Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:47:21.603Z Has data issue: false hasContentIssue false

12 - The pathophysiology of spasticity and parkinsonian rigidity

Published online by Cambridge University Press:  08 August 2009

Emmanuel Pierrot-Deseilligny
Affiliation:
Groupe Hospitalier Pitié-Salpétrière, Paris
David Burke
Affiliation:
University of Sydney
Get access

Summary

As discussed in Chapters 3–10, transmission in spinal pathways is controlled from descending tracts. This descending control is exerted on all interneurones, whether they mediate presynaptic inhibition of primary afferent terminals or postsynaptic effects. Transmission in multiple spinal pathways may be altered after a lesion of the central nervous system. These alterations contribute to the pathophysiological mechanisms underlying movement disorders following upper motor neurone lesions and basal ganglia diseases. A tonic imbalance between descending excitatory and inhibitory inputs on various spinal pathways accounts for the changes in muscle tone of spasticity and parkinsonian rigidity at rest. On the other hand, the loss of the normal descending modulation of these pathways during motor tasks, together with the abnormal descending command to motoneurones, contributes to the motor impairment of the patients. Methods used in clinical neurophysiology help determine the extent to which spinal pathways malfunction after a lesion of the central nervous system. Only spasticity following upper motor neurone lesions and Parkinson's disease are considered in the overview given in this chapter. The involvement of spinal pathways in the pathophysiology of other motor disorders, such as dystonia, has been discussed in previous chapters.

Spasticity

Spasticity is one of the components of the upper motor neurone syndrome, and occurs in a variety of diseases and disorders of the central nervous system, such as spinal cord injuries and diseases, multiple sclerosis, brain injuries, stroke and cerebral palsy.

Type
Chapter
Information
The Circuitry of the Human Spinal Cord
Its Role in Motor Control and Movement Disorders
, pp. 556 - 600
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G., Vische, M., Ratto, S., Abbruzzese, M. & Favale, E. (1985). Assessment of motor neuron excitability in parkinsonian rigidity by the F wave. Journal of Neurology, 232, 246–9CrossRefGoogle ScholarPubMed
Ada, L., Vattanasilp, W., O'Dywer, N. J. & Crosbie, J. (1998). Does spasticity contribute to walking dysfunction after stroke?Journal of Neurology, Neurosurgery and Psychiatry, 64, 628–35CrossRefGoogle ScholarPubMed
Angel, R. W. & Hofmann, W. W. (1963). The H-reflex in normal, spastic and rigid subjects. Archives of Neurology, 8, 591–6CrossRefGoogle Scholar
Aoki, M., Mori, S. & Fujimori, B. (1976). Exaggeration of knee-jerk following spinal hemisection in monkeys. Brain Research, 107, 471–85CrossRefGoogle ScholarPubMed
Artieda, J., Queseda, P. & Obeso, J. A. (1991). Reciprocal inhibition between forearm muscles in spastic hemiplegia. Neurology, 41, 286–9CrossRefGoogle ScholarPubMed
Ashby, P. & Burke, D. (1971). Stretch reflexes in the upper limb of spastic man. Journal of Neurology, Neurosurgery and Psychiatry, 34, 765–71CrossRefGoogle ScholarPubMed
Ashby, P. & Wiens, M. (1989). Reciprocal inhibition following lesions of the spinal cord in man. Journal of Physiology (London), 414, 145–57CrossRefGoogle ScholarPubMed
Ashby, P., Verrier, M. & Carleton, S. (1980). Vibratory inhibition of the monosynaptic reflex. In Progress in Clinical Neurophysiology, vol. 8, ed. Desmedt, J. E., pp. 254–62. Basel: KargerGoogle Scholar
Aymard, C., Katz, R., Lafitte, C., et al. (2000). Presynaptic inhibition and homosynaptic depression: A comparison between lower and upper limbs in normal subjects and patients with hemiplegia. Brain, 123, 1688–702CrossRefGoogle ScholarPubMed
