Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T14:15:09.727Z Has data issue: false hasContentIssue false

22 - Increased Taste Sensitivity by Familiarization to Novel Stimuli: Psychophysics, fMRI, and Electrophysiological Techniques Suggest Modulations at Peripheral and Central Levels

Published online by Cambridge University Press:  21 September 2009

Annick Faurion
Affiliation:
Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
Barbara Cerf
Affiliation:
Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
Anne-Marie Pillias
Affiliation:
Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
Nathalie Boireau
Affiliation:
Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
Catherine Rouby
Affiliation:
Université Lyon I
Benoist Schaal
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Danièle Dubois
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Rémi Gervais
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
A. Holley
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Several studies have shown that taste-aversion conditioning can modify the neural coding of taste in rodents. Chang and Scott (1984) reported that after aversive conditioning to saccharin, rats declined to drink saccharin solution, and, simultaneously, the neural code in the first relay, the nucleus of the solitary tract (NST), showed drastic changes compared with the neural code analyzed in unconditioned rats. Similarly, after aversive conditioning, c-fos staining showed changes in the locations of saccharin-responding neurons in the parabrachial nuclei (PBN) (Yamamoto, 1993) and in the NST (Houpt et al., 1994, 1996). Preference conditioning has been shown to produce changes in neural activation patterns in the NST (Giza et al., 1997).

In rodents, taste afferent pathways lead, on the one hand, to cortical taste areas through the NST, the PBN (the pontine taste relay), and thalamus and, on the other hand, to the amygdala, the lateral hypothalamus, and the bed nucleus of the stria terminalis (BST). In primates, the pontine taste relay is bypassed, and the NST projects directly to the parvicellular region of the thalamic ventroposteromedial nucleus (VPMpc). Efferent pathways from the amydgala, lateral hypothalamus, and BST have been traced down to the pons and the NST (Norgren, 1985). We know from a study by Mora, Rolls, and Burton (1976) that in primates, the lateral hypothalamus contains neurons responding to highly integrative information, such as the sight of a taste stimulus that a monkey likes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry M A, Gatenby J C, Zeigler J D, & Gore J C (2000). Cortical Activity Evoked by Focal Electric-Taste Stimuli. Presented at the ISOT/ECRO Congress, Brighton, 20–24 July (abstract)
, Berglund U, , Berglund B, & , Lindvall T (1978). Separate and Joint Scaling of Perceived Odor Intensity of n-Butanol and Hydrogen Sulfide. Perception and Psychophysics 23:313–20CrossRefGoogle Scholar
, Bernhardt S J, , Naim M, , Zehavi U, & , Lindemann B (1996). Changes in IP3 and Cytosolic Ca2 + in Response to Sugars and Non-Sugar Sweeteners in Transduction of Sweet Taste in the Rat. Journal of Physiology 490:325–36CrossRefGoogle Scholar
, Boireau N, , Pillias A M, & , Faurion A (1999). Modulation of Chorda Tympani Sensitivity. Chemical Senses 24:53 (abstract)Google Scholar
Boireau N, Pillias A M, & Faurion A (in press). Modulation of Chorda Tympani Sensitivity with Repeated Exposure to Novel Tastants
Burton H & Benjamin R M (1971). Central Projections of the Gustatory System. In: Handbook of Sensory Physiology, Chemical Senses 2, Taste, ed. L M Beidler, pp. 148–63. Berlin: Springer-Verlag
Cerf B (1998). Exploration par IRM fonctionnelle des aires corticales impliquées dans la perception gustative chez l'homme, Thèse, Paris VII, Décembre 1998
, Cerf B, , Faurion A, , MacLeod P, , Moortele P F, & , Bihan D (1996a). Functional MRI Study of Human Gustatory Cortex. NeuroImage 3:342CrossRefGoogle Scholar
