, CD. Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 1992;16:213–228.CrossRefGoogle ScholarPubMed
Fletcher, CDM, Gustafson, P, Rydholm, A, Willen, H, Akerman, M. Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: Prognostic relevance of subclassification. J Clin Oncol 2001;19:3045–3050.CrossRefGoogle ScholarPubMed
Brooks, JJ. The significance of double phenotypic patterns and markers in human sarcomas: A new model of mesenchymal differentiation. Am J Pathol 1986;125:113–123.Google ScholarPubMed
Rööser, B, Willen, H, Gustafson, P, Alvegård, TA, Rydholm, A: Malignant fibrous histiocytoma of soft tissue: A population-based epidemiologic and prognostic study of 137 patients. Cancer 1991;67:499–505.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Weiss, SW, Enzinger, FM. Malignant fibrous histiocytoma: An analysis of 200 cases. Cancer 1978;41:2250–2266.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Enjoji, M, Hashimoto, H, Tsuneyoshi, M, Iwasaki, H. Malignant fibrous histiocytoma: A clinicopathologic study of 130 cases. Acta Pathol Jpn 1980;30:727–741.Google ScholarPubMed
Bertoni, F, Capanna, R, Biagini, R, Bacchini, P, Guerra, A, Ruggieri, P. Malignant fibrous histiocytoma of soft tissue: An analysis of 78 cases located and deeply seated in the extremities. Cancer 1985;56:356–367.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rydholm, A, Syk, I. Malignant fibrous histiocytoma of soft tissue: Correlation between clinical variables and histologic malignancy grade. Cancer 1986;57:2323–2324.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Pezzi, CM, Rawlings, MS, Esgro, JJ, Pollock, RE, Romsdahl, MM. Prognostic factors in 227 patients with malignant fibrous histiocytoma. Cancer 1992;69:2098–2103.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
LeDoussal, V, Coindre, JM, Leroux, A, Hacene, K, Terrier, P, Bui, NB. Prognostic factors for patients with localized primary malignant fibrous histiocytoma: A multicenter study of 216 patients with multivariate analysis. Cancer 1996;77:1823–1830.3.0.CO;2-1>CrossRefGoogle Scholar
Salo, JC, Lewis, JJ, Woodruff, JM, Leung, DH, Brennan, MF. Malignant fibrous histiocytoma of the extremity. Cancer 1999;85:1765–1772.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Miettinen, M, Soini, Y: Malignant fibrous histiocytoma: Heterogeneous patterns of intermediate filament proteins by immunohistochemistry. Arch Pathol Lab Med 1989;113:1363–1366.Google ScholarPubMed
Litzky, , Brooks, JJ: Cytokeratin immunoreactivity in malignant fibrous histiocytoma and spindle cell tumors: comparison between frozen and paraffin-embedded tissues. Mod Pathol 1992;5:30–34.Google ScholarPubMed
Rosenberg, AE, O'Connell, JX, Dickersin, GR, Bhan, AK: Expression of epithelial markers in malignant fibrous histiocytoma of the musculoskeletal system: an immunohistochemical and electron microscopic study. Hum Pathol 1993;23:284–293.CrossRefGoogle Scholar
Koskull, H, Virtanen, I. Induction of cytokeratin expression in human mesenchymal cells. J Cell Physiol 1987;133:321–329.CrossRefGoogle Scholar
Knapp, AC, Franke, WW. Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell 1999;59:67–79.CrossRefGoogle Scholar
Hamada, T, Komiya, S, Hiraoka, K, Zenmyo, M, Morimatsu, M, Inoue, A: IL-6 in a pleomorphic type of malignant fibrous histiocytoma presenting with high fever. Hum Pathol 1998;29:758–761.CrossRefGoogle Scholar
Reinecke, P, Moll, R, Hildebrandt, B, Schmitz, M, Schneider, EM, Koldovsky, P. A novel human malignant fibrous histiocytoma cell line of heart (MFH-H) with secretion of hematopoietic growth factors. Anticancer Res 1999;19:1901–1907.Google ScholarPubMed
Mayumi, E, Okuno, T, Ogawa, T, Kurata, K, Ishioka, H, Hamamoto, H. Malignant fibrous histiocytoma of soft tissue producing granulocyte colony stimulating factor. Intern Med 2001;40:536–540.CrossRefGoogle ScholarPubMed
Mandahl, N, Heim, S, Willen, H, Rydholm, A, Eneroth, M, Nilbert, M. Characteristic karyotypic anomalies identify subtypes of malignant fibrous histiocytoma. Genes Chromosomes Cancer 1989;1:9–14.CrossRefGoogle ScholarPubMed
Szymanska, J, Tarkkanen, M, Wiklund, T, Virolainen, M, Blomqvist, C, Asko-Seljavaara, S. A cytogenetic study of malignant fibrous histiocytoma. Cancer Genet Cytogenet 1995; 85:91–96.CrossRefGoogle ScholarPubMed
Schmidt, H, Korber, S, Hinze, R, Taubert, H, Meye, A, Wurl, P. Cytogenetic characterization of ten malignant fibrous histiocytomas. Cancer Genet Cytogenet 1998;100:134–142.CrossRefGoogle ScholarPubMed
Choong, PF, Mandahl, N, Mertens, F, Willen, H, Alvegord, T, Kreicbergs, A. 19p+ marker chromosome correlates with relapse in malignant fibrous histiocytoma. Genes Chromosomes Cancer 1996;16:88–93.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Larramendy, ML, Tarkkanen, M, Blomqvist, C, Virolainen, M, Wiklund, T, Asko-Seljavaara, S. Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. Am J Pathol 1997; 151:1153–1161.Google ScholarPubMed
Hinze, R, Schagdarsurengin, U, Taubert, H, Meye, A, Wurl, P, Holzhausen, HJ. Assessment of genomic imbalances in malignant fibrous histiocytomas by comparative genomic hybridization. Int J Mol Med 1999;3:75–79.Google ScholarPubMed
Mairal, A, Terrier, P, Chibon, F, Sastre, X, Lecesne, A, Aurias, A: Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas: A comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 1999;111:134–138.CrossRefGoogle ScholarPubMed
Chibon, F, Mairal, A, Freneaux, P, Terrier, P, Coindre, JM, Sastre, X. The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 2000;60:6339–6345.Google ScholarPubMed
Sakabe, T, Shinomiya, T, Mori, T, Ariyama, Y, Fukuda, Y, Fujiwara, T. Identification of a novel gene, MASL1, within an amplicon at 8p23.1 detected in malignant fibrous histiocytomas by comparative genomic hybridization. Cancer Res 1999;59:511–515.Google ScholarPubMed