Azouvi, P., Roby-Brami, A., Biraben, A., Thiebaut, J. B., Thurel, C. & Bussel, B. (1993). Effect of intrathecal baclofen on the monosynaptic reflex in humans: evidence for a postsynaptic action. Journal of Neurology, Neurosurgery and Psychiatry, 56, 515–19CrossRefGoogle ScholarPubMed
Bailey, C. S., Lieberman, J. S. & Kitchell, R. L. (1980). Response of muscle spindle primary endings to static stretch in acute and chronic spinal cats. American Journal of Veterinary Research, 41, 2030–6Google ScholarPubMed
Bathien, N. & Rondot, P. (1977). Reciprocal continuous inhibition in rigidity in Parkinsonism. Journal of Neurology, Neurosurgery and Psychiatry, 40, 20–4CrossRefGoogle ScholarPubMed
Bedingham, W. & Tatton, W. G. (1984). Dependence of electromyogram responses evoked by imposed wrist displacements on pre-existing activity in the stretched muscles. Canadian Journal of the Neurological Sciences, 11, 272–80CrossRefGoogle ScholarPubMed
Benecke, R., Conrad, B., Meinck, H. M. & Hohne, J. (1983). Electromyographic analysis of bicycling on an ergometer for evaluation of spasticity of lower limbs in man. Advances in Neurology, 39, 1035–46Google ScholarPubMed
Bennett, D. J., Li, Y., Harvey, P. J. & Gorassini, M. (2001). Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. Journal of Neurophysiology, 86, 1972–82CrossRefGoogle ScholarPubMed
Bennett, D. J., Sanelli, L., Cooke, C. L., Harvey, P. J. & Gorassini, M. A. (2004). Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. Journal of Neurophysiology, 91, 2247–58CrossRefGoogle ScholarPubMed
Berardelli, A., Sabra, A. F. & Hallett, M. (1983). Physiological mechanisms of rigidity in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 46, 45–53CrossRefGoogle ScholarPubMed
Berbrayer, D. & Ashby, P. (1990). Reciprocal inhibition in cerebral palsy. Neurology, 40, 653–6CrossRefGoogle ScholarPubMed
Berger, W. & Dietz, V. (1993). Spastic movement disorder: similarities and differences in children and adults. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 150–4. Heidelberg: Springer-VerlagCrossRefGoogle Scholar
Bergui, M., Lopiano, L., Paglia, G., Quattrocolo, G., Scarzella, L. & Bergamasco, B. (1992). Stretch reflex of quadriceps femoris and its relation to rigidity in Parkinson's disease. Acta Neurologica Scandinavica, 86, 226–9CrossRefGoogle ScholarPubMed
Bertolasi, L., Priori, A., Tinazzi, M., Bertasi, V. & Rothwell, J. C. (1988). Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. Journal of Physiology (London), 511, 947–56CrossRefGoogle Scholar
Bobath, B. (1990). Adult Hemiplegia: Evaluation and Treatment. Oxford: Butterworth-HeinemannGoogle Scholar
Bohannon, R. W. & Andrews, A. W. (1990). Correlation of knee extensor muscle torque and spasticity with gait speed in patients with stroke. Archives of Physical Medicine and Rehabilitation, 71, 330–3Google ScholarPubMed
Bostock, H., Sharief, M. K., Reid, G. & Murray, N. M. (1995). Axonal ion channel dysfunction in amyotrophic lateral sclerosis. Brain, 118, 217–25CrossRefGoogle ScholarPubMed
Boyd, S. G., Barwood, S. A., Ballieu, C.et al. (1998). Validity of a clinical measure of spasticity in children with cerebral palsy in a double blinded randomised controlled clinical trial. Developmental Medicine and Child Neurology, 40, 7Google Scholar
Brunnström, S. (1970). Motor Behavior of Adult Patients with Hemiplegia: Movement Therapy in Hemiplegia. New York: Harper & RowGoogle Scholar
Buller, A. J. (1957). The ankle-jerk in early hemiplegia. Lancet, 2, 1262–3CrossRefGoogle Scholar
Buller, A. J., Eccles, J. C. & Eccles, R. M. (1960). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. Journal of Physiology (London), 150, 417–36CrossRefGoogle ScholarPubMed
Burke, D. (1980). A reassessment of the muscle spindle contribution to muscle tone in normal and spastic man. In Spasticity: Disordered Motor Control, ed. Feldman, R. G., Young, R. R. & Koella, W. P., pp. 261–78. Chicago: Year Book PublishersGoogle Scholar