, Cerf B, , MacLeod P, , Moortele P F, , Bihan D, & , Faurion A (1997). Functional MRI Study of Human Gustatory Cortex: An Insular Secondary Projection Related to Handedness. NeuroImage 5:200Google Scholar
Cerf B, Van de Moortele P F, Giacomini E, MacLeod P, Faurion A, & Le Bihan D (1996b). Correlation of Perception to Temporal Variations of fMRI Signal: A Taste Study. Presented at the Fourth Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), New York
, Cerf B, , Moortele P F, , Bihan D, & , Faurion A (1999). Cortical Activation Related to Both Gustatory and Lingual Somatic Stimulation in the Human: A fMRI Study. Chemical Senses 24:58Google Scholar
, Cerf B, , Moortele P F, , Pillias A M, , MacLeod P, , Bihan D, & , Faurion A (1998). Plasticity of Cortical Taste Responses in the Human: A Joint Psychophysical and fMRI Study. NeuroImage 7:442Google Scholar
, Cerf-Ducastel B, , Moortele P F, , MacLeod P, , Bihan D, & , Faurion A (2001). Interaction of Gustatory and Lingual Somatosensory Perceptions at the Cortical Level in the Human: A Functional Magnetic Resonance Imaging Study. Chemical Senses 26:371–83CrossRefGoogle Scholar
, Chang F C T & , Scott T R (1984). Conditioned Taste Aversions Modify Neural Responses in the Rat Nucleus Tractus Solitarius. Journal Neuroscience 4:1850–62CrossRefGoogle Scholar
, Cooper D & , Oakley B (1998). Functional Redundancy and Gustatory Development in BDNF Null Mutant Mice. Developmental Brain Research 105:79–84CrossRefGoogle Scholar
Dixon W J & Massey F (1960). Introduction to Statistical Analysis. In: Sensitivity Experiments, pp. 377–94. New York: McGraw-Hill
Faurion A (1993). The Physiology of Sweet Taste and Molecular Receptors. In: Sweet-Taste Chemoreception, ed. M Mathlouthi, J Kanters, & G G Birch, pp. 291–317. London: Elsevier
Faurion A (1994). Structure and Dimension of the Taste Sensory Space: Central and Peripheral Data. In: Olfaction and Taste XI, ed. K Kurihara, N Suzuki, & H Ogawa, pp. 301–4. Tokyo: Springer-VerlagCrossRef
, Faurion A, , Cerf B, , Bihan D, & , Pillias A M (1998). fMRI Study of Taste Cortical Areas in Humans (Activations Observed in Relation to the Hedonic and Semantic Status of the Stimulus). Annals of the New York Academy of Sciences 585:535–45Google Scholar
, Faurion A, , Cerf B, , Moortele P F, , Lobel E, , MacLeod P, & , Bihan D (1999). Human Taste Cortical Areas Studied with fMRI: Evidence of Functional Lateralization Related to Handedness. Neuroscience Letters 277:189–92CrossRefGoogle Scholar
, Faurion A & , Courchay C (1990). Taste as a Highly Discriminative System: A Hamster Intrapapillar Single Unit Study with 18 Compounds. Brain Research 512:317–32CrossRefGoogle Scholar
, Finkbeiner S & , Greenberg M E (1998). Ca2 + Channel-regulated Neuronal Gene Expression. Journal of Neurobiology 37:171–893.0.CO;2-H>CrossRefGoogle Scholar
, Foufelle F, , Girard J, & , Ferre P (1998). Glucose Regulation of Gene Expression. Current Opinion in Clinical Nutrition and Metabolic Care 1:323–8CrossRefGoogle Scholar
, Giza B K, , Ackroff K, , McCaughey S A, , Sclafani A, & , Scott T R (1997). Preference Conditioning Alters Taste Responses in the Nucleus of the Solitary Tract of the Rat. American Journal of Physiology 273:1230–40Google Scholar
, Greenberg M E, , Thompson M A, & , Sheng M (1992). Calcium Regulation of Immediate Early Gene Transcription. Journal of Physiology 86:99–108Google Scholar
, Herness M S & , Gilbertson T A (1999). Cellular Mechanisms of Taste Transduction. Annual Reviews of Physiology 61:873–900CrossRefGoogle Scholar
, Houpt T A, , Philopena J M, , Joh T H, & , Smith G P (1996). C-fos Induction in the Rat Nucleus of the Solitary Tract by Intraoral Quinine Infusion Depends on Prior Contingent Pairing of Quinine and Lithium Chloride. Physiology and Behavior 60:1535–41CrossRefGoogle Scholar
, Houpt T A, , Philopena J M, , Wessel T C, , Joh T H, & , Smith G P (1994). Increased c-fos Expression in Nucleus of the Solitary Tract Correlated with Conditioned Taste Aversion to Sucrose in Rats. Neuroscience Letters 172:1–5CrossRefGoogle Scholar
