Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-04T04:44:14.626Z Has data issue: false hasContentIssue false

11 - Numerical simulation of the ZNG equations

Published online by Cambridge University Press:  06 October 2009

Allan Griffin
Affiliation:
University of Toronto
Tetsuro Nikuni
Affiliation:
Tokyo University of Science
Eugene Zaremba
Affiliation:
Queen's University, Ontario
Get access

Summary

In this chapter we describe the numerical methods that can be used to solve the ZNG equations in the context of a dynamical simulation. These equations consist of a generalized GP equation (3.21) for the condensate and a Boltzmann equation (3.42) for the thermal component. The fact that the two equations are coupled makes their numerical solution more complex than when either is considered on its own. Indeed, the distinct quantum and classical aspects of the problem require specifically tailored numerical methods. Although most of these methods are well established and described elsewhere (Taha and Ablowitz, 1984; Sanz-Serna and Calvo, 1994), we provide in this chapter a detailed pedagogical discussion that will serve as a guide to those interested in carrying out such calculations for trapped Bose gases. This chapter is based on the papers of Jackson and Zaremba (2002a,b).

There are two main parts to the numerical problem. The first is developing a method for solving the time-dependent GP equation for an arbitrary three-dimensional geometry. This we take up in Section 11.1. Second, a method is needed for solving the Boltzmann equation that accounts for the dynamics of the thermal component. Here one must deal both with the Hamiltonian dynamics of the thermal atoms, as they move in the self-consistent mean field of the condensate and thermal cloud, and with the collisions that take place between the thermal atoms themselves (the C22 collisions) and between the thermal atoms and the condensate (the C12 collisions). The methods used to account for these two distinct collisional processes are taken up in Section 11.3. As we shall see, collisions play an important role and cannot be neglected even when the dynamical behaviour is dominated by mean-field interactions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×