Burke, D. (1983). Critical examination of the case for or against fusimotor involvement in disorders of muscle tone. In Motor Control Mechanisms in Health and Disease, Advances in Neurology, vol. 39, ed. Desmedt, J. E., pp. 133–50. New York: Raven PressGoogle Scholar
Burke, D., Knowles, L., Andrews, C. J. & Ashby, P. (1972). Spasticity and decerebrate rigidity: An experimental study in the cat. Brain, 95, 31–48CrossRefGoogle ScholarPubMed
Burke, D., Hagbarth, K.-E. & Wallin, B. G. (1977). Reflex mechanisms in Parkinsonian rigidity. Scandinavian Journal of Rehabilitation Medicine, 9, 15–23Google ScholarPubMed
Cantello, R., Giannelli, M., Bettucci, D., Civardi, C., Angelis, M. S. & Mutani, R. (1991). Parkinson's disease rigidity: magnetic motor evoked potentials in small hand muscle. Neurology, 41, 1449–56CrossRefGoogle ScholarPubMed
Cantello, R., Tarletti, R. & Civardi, C. (2002). Transcranial magnetic stimulation and Parkinson's disease. Brain Research Reviews, 38, 309–27CrossRefGoogle ScholarPubMed
Castaigne, P., Cathala, H. P., Lacert, P. & Pierrot-Deseilligny, E. (1966). Contribution à l'étude des troubles du tonus par le réflexe monosynaptique de Hoffmann. Revue Neurologique, 115, 943–54Google Scholar
Cody, F. W., MacDermott, P. B., Matthews, P. B. C. & Richardson, H. C. (1986). Observations on the genesis of the stretch reflex in Parkinson's disease. Brain, 109, 229–49CrossRefGoogle ScholarPubMed
Conrad, B., Benecke, R. & Meinck, H. M. (1985). Gait disturbances in paraspastic patients. In Clinical Neurophysiology in Spasticity. Contribution to Assessment & Pathophysiology, ed. Delwaide, P. J. & Young, R. R., pp. 155–74. Amsterdam: ElsevierGoogle Scholar
Corcos, D. M., Gottlieb, G. L., Penn, R. D., Myklebust, B. & Agarwal, G. C. (1986). Movement deficits caused by hyperexcitable stretch reflexes in spastic humans. Brain, 109, 1043–58CrossRefGoogle ScholarPubMed
Cramer, S. C. (2004). Editorial comment – spasticity after stroke: what's the catch?Stroke, 35, 139–40CrossRefGoogle ScholarPubMed
Crone, C., Nielsen, J., Petersen, N., Ballegaard, M. & Hultborn, H. (1994). Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain, 117, 1161–8CrossRefGoogle ScholarPubMed
Crone, C., Johnsen, L. L., Biering-Sørensen, F. & Nielsen, J. B. (2003). Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain, 126, 495–507CrossRefGoogle ScholarPubMed
Davies, J. M., Mayston, M. J. & Newham, D. J. (1996). Electrical and mechanical output of the knee muscles during isometric and isokinetic activity in stroke and healthy adults. Disability Rehabilitation, 18, 83–90CrossRefGoogle ScholarPubMed
Davis, E. C. & Barnes, M. P. (2000). Botulinum toxin and spasticity. Journal of Neurology, Neurosurgery and Psychiatry, 69, 143–7CrossRefGoogle ScholarPubMed
Delwaide, P. J. (1973). Human monosynaptic reflexes and presynaptic inhibition. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 508–22. Basel: KargerGoogle Scholar
Delwaide, P. J. (1985a). Electrophysiological testing of spastic patients: its potential usefulness and limitation. In Clinical Neurophysiology in Spasticity, ed. Delwaide, J. E. & Young, R. R., pp. 185–203. Amsterdam: ElsevierGoogle Scholar
Delwaide, P. J. (1985b). Are there modifications in spinal cord functions of parkinsonian patients? In Clinical Neurophysiology in Parkinsonism, ed. Delwaide, P. J. & Agnoli, E., pp. 19–32. Amsterdam: ElsevierGoogle Scholar
Delwaide, P. J. (1993). Pathophysiological mechanisms of spasticity at the spinal cord level. In Spasticity: Mechanisms & Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 296–308. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Delwaide, P. J. & Olivier, E. (1988). Short-latency autogenic inhibition (Ib inhibition) in human spasticity. Journal of Neurology, Neurosurgery and Psychiatry, 51, 1546–50CrossRefGoogle Scholar
Delwaide, P. J. & Olivier, E. (1990). Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation in parkinsonian patients. Advances in Neurology, 53, 175–81Google ScholarPubMed