, Kinnamon S C & , Margolskee R F (1996). Mechanisms of Taste Transduction. Current Opinion in Neurobiology 6:506–13CrossRefGoogle Scholar
, Kinomura S, , Kawashima R, , Yamada K, , Ono S, & , Itoh M (1994). Functional Anatomy of Taste Perception in the Human Brain Studied with Positron Emission Tomography. Brain Research 659:263–6CrossRefGoogle Scholar
, Kobayakawa T, , Endo H, , Ayabe-Kanamura S, , Kumagai T, , Yamaguchi Y, , Kikuchi Y, , Takeda T, , Saito S, & , Ogawa H (1996). The Primary Gustatory Area in Human Cerebral Cortex Studied by Magnetoencephalography. Neuroscience Letters 212:155–8CrossRefGoogle Scholar
, Kobayakawa T, , Ogawa H, , Kaneda H, , Ayabe-Kanamura S, , Endo H, & , Saito S (1999). Spatio temporal Analysis of Cortical Activity Evoked by Gustatory Stimulation in Humans. Chemical Senses 24:201–10CrossRefGoogle Scholar
Le Bihan D, Jezzard P, Turner R, Cuenod C A, Pannier L, & Prinster A (1993). Practical Problems and Limitations in Using Z-maps for Processing of Brain Function MR Images. In: Abstracts of the 12th Annual Meeting of the Society of Magnetic Resonance in Medicine, p. 11. New York: SMRM
, Montag-Sallaz M, , Welzl H, , Kuhl D, , Montag D, & , Schachner M (1999). Novelty-induced Increased Expression of Immediate-Early Genes c-fos and arg 3.1 in the Mouse Brain. Journal of Neurobiology 38:234–463.0.CO;2-G>CrossRefGoogle Scholar
, Mora F, , Rolls E T, & , Burton M J (1976). Modulation during Learning of the Responses of Neurones in the Lateral Hypothalamus to the Sight of Food. Experimental Neurology 53:508–19CrossRefGoogle Scholar
, Murayama N, , Nakasato N, , Hatanaka K, , Fujita S, , Igasaki T, , Kanno A, & , Yoshimoto T (1996). Gustatory Evoked Magnetic Fields in Humans. Neuroscience Letters 210:121–3CrossRefGoogle Scholar
Norgren R (1985). The Sense of Taste and the Study of Ingestion. In: Taste, Olfaction and the Central Nervous System, vol. 10, ed. D W Pfaff, pp. 233–49. New York: Rockefeller University Press
Norgren R (1990). Gustatory System. In: The Human Nervous System, vol. 25, ed. G Paxinos, pp. 845–61. San Diego: Academic PressCrossRef
Norgren R (1995). Gustatory System. In: The Rat Nervous System, vol. 29, ed. G Paxinos, pp. 751–71. San Diego: Academic Press
, Nosrat C A, , Blomlöf J, , Elshamy W M, , Ernfors P, & , Olson L (1997). Lingual Deficits in BDNF and NT3 Mutant Mice Leading to Gustatory and Somatosensory Disturbances, Respectively. Development 124:1333–42Google Scholar
, Nosrat C A, , Ebendal T, & , Olson L (1996). Differential Expression of Brain-derived Neurotrophic Factor and Neurotrophin 3MRA in Lingual Papillae and Taste Buds Indicates Roles in Gustatory and Somatosensory Innervation. Journal of Comparative Neurology 376:587–6023.0.CO;2-Y>CrossRefGoogle Scholar
, Oakley B, , Brandemihl A, , Cooper D, , Lau D, , Lawton A, & , Zhang C (1998). The Morphogenesis of Mouse Vallate Gustatory Epithelium and Taste Buds Requires BDNF-dependent Taste Development. Brain Research 105:85–96CrossRefGoogle Scholar
, Oakley B, , Chu J S, & , Jones L B (1981). Axonal Transport Maintains Taste Responses. Brain Research 221:289–98CrossRefGoogle Scholar
, Oakley B, , Jones L B, & , Hosley M A (1979). Decline of IXth Nerve Taste Responses following Nerve Transection. Chemical Senses and Flavour 4:287–99CrossRefGoogle Scholar
, Ogawa H (1994). Gustatory Cortex of Primates: Anatomy and Physiology. Neuroscience Research 20:1–13CrossRefGoogle Scholar
, Patton H D & , Ruch T C (1946). The Relation of the Deep Opercular Cortex to Taste. Federation Proceedings 5:89–90Google Scholar
Rolls E T & Rolls B J (1977). Activity of Neurons in Sensory, Hypothalamic and Motor Areas during Feeding in the Monkey. In: Food Intake and Chemical Senses, ed. Y Katsuki et al., pp. 525–49. University of Tokyo Press
Rolls E T & Rolls B J (1982). Brain Mechanisms Involved in Feeding. In: Psychobiology of Human Food Selection, ed. L Barker, pp. 33–62. Westport, CT: AVI Publishing
Rozin P (1976). The Selection of Food by Rats, Humans and Other Animals. In: Advances in the Study of Behavior, ed. J S Rosenblatt et al., pp. 21–76. New York: Academic PressCrossRef