Weng, WH, Weide, J, Ahlen, J, Pang, ST, Lui, WO, Larsson, C. Characterization of large chromosome markers in malignant fibrous histiocytoma by spectral karyotyping, comparative genomic hybridization (CGH), and array CGH. Cancer Genet Cytogenet 2004;150:27–32.CrossRefGoogle Scholar
Simons, A, Schepens, M, Jeuken, J, Sprenger, S, Zande, G, Bjerkehagen, B. Frequent loss of 9p21 (p16(INK4A)) and other genomic imbalances in human malignant fibrous histiocytoma. Cancer Genet Cytogenet 2000;118:89–98.CrossRefGoogle ScholarPubMed
Reid, AH, Tsai, MM, Venzon, DJ, Wright, CF, Lack, EE, O'Leary, TJ: MDM2 amplification, P53 mutation, and accumulation of the P53 gene product in malignant fibrous histiocytoma. Diagn Mol Pathol 1996;5:65–73.CrossRefGoogle ScholarPubMed
Molina, P, Pellin, A, Navarro, S, Boix, J, Carda, C, Llombart-Bosch, A: Analysis of p53 and mdm2 proteins in malignant fibrous histiocytoma in absence of gene alteration: prognostic significance. Virchows Arch 1999;435:596–605.CrossRefGoogle ScholarPubMed
Iwao, K, Miyoshi, Y, Nawa, G, Yoshikawa, H, Ochi, T, Nakamura, Y: Frequent beta-catenin abnormalities in bone and soft tissue tumors. Jpn J Cancer Res 1999;90:205–209.CrossRefGoogle ScholarPubMed
Fretzin, DF, Helwig, EB. Atypical fibroxanthoma of the skin: A clinicopathologic study of 140 cases. Cancer 1973;31:1541–1552.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Dahl, I. Atypical fibroxanthoma of the skin: A clinico-pathological study of 57 cases. Acta Pathol Microbiol Scand A 1976;84:183–197.Google ScholarPubMed
Kuwano, H, Hashimoto, H, Enjoji, M. Atypical fibroxanthoma distinguishable from spindle cell carcinoma in sarcoma-like skin lesions. Cancer 1985;55:172–180.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Mirza, B, Weedon, D. Atypical fibroxanthoma: a clinicopathological study of 89 cases. Australas J Dermatol 2005;46:235–238.CrossRefGoogle ScholarPubMed
Hafner, J, Kunzi, W, Weinreich, T. Malignant fibrous histiocytoma and atypical fibroxanthoma in renal transplant patients. Dermatology 1999;198:29–32.CrossRefGoogle Scholar
Helwig, EB, May, D. Atypical fibroxanthoma of the skin with metastasis. Cancer 1986;57:368–376.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Cooper, JZ, Newman, SR, Scott, GA, Brown, MD. Metastasizing atypical fibroxanthoma (cutaneous malignant histiocytoma): Report of five cases. Dermatol Surg 2005;31:221–225.CrossRefGoogle ScholarPubMed
Lum, DJ, King, AR. Peritoneal metastases from an atypical fibroxanthoma. Am J Surg Pathol 2006;30:1041–1046.CrossRefGoogle ScholarPubMed
Calonje, E, Wadden, C, Wilson-Jones, E, Fletcher, CD. Spindle-cell non-pleomorphic atypical fibroxanthoma: analysis of a series and delineation of a distinctive variant. Histopathology 1993;22:247–254.CrossRefGoogle ScholarPubMed
Tomaszewski, MM, Lupton, GP. Atypical fibroxanthoma: An unusual variant with osteoclast-like giant cells. Am J Surg Pathol 1997;21:213–221.CrossRefGoogle ScholarPubMed
Longacre, TA, Smoller, BR, Rouse, RV. Atypical fibroxanthoma: Multiple immunohistologic profiles. Am J Surg Pathol 1993;17:1199–1209.CrossRefGoogle ScholarPubMed
Wick, MR, Fitzgibbon, J, Swanson, PE. Cutaneous sarcomas and sarcomatoid neoplasms of the skin. Semin Diagn Pathol 1993;10:148–158.Google Scholar
Kamino, H, Salcedo, E. Histopathologic and immunohisto-chemical diagnosis of benign and malignant fibrous and fibrohistiocytic tumors of the skin. Dermatol Clin 1999;17:487–505.CrossRefGoogle Scholar
Sakamoto, A, Oda, Y, Yamamoto, H, Oshiro, Y, Miyajima, K, Itakura, E. Calponin and h-caldesmon expression in atypical fibroxanthoma and superficial leiomyosarcoma. Virchows Arch 2002;440:404–409.CrossRefGoogle ScholarPubMed
Dei Tos, AP, Maestro, R, Doglioni, C, Gasparotto, D, Boiocchi, M, Laurino, L. Ultraviolet-induced p53 mutations in atypical fibroxanthoma. Am J Pathol 1994;145:11–17.Google ScholarPubMed
Sato, M, Nishigori, C, Zghal, M, Yagi, T, Takebe, H. Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum. Cancer Res 1993;53:2944–2946.Google ScholarPubMed
Kyriakos, M, Kempson, RL. Inflammatory fibrous histiocytoma: An aggressive and lethal lesion. Cancer 1976;37:1584–1606.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Melhem, MF, Meisler, AI, Saito, R, Finley, CG, Hockman, HR, Koski, RA. Cytokines in inflammatory malignant fibrous histiocytoma presenting with leukemoid reaction. Blood 1993;82:2038–2044.Google ScholarPubMed
Coindre, JM, Hostein, I, Maire, G, Derre, J, Guillou, L, Leroux, A. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histologic review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol 2004;203:822–830.CrossRefGoogle Scholar
Khalidi, HS, Singleton, TP, Weiss, SW. Inflammatory malignant fibrous histiocytoma: distinction from Hodgkin's disease and non-Hodgkin's lymphoma by a panel of leukocyte markers. Mod Pathol 1997;10:438–442.Google ScholarPubMed
Salm, R, Sissons, HA. Giant cell tumours of soft tissues. J Pathol 1972;107:27–39.CrossRefGoogle ScholarPubMed
Folpe, AL, Morris, RJ, Weiss, SW. Soft tissue giant cell tumor of low malignant potential: a proposal for the reclassification of malignant giant cell tumor of soft parts. Mod Pathol 1999;12:894–902.Google ScholarPubMed
Oliveira, AM, Dei Tos, AP, Fletcher, CDM, Nascimento, AG: Primary giant cell tumor of soft tissues: A study of 22 cases. Am J Surg Pathol 2000;24:248–256.CrossRefGoogle ScholarPubMed
O'Connell, JX, Wehrli, BM, Nielsen, GP, Rosenberg, AE. Giant cell tumors of soft tissue: a clinicopathologic study of 18 benign and malignant tumors. Am J Surg Pathol 2000;24:386–395.CrossRefGoogle ScholarPubMed