Delwaide, P. J. & Pennisi, G. (1994). Tizanidine and electrophysiologic analysis of spinal control mechanisms in humans with spasticity. Neurology, 44, S21–7; S27–8Google ScholarPubMed
Delwaide, P. J., Schwab, R. S. & Young, R. R. (1974). Polysynaptic spinal reflexes in Parkinson's disease. Neurology, 24, 820–7CrossRefGoogle ScholarPubMed
Delwaide, P. J., Pepin, J. L. & Maertens de Noordhout, A. (1991). Short-latency autogenic inhibition in patients with Parkinsonian rigidity. Annals of Neurology, 30, 83–9CrossRefGoogle ScholarPubMed
Delwaide, P. J., Pepin, J. L. & Maertens de Noordhout, A. (1993). The audiospinal reaction in Parkinsonian patients reflects functional changes in reticular nuclei. Annals of Neurology, 33, 63–9CrossRefGoogle ScholarPubMed
Denny-Brown, D. (1980). Historical aspects of the relation of spasticity to movement. In Spasticity: Disordered Motor Control, ed. Feldman, R. G., Young, R. R. & Koella, W. P., pp. 1–6. Chicago: Year Book Medical PublishersGoogle Scholar
Dick, J. P., Cowan, J. M., Day, B. L.et al. (1984). The corticomotoneurone connection is normal in Parkinson's disease. Nature, 310, 407–9CrossRefGoogle ScholarPubMed
Dietrichson, P. (1971). Phasic ankle reflex in spasticity and parkinsonian rigidity. Acta Neurologica Scandinavica, 47, 22–51CrossRefGoogle ScholarPubMed
Dietrichson, P. (1973). The role of the fusimotor system in spasticity and parkinsonian rigidity. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 496–507. Basel: KargerGoogle Scholar
Dietz, V. (1992). Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiological Reviews, 72, 33–9CrossRefGoogle ScholarPubMed
Dietz, V. (2003). Spastic movement disorder: what is the impact of research on clinical practice?Journal of Neurology, Neurosurgery and Psychiatry, 74, 820–6CrossRefGoogle ScholarPubMed
Dietz, V. & Berger, W. (1983). Normal and impaired regulation of muscle stiffness in gait. A new hypothesis about muscle hypertonia. Experimental Neurology, 79, 680–7CrossRefGoogle Scholar
Dietz, V., Quintern, J. & Berger, W. (1981). Electrophysiological studies of gait in spasticity and rigidity: evidence that altered mechanical properties of muscle contribute to hypertonia. Brain, 104, 431–49CrossRefGoogle ScholarPubMed
Dietz, V., Berger, W. & Horstmann, G. A. (1988). Posture in Parkinson's disease: impairment of reflexes and programming. Annals of Neurology, 24, 660–9CrossRefGoogle ScholarPubMed
Dietz, V., Trippel, M. & Berger, W. (1991). Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Annals of Neurology, 30, 767–78CrossRefGoogle ScholarPubMed
Dietz, V., Ibrahim, I. K., Trippel, M. & Berger, W. (1993). Spastic paresis: reflex activity and muscle tone in elbow muscles during passive and active motor tasks. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 251–65. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Dimitrijević, M. R. & Nathan, P. W. (1967). Studies of spasticity in man. 2. Analysis of stretch reflexes in spasticity. Brain, 90, 333–58Google ScholarPubMed
Downes, L., Ashby, P. & Bugaresti, J. (1995). Reflex effects from Golgi tendon organ (Ib) afferents are unchanged after spinal cord lesion in humans. Neurology, 45, 1720–4CrossRefGoogle Scholar
Dressnandt, J., Konstanzer, A. & Conrad, B. (1993). Dynamics of reflex excitability following intrathecal baclofen administration in patients with severe spastic syndromes. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 309–18. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Dressnandt, J., Auer, C. & Conrad, B. (1995). Influence of baclofen upon the alpha-motoneuron in spasticity by means of F-wave analysis. Muscle and Nerve, 18, 103–7CrossRefGoogle ScholarPubMed
Eisen, A. & Fisher, M. (1999). The F wave. In Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology, ed. Deutschl, G. & Eisen, A., pp. 255–7. Amsterdam: ElsevierGoogle Scholar
Eisen, A. & Odusote, K. (1979). Amplitude of the F-wave: a potential means of documenting spasticity. Neurology, 29, 1306–9CrossRefGoogle ScholarPubMed