, Small D M, , Zald D H, , Jones-Gotman M, , Zatorre R J, , Pardo J V, , Frey S, & , Petrides M (1999). Human Cortical Gustatory Areas: A Review of Functional Neuroimaging Data. NeuroReport 10:7–14CrossRefGoogle Scholar
, Striem B J, , Pace U, , Zehavi U, , Naim M, & , Lancet D (1989). Sweet Tastants Stimulate Adenylate Cyclase Coupled to GTP-Binding. Biochemical Journal 260:121–6CrossRefGoogle Scholar
, Uchida Y & , Sato T (1997). Changes in Outward K+ Currents in Response to Two Types of Sweeteners in Sweet Taste Transduction of Gerbil Taste Cells. Chemical Senses 22:163–9CrossRefGoogle Scholar
, Moortele P F, , Cerf B, , Lobel E, , Paradis A L, , Faurion A, & , Bihan D (1997). Latencies in fMRI Time-Series: Effect of Slice Acquisition Order and Perception. NMR. Biomedicine 10:230–6Google Scholar
, Yamamoto T (1993). Neural Mechanisms of Taste Aversion Learning. Neuroscience Research 16:181–5CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Increased Taste Sensitivity by Familiarization to Novel Stimuli: Psychophysics, fMRI, and Electrophysiological Techniques Suggest Modulations at Peripheral and Central Levels
    • By Annick Faurion, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Barbara Cerf, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Anne-Marie Pillias, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Nathalie Boireau, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
  • Edited by Catherine Rouby, Université Lyon I, Benoist Schaal, Centre National de la Recherche Scientifique (CNRS), Paris, Danièle Dubois, Centre National de la Recherche Scientifique (CNRS), Paris, Rémi Gervais, Centre National de la Recherche Scientifique (CNRS), Paris, A. Holley, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Olfaction, Taste, and Cognition
  • Online publication: 21 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546389.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Increased Taste Sensitivity by Familiarization to Novel Stimuli: Psychophysics, fMRI, and Electrophysiological Techniques Suggest Modulations at Peripheral and Central Levels
    • By Annick Faurion, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Barbara Cerf, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Anne-Marie Pillias, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Nathalie Boireau, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
  • Edited by Catherine Rouby, Université Lyon I, Benoist Schaal, Centre National de la Recherche Scientifique (CNRS), Paris, Danièle Dubois, Centre National de la Recherche Scientifique (CNRS), Paris, Rémi Gervais, Centre National de la Recherche Scientifique (CNRS), Paris, A. Holley, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Olfaction, Taste, and Cognition
  • Online publication: 21 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546389.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Increased Taste Sensitivity by Familiarization to Novel Stimuli: Psychophysics, fMRI, and Electrophysiological Techniques Suggest Modulations at Peripheral and Central Levels
    • By Annick Faurion, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Barbara Cerf, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Anne-Marie Pillias, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France, Nathalie Boireau, Laboratoire de Neurobiologie Sensorielle, École Pratique des Hautes Études, rue des Olympiades, Massy, France, and Laboratoire de Physiologie de la Manducation, Université Paris VII, Paris, France
  • Edited by Catherine Rouby, Université Lyon I, Benoist Schaal, Centre National de la Recherche Scientifique (CNRS), Paris, Danièle Dubois, Centre National de la Recherche Scientifique (CNRS), Paris, Rémi Gervais, Centre National de la Recherche Scientifique (CNRS), Paris, A. Holley, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Olfaction, Taste, and Cognition
  • Online publication: 21 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546389.030
Available formats
×