Guccion, JG, Enzinger, FM. Malignant giant cell tumor of soft parts: An analysis of 32 cases. Cancer 1972;29:1518–1529.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Angervall, L, Hagmar, B, Kindblom, LG, Merck, C. Malignant giant cell tumor of soft tissues: a clinicopathologic, cytologic, ultrastructural, angiographic and microangiographic study. Cancer 1981;47:736–747.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Smith, MEF, Fisher, C, Weiss, SW. Pleomorphic hyalinizing angiectatic tumor of soft parts: A low-grade neoplasm resembling neurilemoma. Am J Surg Pathol 1996;20:21–29.CrossRefGoogle ScholarPubMed
Groisman, GM, Bejar, J, Amar, M, Ben-Izhak, O. Pleomorphic hyalinizing angiectatic tumor of soft parts: immunohistochemical study including the expression of vascular endothelial growth factor. Arch Pathol Lab 2000;124:423–426.Google ScholarPubMed
Folpe, AL, Weiss, SW. Pleomorphic hyalinizing angiectatic tumor: analysis of 41 cases supporting evolution from a distinctive precursor lesion. Am J Surg Pathol 2004;28:1417–1425.CrossRefGoogle ScholarPubMed
Taylor, HB, Helwig, EB. Dermatofibrosarcoma protuberans: a study of 115 cases. Cancer 1962;15:717–725.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
McPeak, CJ, Cruz, T, Nicastri, AD. Dermatofibrosarcoma protuberans: an analysis of 86 cases – Five with metastasis. Ann Surg 1968;166:803–816.CrossRefGoogle Scholar
Pappo, AS, Rao, BN, Cain, A, Bodner, S, Pratt, CB. Dermatofibrosarcoma protuberans: the pediatric experience at St. Jude Children's Research Hospital. Pediatr Hematol Oncol 1997;14:563–568.CrossRefGoogle ScholarPubMed
Terrier-Lacombe, MJ, Guillou, L, Maire, G, Terrier, P, Vince, DR, Saint Aubain Somerhausen, N. Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data – a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 2003;27:27–39.CrossRefGoogle Scholar
Ghorbani, RP, Malpica, A, Ayala, A. Dermatofibrosarcoma protuberans of the vulva: a clinicopathologic and immunohistochemical analysis of four cases, one with fibrosarcomatous change, and review of the literature. Int J Gynecol Pathol 1999;18:366–373.CrossRefGoogle ScholarPubMed
Bowne, WB, Antonescu, CR, Leung, DH, Katz, SC, Hawkins, WG, Woodruff, JM. Dermatofibrosarcoma protuberans: A clinicopathologic analysis of patients treated and followed at a single institution. Cancer 2000;88:2711–2720.3.0.CO;2-M>CrossRefGoogle Scholar
Parlette, E, Smith, KJ, Germain, M, Rolfe, A, Skelton, H. Accelerated growth of dermatofibrosarcoma protuberans during pregnancy. J Am Acad Dermatol 1999;41:773–778.CrossRefGoogle ScholarPubMed
Ratner, D, Thomas, CO, Johnson, TM, Sondak, VK, Hamilton, TA, Nelson, BR. Mohs micrographic surgery for the treatment of dermatofibrosarcoma protuberans: Results of a multiinstitutional series with an analysis of the extent of microscopic spread. J Am Acad Dermatol 1997;37:600–613.CrossRefGoogle ScholarPubMed
Wrotnowski, U, Cooper, PH, Shmookler, BM. Fibrosarcomatous change in dermatofibrosarcoma protuberans. Am J Surg Pathol 1988;13:287–293.CrossRefGoogle Scholar
Ding, J, Hashimoto, H, Enjoji, M. Dermatofibrosarcoma protuberans with fibrosarcomatous areas: A clinicopathologic study of nine cases and comparison with allied tumors. Cancer 1989;64:721–729.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Connelly, JH, Evans, HL. Dermatofibrosarcoma protuberans: A clinicopathologic review with emphasis on fibrosarcomatous areas. Am J Surg Pathol 1992;16:921–925.CrossRefGoogle ScholarPubMed
Mentzel, T, Beham, A, Katenkamp, D, Dei Tos, AP, Fletcher, CDM. Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance. Am J Surg Pathol 1998;22:576–587.CrossRefGoogle ScholarPubMed
Goldblum, JR, Reith, JD, Weiss, SW. Sarcomas arising in dermatofibrosarcoma protuberans: A reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow-up. Am J Surg Pathol 2000;24:1125–1130.CrossRefGoogle ScholarPubMed
Gloster, HM. Derrmatofibrosarcoma protuberans. J Am Acad Dermatol 1996;35:355–374.CrossRefGoogle ScholarPubMed
Diaz-Cascajo, C, Weyers, W, Rey-Lopez, A, Borghi, S. Deep dermatofibrosarcoma protuberans: a subcutaneous variant. Histopathology 1998;32:552–555.CrossRefGoogle ScholarPubMed
Shen, WQ, Hashimoto, H, Okamoto, S, Ishida, T, Meis-Kindblom, JM, Kindblom, LG. Expression of COLIAI-PDGFB fusion transcripts in superficial adult fibrosarcoma suggests close relationship to dermatofibrosarcoma protuberans. J Pathol 2001;194:88–94.CrossRefGoogle Scholar
Frierson, HF, Cooper, PH. Myxoid variant of dermatofibrosarcoma protuberans. Am J Surg Pathol 1983;7:445–450.CrossRefGoogle ScholarPubMed
Reimann, JD, Fletcher, CD. Myxoid dermatofibrosarcoma protuberans: a rare variant analyzed in a series of 23 cases. Am J Surg Pathol 2007;31:1371–1377.CrossRefGoogle Scholar
Calonje, E, Fletcher, CDM. Myoid differentiation in dermatofibrosarcoma protuberans and its fibrosarcomatous variant: clinicopathologic analysis of 5 cases. J Cutan Pathol 1996;23:30–36.CrossRefGoogle ScholarPubMed
Morimitsu, Y, Hisaoka, M, Okamoto, S, Hashimoto, H, Ushijima, M. Dermatofibrosarcoma protuberans and its fibrosarcomatous variant with areas of myoid differentiation: a report of three cases. Histopathology 1998;32:547–551.CrossRefGoogle ScholarPubMed
Sanz-Trelles, A, Ayala-Carbonero, A, Rodrigo-Fernandez, I, Weil-Lara, B. Leiomyomatous nodules and bundles of vascular origin in the fibrosarcomatous variant of dermatofibrosarcoma protuberans. J Cutan Pathol 1998;25:44–49.CrossRefGoogle ScholarPubMed
O'Dowd, J, Laidler, P. Progression of dermatofibrosarcoma protuberans to malignant fibrous histiocytoma: Report of a case with implications for tumor histogenesis. Hum Pathol 1988;19:368–370.CrossRefGoogle ScholarPubMed