Evarts, E. V., Teräväinen, H. T., Beuchert, D. E. & Calne, D. B. (1979). Pathophysiology of motor performance in Parkinson's disease. In Dopaminergic Ergot Derivatives and Motor Function, ed. Fuxe, K. & Calne, D. B., pp. 45–59. Oxford: Pergamon PressGoogle Scholar
Faist, M., Mazevet, D., Dietz, V. & Pierrot-Deseilligny, E. (1994). A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics. Brain, 117, 1449–55CrossRefGoogle ScholarPubMed
Fellows, S. J., Kaus, C., Ross, H. F. & Thilmann, A. F. (1993a). Disturbances of voluntary arm movement in human spasticity: the relative importance of paresis and muscle hypertonia. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 139–49. Heidelberg: Springer-VerlagCrossRefGoogle Scholar
Fellows, S. J., Ross, H. F. & Thilmann, A. F. (1993b). The limitation of the tendon jerk as a marker of pathological stretch reflex activity in human spasticity. Journal of Neurology, Neurosurgery and Psychiatry, 56, 531–7CrossRefGoogle Scholar
Fierro, B., Raimondo, D. & Modica, A. (1990). Analysis of F response in upper motoneurone lesions. Acta Neurologica Scandinavica, 82, 329–34CrossRefGoogle ScholarPubMed
Foerster, O. (1921). Zur Analyse und Pathophysiologie der striären Bewegungsstörungen. Zeischrift für die Gesamte Neurologie und Psychiatrie, 73, 1–169CrossRefGoogle Scholar
Fuhr, P., Zeffiro, T. & Hallett, M. (1992). Cutaneous reflexes in Parkinson's disease. Muscle and Nerve, 15, 733–9CrossRefGoogle ScholarPubMed
Fujimori, B., Kato, M., Matsushima, S., Mori, S. & Shimamura, M. (1966). Studies on the mechanisms of spasticity following spinal hemisection in the cat. In Muscular Afferents & Motor Control, ed. Granit, R., pp. 397–413. Stockholm: Almqvist and WiksellGoogle Scholar
Gandevia, S. C. (1993). Strength changes in hemiparesis: measurements and mechanisms. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 111–22. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Garcia-Mullin, R. & Mayer, R. F. (1972). H reflexes in acute and chronic hemiplegia. Brain, 95, 559–72CrossRefGoogle ScholarPubMed
German, D. C., Manaye, K. F., White, C. L.et al. (1992). Disease-specific patterns of locus coeruleus cell loss. Annals of Neurology, 32, 667–76CrossRefGoogle ScholarPubMed
Gilman, S., Marco, L. A. & Ebel, H. C. (1971). Effects of medullary pyramidotomy in the monkey. II. Abnormalities of spindle afferent responses. Brain, 94, 515–30CrossRefGoogle ScholarPubMed
Gilman, S., Lieberman, J. S. & Marco, L. A. (1974). Spinal mechanisms underlying the effects of unilateral ablation of areas 4 and 6 in monkeys. Brain, 97, 49–64CrossRefGoogle ScholarPubMed
Gorassini, M. A., Knash, M., Harvey, P. J., Bennett, D. J. & Yang, J. F. (2004). Role of motoneurons in the generation of muscle spasms after spinal cord injury. Brain, 127, 2247–58CrossRefGoogle ScholarPubMed
Gottlieb, G. L. & Myklebust, B. M. (1993). Hyper-reflexia and disordered voluntary movement. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 155–66. Heidelberg: Springer-VerlagCrossRefGoogle Scholar
Hagbarth, K.-E., Wallin, G., Löfstedt, L. & Aquilonius, S. M. (1975). Muscle spindle activity in alternating tremor of Parkinsonism and in clonus. Journal of Neurology, Neurosurgery and Psychiatry, 38, 636–41CrossRefGoogle ScholarPubMed
Hayashi, A., Kagamihara, Y., Nakajima, Y., Narabayahi, H., Okuma, Y. & Tanaka, R. (1988). Disorder in reciprocal Ia inhibition upon initiation of voluntary movements in patients with Parkinson's disease. Experimental Brain Research, 70, 437–40CrossRefGoogle Scholar
Hayashi, R., Hashimoto, T., Tada, T. & Ikeda, S. (2001). Relation between changes in long-latency stretch reflexes and muscle stiffness in Parkinson's disease – comparison before and after unilateral pallidotomy. Clinical Neurophysiology, 112, 1814–21CrossRefGoogle ScholarPubMed
Hiersmenzel, L. P., Curt, A. & Dietz, V. (2000). From spinal shock to spasticity. Neuronal adaptations to a spinal cord injury. Neurology, 54, 1574–82CrossRefGoogle Scholar