Dupree, WB, Langloss, JM, Weiss, SW. Pigmented dermatofibrosarcoma protuberans (Bednar tumor): A pathologic, ultrastructural, and immunohistochemical study. Am J Surg Pathol 1985;9:630–639.CrossRefGoogle ScholarPubMed
Fletcher, CD, Theaker, JM, Flanagan, A, Krausz, T. Pigmented dermatofibrosarcoma protuberans (Bednar tumour): melanocytic colonization or neuroectodermal differentiation? A clinicopathologic and immunohistochemical study. Histopathology 1988;13:631–643.CrossRefGoogle ScholarPubMed
Ding, JA, Hashimoto, H, Sugimoto, T, Tsuneyoshi, M, Enjoji, M. Bednar tumor (pigmented dermatofibrosarcoma protuberans): An analysis of six cases. Acta Pathol Jpn 1990;40:744–754.Google ScholarPubMed
Abdul-Karim, FV, Evans, HL, Silva, EG. Giant cell fibroblastoma: A report of three cases. Am J Clin Pathol 1985;83:165–170.CrossRefGoogle ScholarPubMed
Dymock, RB, Allen, PW, Stirling, JW, Gilbert, EF, Thornbery, JM. Giant cell fibroblastoma: A distinctive, recurrent tumor of childhood. Am J Surg Pathol 1987;11:263–271.CrossRefGoogle ScholarPubMed
Shmookler, BM, Enzinger, FM, Weiss, SW. Giant cell fibroblastoma: A juvenile form of dermatofibrosarcoma protuberans. Cancer 1989;64:2154–2161.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Jha, P, Moosavi, C, Fanburg-Smith, JC. Giant cell fibroblastoma: an update and addition of 86 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger. Ann Diagn Pathol 2007;11:81–88.CrossRefGoogle Scholar
Chadarevian, JP, Coppola, D, Billmire, DF. Bednar tumor pattern in recurring giant cell fibroblastoma. Am J Clin Pathol 1993;100:164–166.CrossRefGoogle ScholarPubMed
Aiba, S, Tabata, N, Ishii, H, Ootani, H, Tagami, H. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. Br J Dermatol 1992;127:79–84.CrossRefGoogle ScholarPubMed
Altman, DA, Nickoloff, BJ, Fivenson, DP. Differential expression of factor XIIIa and CD34 in cutaneous mesenchymal tumors. J Cutan Pathol 1993;20:154–158.CrossRefGoogle ScholarPubMed
Kutzner, H. Expression of the human progenitor cell antigen (CD34, HPCA1) distinguishes dermatofibrosarcoma protuberans from fibrous histiocytoma in formalin-fixed, paraffin-embedded tissue. J Am Acad Dermatol 1993;28:613–617.CrossRefGoogle ScholarPubMed
Sato, N, Kimura, K, Tomita, Y. Recurrent dermatofibrosarcoma protuberans with myxoid and fibrosarcomatous changes paralleled by loss of CD34 expression. J Dermatol 1995;22:665–672.CrossRefGoogle ScholarPubMed
Goldblum, JR, Tuthill, RJ. CD34 and Factor XIIIa immunoreactivity in dermatofibrosarcoma protuberans and dermatofibroma. Am J Dermatopathol 1997;19:147–153.CrossRefGoogle ScholarPubMed
Fanburg-Smith, JF, Miettinen, M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protuberans and other non-neural tumors. A study of 1150 tumors and fetal and adult normal tissues. Hum Pathol 2001;32:976–983.CrossRefGoogle Scholar
Kahn, HJ, Fekete, E, From, L. Tenascin differentiates dermatofibroma from dermatofibrosarcoma protuberans: comparison with CD34 and factor XIIIa. Hum Pathol 2001;32:50–56.CrossRefGoogle ScholarPubMed
West, RB, Harvell, J, Linn, SC, Liu, CL, Prapong, W, Hernandez-Boussard, D. APO D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 2004;28:1063–1069.CrossRefGoogle ScholarPubMed
Sasaki, M, Ishida, T, Horiuchi, H, Machinami, R. Dermatofibrosarcoma protuberans: an analysis of proliferative activity, DNA flow cytometry and p53 overexpression with emphasis on its progression. Pathol Int 1999;49:799–806.CrossRefGoogle ScholarPubMed
Fetsch, JF, Michal, M, Miettinen, M. Pigmented (melanotic) neurofibroma: A clinicopathologic and immunohistochemical analysis of 19 lesions from 17 patients. Am J Surg Pathol 2000;24:331–343.CrossRefGoogle Scholar
Naeem, R, Lux, ML, Huang, SF, Naber, SP, Corson, JM, Fletcher, JA. Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 1995;147:1553–1558.Google ScholarPubMed
Pedeutour, F, Simon, MP, Minoletti, F, Sozzi, G, Pierotti, MA, Hecht, F, Turc-Carel, C. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res 1995;55:2400–2403.Google ScholarPubMed
Mandahl, N, Limon, J, Mertens, F, Arheden, K, Mitelman, F. Ring marker containing 17q and chromosome 22 in a case of dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 1996;89:88–91.CrossRefGoogle Scholar
Simon, MP, Pedeutour, F, Sirvent, N, Grosgeorge, J, Minoletti, F, Coindre, JM. Deregulation of the platelet-derived growth factor B-chain via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant cell fibroblastoma. Nat Genet 1997;15:95–98.CrossRefGoogle ScholarPubMed
Greco, A, Fusetti, L, Villa, R, Sozzi, G, Minoletti, F, Mauri, P, Pierotti, MA. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene 1998;17:1313–1319.CrossRefGoogle ScholarPubMed
Shimizu, A, O'Brien, KP, Sjoblom, T, Pietras, K, Buchdunger, E, Collins, VP. The dermatofibrosarcoma protuberans-associated collagen type I alpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:3719–3723.Google Scholar
Wang, J, Hisaoka, M, Shimajiri, S, Morimitsu, Y, Hashimoto, H. Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol 1999;8:113–119.CrossRefGoogle ScholarPubMed
Patel, KU, Szabo, SS, Hernandez, VS, Prieto, VG, Abruzzo, LV, Lazar, AJ. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcriptase polymerase chain reaction and in situ hybridization assays. Hum Pathol 2008;39:184–193.CrossRefGoogle ScholarPubMed
Bianchini, L, Maire, G, Guillot, B, Joujoux, JM, Follana, P, Simon, MP. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008 [Epub ahead of print].CrossRefGoogle Scholar
Greco, A, Roccato, E, Miranda, C, Cleris, L, Formelli, F, Pierotti, MA. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer 2001;92:354–360.CrossRefGoogle ScholarPubMed
Sjöblom, T, Shimizu, A, O'Brien, KP, Pietras, K, Dal Cin, P, Buchdeunger, E. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61:5778–5783.Google ScholarPubMed
Rubin, BP, Schuetze, SM, Eary, JF, Norwood, TH, Mirza, S, Conrad, EU. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 2002;20:3586–3591.CrossRefGoogle Scholar
Maki, RG, Awan, RA, Dixon, RH, Jhanwar, S, Antonescu, CR. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer 2002;100:623–626.CrossRefGoogle ScholarPubMed
McArthur, G. Dermatofibrosarcoma protuberans: recent clinical progress. Ann Surg Oncol 2007;14:2876–2886.CrossRefGoogle ScholarPubMed
Evans, HL. Low-grade fibromyxoid sarcoma: A report of 12 cases. Am J Surg Pathol 1993;17:595–600.CrossRefGoogle ScholarPubMed
Goodlad, JR, Mentzel, T, Fletcher, CDM. Low-grade fibromyxoid sarcoma: clinicopathological analysis of eleven new cases in support of a distinct entity. Histopathology 1995; 26:229–237.CrossRefGoogle ScholarPubMed
Folpe, AL, Lane, KL, Paull, G, Weiss, SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: A clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol 2000;24:1353–1360.CrossRefGoogle ScholarPubMed
Zamecnik, M, Michal, M. Low-grade fibromyxoid sarcoma: A report of eight cases with histologic, immunohistochemical, and ultrastructural study. Ann Diagn Pathol 2000;4:207–217.CrossRefGoogle ScholarPubMed
Billings, SD, Fanburg-Smith, JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): A clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol 2005;29:204–210.CrossRefGoogle Scholar
Guillou, L, Benhattar, J, Gengler, C, Gallagher, G, Reanchere-Vince, D, Collin, F. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting a potential relationship with sclerosing epithelioid fibrosarcoma: a study from the French sarcoma group. Am J Surg Pathol 2007;31:1887–1402.CrossRefGoogle ScholarPubMed
Reid, R, Chandu de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol 2003;27:1229–1236.CrossRefGoogle Scholar
Lane, KL, Shannon, RJ, Weiss, SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol 1997;21:1481–1488.CrossRefGoogle ScholarPubMed
Oda, Y, Takahara, T, Kawaguchi, K, Yamamoto, H, Tamiya, S, Matsuda, S. Low-grade fibromyxoid sarcoma versus low-grade myxofibrosarcoma in the extremities and trunk: A comparison of clinicopathological and immunohistochemical features. Histopathology 2004;45:29–38.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, Fletcher, JA, Nascimento, A, Domanski, HA. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218–228.CrossRefGoogle ScholarPubMed
Mertens, F, Fletcher, CDM, Antonescu, CR, Coindre, JM, Colecchia, M, Domanski, HA. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408–415.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Moller, E, Dahlen, A, Isaksson, M, Mandahl, N, Vlamis-Gardikas, A. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181–191.CrossRefGoogle ScholarPubMed
Matsuyama, A, Hisaoka, M, Shimajiri, S, Hayashi, T, Imamura, T, Ishida, T. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol 2006;30:1077–1084.CrossRefGoogle ScholarPubMed
Downs-Kelly, F, Goldblum, JR, Patel, RM, Weiss, SW, Folpe, AL, Mertens, F. The utility of fluorescence in-situ hybridization in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol 2008;32:8–13.CrossRefGoogle Scholar
Meis-Kindblom, JM, Kindblom, LG, Enzinger, FM. Sclerosing epithelioid fibrosarcoma: A variant of fibrosarcoma simulating carcinoma. Am J Surg Pathol 1995;19:979–993.CrossRefGoogle ScholarPubMed
Eyden, BP, Manson, C, Banerjee, SS, Roberts, IS, Harris, M. Sclerosing epithelioid fibrosarcoma: a study of five cases emphasizing diagnostic criteria. Histopathology 1998;33:354–360.CrossRefGoogle ScholarPubMed
Antonescu, C, Rosenblum, MK, Pereira, P, Nascimento, AG, Woodruff, JM. Sclerosing epithelioid fibrosarcoma: A study of 16 cases and confirmation of a clinicopathologic entity. Am J Surg Pathol 2001;25:699–709.CrossRefGoogle Scholar
Gisselsson, D, Andreasson, P, Meis-Kindblom, JM, Kindblom, LG, Mertens, F, Mandahl, N. Amplification of 12q13 and 12q15 sequences in a sclerosing epithelioid fibrosarcoma. Cancer Genet Cytogenet 1998;107:102–106.CrossRefGoogle Scholar
Scott, SM, Reiman, HM, Pritchard, DJ, Ilstrup, DM. Soft tissue fibrosarcoma: a clinicopathologic study of 132 cases. Cancer 1989;64:925–931.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Mentzel, T, Dry, S, Katenkamp, D, Fletcher, CDM. Low-grade myofibroblastic sarcoma: Analysis of 18 cases in the spectrum of myofibroblastic tumors. Am J Surg Pathol 1998;22:1228–1238.CrossRefGoogle ScholarPubMed
Montgomery, EA, Goldblum, JR, Fisher, C. Myofibrosarcoma: A clinicopathologic study. Am J Surg Pathol 2001;25:219–228.CrossRefGoogle ScholarPubMed
Meis-Kindblom, JM, Kindblom, LG. Acral myxoinflammatory fibroblastic sarcoma: A low grade tumor of the hands and feet. Am J Surg Pathol 1998;22:911–924.CrossRefGoogle ScholarPubMed
Montgomery, EA, Devaney, KO, Giordano, TJ, Weiss, SW. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: A distinctive lesion with features simulating inflammatory conditions, Hodgkin's disease, and various sarcomas. Mod Pathol 1998;11:384–391.Google ScholarPubMed
Lambert, I, Debiec-Rychter, M, Guelinckx, P, Hagemeijer, A, Sciot, R. Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch 2001;438:509–512.CrossRefGoogle ScholarPubMed
Mansoor, A, Fidda, N, Himoe, E, Payne, M, Lawce, H, Magenis, RE. Myxoinflammatory fibroblastic sarcoma with complex supernumerary ring chromosomes composed of chromosome 3 segments. Cancer Genet Cytogenet 2004;142:61–65.CrossRefGoogle Scholar
Ida, CM, Rolig, KA, Hulshizer, RL, Dyke, DL, Randolph, JL, Jenkins, RB. Myxoinflammatory fibroblastic sarcoma showing t(2;6)(q31;p21.3) as a sole cytogenetic abnormality. Cancer Genet Cytogenet 2007;177:139–142.CrossRefGoogle Scholar
Angervall, L, Kindblom, LG, Merck, C. Myxofibrosarcoma: A study of 30 cases. Acta Pathol Microbiol Scand 1977;85:127–140.Google Scholar
Weiss, SW, Enzinger, FM. Myxoid variant of malignant fibrous histiocytoma. Cancer 1977;39:1672–1685.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Mentzel, T, Berg, E, Molenaar, WM. Myxofibrosarcoma. In: Pathology and Genetics of Tumours of Soft Tissue and Bone, Fletcher, CDM, Unni, KK, Mertens, F (eds). Lyon, World Health Organization, 2002, pp. 102–103.Google Scholar
Mentzel, T, Calonje, E, Wadden, C, Camplejohn, RS, Beham, A, Smith, MAS. Myxofibrosarcoma: Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol 1996;20:391–405.CrossRefGoogle ScholarPubMed
Merck, C, Angervall, L, Kindblom, LG, Oden, A. Myxofibro-sarcoma: A malignant soft tissue tumor of fibroblastic-histiocytic origin. A clinicopathologic and prognostic study of 110 cases using a multivariate analysis. APMIS 1983;91(Suppl 282):1–40.Google Scholar
Huang, HY, Lal, P, Qin, J, Brennan, MF, Antonecu, CR. Low-grade myxofibrosarcoma: A clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Hum Pathol 2004;35:612–621.CrossRefGoogle Scholar
Hisaoka, M, Morimitsu, Y, Hashimoto, H, Ishida, T, Mukai, H, Satoh, H. Retroperitoneal liposarcoma with combined well-differentiated and myxoid malignant fibrous histiocytoma-like myxoid areas. Am J Surg Pathol 1999; 23:1480–1492.CrossRefGoogle ScholarPubMed
Coindre, JM, Mariani, O, Chibon, F, Mairal, A, Saint Aubain Somerhausen, A, Favre-Guillevin, E. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: A review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol 2003;16:256–262.CrossRefGoogle ScholarPubMed
Lagace, R, Delage, C, Seemayer, TA. Myxoid variant of malignant fibrous histiocytoma: ultrastructural observations. Cancer 1979;43:526–534.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Kindblom, LG, Merck, C, Angervall, L. The ultrastructure of myxofibrosarcoma: A study of 11 cases. Virchows Arch Pathol Anat Histol 1979;381:121–139.CrossRefGoogle ScholarPubMed
Fukuda, T, Tsuneyoshi, M, Enjoji, M. Malignant fibrous histiocytoma of soft parts: an ultrastructural quantitative study. Ultrastruct Pathol 1988;12:117–129.CrossRefGoogle Scholar
Clawson, K, Donner, LR, Dobin, SM. Translocation t(2;15)(p23;q21.2) and interstitial deletion of 7q in one case of low-grade myxofibrosarcoma. Cancer Genet Cytogenet 2001;127:140–142.CrossRefGoogle Scholar
Willems, SM, Debiec-Rychter, M, Szuhai, K, Hogendoorn, PC, Sciot, R. Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol 2006;19:407–416.CrossRefGoogle ScholarPubMed
Ohquri, T, Hisaoka, M, Kawauchi, S, Sasaki, K, Aoki, T, Kanemitsu, S. Cytogenetic analysis of myxoid liposarcoma and myxofibrosarcoma by array-based comparative genomic hybridization. J Clin Pathol 2006;59:978–983.CrossRefGoogle Scholar
Wood, GS, Beckstead, JH, Turner, RR, Hendrickson, MR, Kempson, RL, Warnke, RA: Malignant fibrous histiocy toma tumor cells resemble fibroblasts. Am J Surg Pathol 1986;10:323–335.CrossRefGoogle Scholar
Suh, C, Ordonez, NG, Mackay, N. Malignant fibrous histiocytoma: an ultrastructural perspective. Ultrastruct Pathol 2001;24:243–250.Google Scholar
Erlandson, RA, Antonescu, CR. The rise and fall of malignant fibrous histioctoma. Ultrastruct Pathol 2004;28:283–289.CrossRefGoogle Scholar
Kindblom, LG, Jacobsen, GK, Jacobsen, M. Immunohistochemical investigations of tumors of supposed fibroblastic-histiocytic origin. Hum Pathol 1982;13:834–840.CrossRefGoogle ScholarPubMed
Binder, SW, Said, JW, Shintaku, IP, Pinkus, GS. A histiocyte-specific marker in the diagnosis of malignant fibrous histiocytoma: Use of monoclonal antibody KP-1 (CD68). Am J Clin Pathol 1992;97:759–763.CrossRefGoogle Scholar
Soini, Y, Miettinen, M: Alpha-1-antitrypsin and lysozyme: Their limited significance in fibrohistiocytic tumors. Am J Clin Pathol 1989;91:515–521.CrossRefGoogle ScholarPubMed
Weiss, LM, Arber, DA, Chang, KL. CD68: A review. Appl Immunohistochem 1994;2:2–8.Google Scholar
Iwasaki, H, Isayama, T, Johzaki, H, Kikuchi, M. Malignant fibrous histiocytoma: Evidence of perivascular mesenchymal cell origin. Immunocytochemical studies with monoclonal anti-MFH antibodies. Am J Pathol 1987;128:528–537.Google ScholarPubMed
Fletcher, CDM, Berg, E, Molenaar, WM. Pleomorphic malignant fibrous histiocytoma/Undifferentiated high grade pleomorphic sarcoma. In: Pathology and Genetics of Tumours of Soft Tissue and Bone, Fletcher, CDM, Unni, KK, Mertens, F (eds). Lyon, World Health Organization, 2002, pp. 120–122.Google Scholar
Fletcher, CD. Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 1992;16:213–228.CrossRefGoogle ScholarPubMed
Fletcher, CDM, Gustafson, P, Rydholm, A, Willen, H, Akerman, M. Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: Prognostic relevance of subclassification. J Clin Oncol 2001;19:3045–3050.CrossRefGoogle ScholarPubMed
Brooks, JJ. The significance of double phenotypic patterns and markers in human sarcomas: A new model of mesenchymal differentiation. Am J Pathol 1986;125:113–123.Google ScholarPubMed
Rööser, B, Willen, H, Gustafson, P, Alvegård, TA, Rydholm, A: Malignant fibrous histiocytoma of soft tissue: A population-based epidemiologic and prognostic study of 137 patients. Cancer 1991;67:499–505.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Weiss, SW, Enzinger, FM. Malignant fibrous histiocytoma: An analysis of 200 cases. Cancer 1978;41:2250–2266.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Enjoji, M, Hashimoto, H, Tsuneyoshi, M, Iwasaki, H. Malignant fibrous histiocytoma: A clinicopathologic study of 130 cases. Acta Pathol Jpn 1980;30:727–741.Google ScholarPubMed
Bertoni, F, Capanna, R, Biagini, R, Bacchini, P, Guerra, A, Ruggieri, P. Malignant fibrous histiocytoma of soft tissue: An analysis of 78 cases located and deeply seated in the extremities. Cancer 1985;56:356–367.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rydholm, A, Syk, I. Malignant fibrous histiocytoma of soft tissue: Correlation between clinical variables and histologic malignancy grade. Cancer 1986;57:2323–2324.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Pezzi, CM, Rawlings, MS, Esgro, JJ, Pollock, RE, Romsdahl, MM. Prognostic factors in 227 patients with malignant fibrous histiocytoma. Cancer 1992;69:2098–2103.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
LeDoussal, V, Coindre, JM, Leroux, A, Hacene, K, Terrier, P, Bui, NB. Prognostic factors for patients with localized primary malignant fibrous histiocytoma: A multicenter study of 216 patients with multivariate analysis. Cancer 1996;77:1823–1830.3.0.CO;2-1>CrossRefGoogle Scholar
Salo, JC, Lewis, JJ, Woodruff, JM, Leung, DH, Brennan, MF. Malignant fibrous histiocytoma of the extremity. Cancer 1999;85:1765–1772.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Miettinen, M, Soini, Y: Malignant fibrous histiocytoma: Heterogeneous patterns of intermediate filament proteins by immunohistochemistry. Arch Pathol Lab Med 1989;113:1363–1366.Google ScholarPubMed
Litzky, , Brooks, JJ: Cytokeratin immunoreactivity in malignant fibrous histiocytoma and spindle cell tumors: comparison between frozen and paraffin-embedded tissues. Mod Pathol 1992;5:30–34.Google ScholarPubMed
Rosenberg, AE, O'Connell, JX, Dickersin, GR, Bhan, AK: Expression of epithelial markers in malignant fibrous histiocytoma of the musculoskeletal system: an immunohistochemical and electron microscopic study. Hum Pathol 1993;23:284–293.CrossRefGoogle Scholar
Koskull, H, Virtanen, I. Induction of cytokeratin expression in human mesenchymal cells. J Cell Physiol 1987;133:321–329.CrossRefGoogle Scholar
Knapp, AC, Franke, WW. Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell 1999;59:67–79.CrossRefGoogle Scholar
Hamada, T, Komiya, S, Hiraoka, K, Zenmyo, M, Morimatsu, M, Inoue, A: IL-6 in a pleomorphic type of malignant fibrous histiocytoma presenting with high fever. Hum Pathol 1998;29:758–761.CrossRefGoogle Scholar
Reinecke, P, Moll, R, Hildebrandt, B, Schmitz, M, Schneider, EM, Koldovsky, P. A novel human malignant fibrous histiocytoma cell line of heart (MFH-H) with secretion of hematopoietic growth factors. Anticancer Res 1999;19:1901–1907.Google ScholarPubMed
Mayumi, E, Okuno, T, Ogawa, T, Kurata, K, Ishioka, H, Hamamoto, H. Malignant fibrous histiocytoma of soft tissue producing granulocyte colony stimulating factor. Intern Med 2001;40:536–540.CrossRefGoogle ScholarPubMed
Mandahl, N, Heim, S, Willen, H, Rydholm, A, Eneroth, M, Nilbert, M. Characteristic karyotypic anomalies identify subtypes of malignant fibrous histiocytoma. Genes Chromosomes Cancer 1989;1:9–14.CrossRefGoogle ScholarPubMed
Szymanska, J, Tarkkanen, M, Wiklund, T, Virolainen, M, Blomqvist, C, Asko-Seljavaara, S. A cytogenetic study of malignant fibrous histiocytoma. Cancer Genet Cytogenet 1995; 85:91–96.CrossRefGoogle ScholarPubMed
Schmidt, H, Korber, S, Hinze, R, Taubert, H, Meye, A, Wurl, P. Cytogenetic characterization of ten malignant fibrous histiocytomas. Cancer Genet Cytogenet 1998;100:134–142.CrossRefGoogle ScholarPubMed
Choong, PF, Mandahl, N, Mertens, F, Willen, H, Alvegord, T, Kreicbergs, A. 19p+ marker chromosome correlates with relapse in malignant fibrous histiocytoma. Genes Chromosomes Cancer 1996;16:88–93.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Larramendy, ML, Tarkkanen, M, Blomqvist, C, Virolainen, M, Wiklund, T, Asko-Seljavaara, S. Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. Am J Pathol 1997; 151:1153–1161.Google ScholarPubMed
Hinze, R, Schagdarsurengin, U, Taubert, H, Meye, A, Wurl, P, Holzhausen, HJ. Assessment of genomic imbalances in malignant fibrous histiocytomas by comparative genomic hybridization. Int J Mol Med 1999;3:75–79.Google ScholarPubMed
Mairal, A, Terrier, P, Chibon, F, Sastre, X, Lecesne, A, Aurias, A: Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas: A comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 1999;111:134–138.CrossRefGoogle ScholarPubMed
Chibon, F, Mairal, A, Freneaux, P, Terrier, P, Coindre, JM, Sastre, X. The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 2000;60:6339–6345.Google ScholarPubMed
Sakabe, T, Shinomiya, T, Mori, T, Ariyama, Y, Fukuda, Y, Fujiwara, T. Identification of a novel gene, MASL1, within an amplicon at 8p23.1 detected in malignant fibrous histiocytomas by comparative genomic hybridization. Cancer Res 1999;59:511–515.Google ScholarPubMed
Weng, WH, Weide, J, Ahlen, J, Pang, ST, Lui, WO, Larsson, C. Characterization of large chromosome markers in malignant fibrous histiocytoma by spectral karyotyping, comparative genomic hybridization (CGH), and array CGH. Cancer Genet Cytogenet 2004;150:27–32.CrossRefGoogle Scholar
Simons, A, Schepens, M, Jeuken, J, Sprenger, S, Zande, G, Bjerkehagen, B. Frequent loss of 9p21 (p16(INK4A)) and other genomic imbalances in human malignant fibrous histiocytoma. Cancer Genet Cytogenet 2000;118:89–98.CrossRefGoogle ScholarPubMed
Reid, AH, Tsai, MM, Venzon, DJ, Wright, CF, Lack, EE, O'Leary, TJ: MDM2 amplification, P53 mutation, and accumulation of the P53 gene product in malignant fibrous histiocytoma. Diagn Mol Pathol 1996;5:65–73.CrossRefGoogle ScholarPubMed
Molina, P, Pellin, A, Navarro, S, Boix, J, Carda, C, Llombart-Bosch, A: Analysis of p53 and mdm2 proteins in malignant fibrous histiocytoma in absence of gene alteration: prognostic significance. Virchows Arch 1999;435:596–605.CrossRefGoogle ScholarPubMed
Iwao, K, Miyoshi, Y, Nawa, G, Yoshikawa, H, Ochi, T, Nakamura, Y: Frequent beta-catenin abnormalities in bone and soft tissue tumors. Jpn J Cancer Res 1999;90:205–209.CrossRefGoogle ScholarPubMed
Fretzin, DF, Helwig, EB. Atypical fibroxanthoma of the skin: A clinicopathologic study of 140 cases. Cancer 1973;31:1541–1552.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Dahl, I. Atypical fibroxanthoma of the skin: A clinico-pathological study of 57 cases. Acta Pathol Microbiol Scand A 1976;84:183–197.Google ScholarPubMed
Kuwano, H, Hashimoto, H, Enjoji, M. Atypical fibroxanthoma distinguishable from spindle cell carcinoma in sarcoma-like skin lesions. Cancer 1985;55:172–180.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Mirza, B, Weedon, D. Atypical fibroxanthoma: a clinicopathological study of 89 cases. Australas J Dermatol 2005;46:235–238.CrossRefGoogle ScholarPubMed
Hafner, J, Kunzi, W, Weinreich, T. Malignant fibrous histiocytoma and atypical fibroxanthoma in renal transplant patients. Dermatology 1999;198:29–32.CrossRefGoogle Scholar
Helwig, EB, May, D. Atypical fibroxanthoma of the skin with metastasis. Cancer 1986;57:368–376.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Cooper, JZ, Newman, SR, Scott, GA, Brown, MD. Metastasizing atypical fibroxanthoma (cutaneous malignant histiocytoma): Report of five cases. Dermatol Surg 2005;31:221–225.CrossRefGoogle ScholarPubMed
Lum, DJ, King, AR. Peritoneal metastases from an atypical fibroxanthoma. Am J Surg Pathol 2006;30:1041–1046.CrossRefGoogle ScholarPubMed
Calonje, E, Wadden, C, Wilson-Jones, E, Fletcher, CD. Spindle-cell non-pleomorphic atypical fibroxanthoma: analysis of a series and delineation of a distinctive variant. Histopathology 1993;22:247–254.CrossRefGoogle ScholarPubMed
Tomaszewski, MM, Lupton, GP. Atypical fibroxanthoma: An unusual variant with osteoclast-like giant cells. Am J Surg Pathol 1997;21:213–221.CrossRefGoogle ScholarPubMed
Longacre, TA, Smoller, BR, Rouse, RV. Atypical fibroxanthoma: Multiple immunohistologic profiles. Am J Surg Pathol 1993;17:1199–1209.CrossRefGoogle ScholarPubMed
Wick, MR, Fitzgibbon, J, Swanson, PE. Cutaneous sarcomas and sarcomatoid neoplasms of the skin. Semin Diagn Pathol 1993;10:148–158.Google Scholar
Kamino, H, Salcedo, E. Histopathologic and immunohisto-chemical diagnosis of benign and malignant fibrous and fibrohistiocytic tumors of the skin. Dermatol Clin 1999;17:487–505.CrossRefGoogle Scholar
Sakamoto, A, Oda, Y, Yamamoto, H, Oshiro, Y, Miyajima, K, Itakura, E. Calponin and h-caldesmon expression in atypical fibroxanthoma and superficial leiomyosarcoma. Virchows Arch 2002;440:404–409.CrossRefGoogle ScholarPubMed
Dei Tos, AP, Maestro, R, Doglioni, C, Gasparotto, D, Boiocchi, M, Laurino, L. Ultraviolet-induced p53 mutations in atypical fibroxanthoma. Am J Pathol 1994;145:11–17.Google ScholarPubMed
Sato, M, Nishigori, C, Zghal, M, Yagi, T, Takebe, H. Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum. Cancer Res 1993;53:2944–2946.Google ScholarPubMed
Kyriakos, M, Kempson, RL. Inflammatory fibrous histiocytoma: An aggressive and lethal lesion. Cancer 1976;37:1584–1606.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Melhem, MF, Meisler, AI, Saito, R, Finley, CG, Hockman, HR, Koski, RA. Cytokines in inflammatory malignant fibrous histiocytoma presenting with leukemoid reaction. Blood 1993;82:2038–2044.Google ScholarPubMed
Coindre, JM, Hostein, I, Maire, G, Derre, J, Guillou, L, Leroux, A. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histologic review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol 2004;203:822–830.CrossRefGoogle Scholar
Khalidi, HS, Singleton, TP, Weiss, SW. Inflammatory malignant fibrous histiocytoma: distinction from Hodgkin's disease and non-Hodgkin's lymphoma by a panel of leukocyte markers. Mod Pathol 1997;10:438–442.Google ScholarPubMed
Salm, R, Sissons, HA. Giant cell tumours of soft tissues. J Pathol 1972;107:27–39.CrossRefGoogle ScholarPubMed
Folpe, AL, Morris, RJ, Weiss, SW. Soft tissue giant cell tumor of low malignant potential: a proposal for the reclassification of malignant giant cell tumor of soft parts. Mod Pathol 1999;12:894–902.Google ScholarPubMed
Oliveira, AM, Dei Tos, AP, Fletcher, CDM, Nascimento, AG: Primary giant cell tumor of soft tissues: A study of 22 cases. Am J Surg Pathol 2000;24:248–256.CrossRefGoogle ScholarPubMed
O'Connell, JX, Wehrli, BM, Nielsen, GP, Rosenberg, AE. Giant cell tumors of soft tissue: a clinicopathologic study of 18 benign and malignant tumors. Am J Surg Pathol 2000;24:386–395.CrossRefGoogle ScholarPubMed
Guccion, JG, Enzinger, FM. Malignant giant cell tumor of soft parts: An analysis of 32 cases. Cancer 1972;29:1518–1529.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Angervall, L, Hagmar, B, Kindblom, LG, Merck, C. Malignant giant cell tumor of soft tissues: a clinicopathologic, cytologic, ultrastructural, angiographic and microangiographic study. Cancer 1981;47:736–747.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Smith, MEF, Fisher, C, Weiss, SW. Pleomorphic hyalinizing angiectatic tumor of soft parts: A low-grade neoplasm resembling neurilemoma. Am J Surg Pathol 1996;20:21–29.CrossRefGoogle ScholarPubMed
Groisman, GM, Bejar, J, Amar, M, Ben-Izhak, O. Pleomorphic hyalinizing angiectatic tumor of soft parts: immunohistochemical study including the expression of vascular endothelial growth factor. Arch Pathol Lab 2000;124:423–426.Google ScholarPubMed
Folpe, AL, Weiss, SW. Pleomorphic hyalinizing angiectatic tumor: analysis of 41 cases supporting evolution from a distinctive precursor lesion. Am J Surg Pathol 2004;28:1417–1425.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×