Higashi, T., Funase, K., Kusano, K.et al. (2001). Motoneuron pool excitability of hemiplegic patients: Assessing recovery stages by using H-reflex and M response. Archives of Physical Medicine and Rehabilitation, 82, 1604–10CrossRefGoogle ScholarPubMed
Hultborn, H. & Malmsten, J. (1983a). Changes in segmental reflexes following chronic spinal cord hemisection in the cat. I. Increased monosynaptic and polysynaptic ventral root discharges. Acta Physiologica Scandinavica, 119, 405–22CrossRefGoogle Scholar
Hultborn, H. & Malmsten, J. (1983b). Changes in segmental reflexes following chronic spinal cord hemisection in the cat. II. Conditioned monosynaptic test reflexes. Acta Physiologica Scandinavica, 119, 423–33CrossRefGoogle Scholar
Hultborn, H. & Nielsen, J. B. (1998). Modulation of transmitter release from Ia afferents by their preceding activity – a ‘postactivation depression’. In Presynaptic Inhibition and Neural Control, ed. Rudomin, P., Romo, R. & Mendell, L., pp. 178–91. New York: Oxford University PressGoogle Scholar
Ikoma, K., Mano, Y. & Takayanagi, T. (1994). Pulsed magnetic stimulation and F waves in Parkinson's disease. Internal Medicine, 33, 77–81CrossRefGoogle Scholar
Jackson, J. H. (1958). Selected Writings of John Hughlings Jackson, ed. Taylor, J., New York: Basic BooksGoogle Scholar
Jankelowitz, S. K., Trevillion, L., Howells, J. & Burke, D. (2004). Changes in excitability of motor axons in stroke. Clinical Neurophysiology, 115, 92Google Scholar
Kagamihara, U., Hayashi, A., Okuma, Y., Nagaoka, M., Nakajima, Y. & Tanaka, R. (1998). Reassessment of H-reflex recovery curve using the double stimulation procedure. Muscle and Nerve, 21, 352–603.0.CO;2-9>CrossRefGoogle ScholarPubMed
Kamper, D. G., Harvey, R. L., Suresh, S. & Rymer, W. Z. (2003). Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle and Nerve, 28, 309–18CrossRefGoogle ScholarPubMed
Katz, R. & Pierrot-Deseilligny, E. (1982). Recurrent inhibition of motoneurones in patients with upper motor neuron lesions. Brain, 105, 103–24CrossRefGoogle Scholar
Katz, R. T. & Rymer, W. Z. (1989). Spastic hypertonia: mechanisms and measurement. Archives of Physical Medicine and Rehabilitation, 70, 144–55Google Scholar
Knutsson, E. (1985). Studies of gait control in patients with spastic paresis. In Clinical Neurophysiology in Spasticity. Contribution to Assessment and Pathophysiology, ed. Delwaide, P. J. & Young, R. R., pp. 175–83. Amsterdam: ElsevierGoogle Scholar
Knutsson, E., Mårtensson, A. & Gransberg, L. (1997). Influences of muscle stretch reflexes on voluntary, velocity-controlled movements in spastic paraparesis. Brain, 120, 1626–33CrossRefGoogle ScholarPubMed
Kushnir, M., Klein, C. & Rabey, J. M. (2001). H reflex behavior in Parkinson's disease patients and patients with extrapyramidal and pyramidal signs combined. Journal of the Neurological Sciences, 186, 101–5CrossRefGoogle ScholarPubMed
Kushnir, M., Klein, C., Pollack, L. & Rabey, J. M. (2002). H reflex threshold in Parkinson's disease patients for different stimulus duration. Parkinsonism and Related Disorders, 9, 85–7CrossRefGoogle ScholarPubMed
Lance, J. W. (1980). Symposium synopsis. In Spasticity: Disordered Motor Control, ed. Feldman, R. G., Young, R. R. & Koella, W. P., pp. 485–94. Chicago: Year Book Medical PublishersGoogle Scholar
Lance, J. W. & DeGail, P. (1965). Spread of phasic muscle reflexes in normal and spastic subjects. Journal of Neurology, Neurosurgery and Psychiatry, 28, 328–334CrossRefGoogle ScholarPubMed
Landau, W. M. (1980). What is it? What is it not? In Spasticity: Disordered Motor Control, ed. Feldman, R. G., Young, R. R. & Koella, W. P., pp. 17–24. Chicago: Year Book Medical PublishersGoogle Scholar
Landau, W. M. (2003). Botulinum toxin for spasticity after stroke. New England Journal of Medicine, 348, 258–9Google ScholarPubMed
Landau, W. M. & Clare, M. H. (1964). Fusimotor function. VI. H reflex tendon jerk and reinforcement in hemiplegia. Archives of Neurology and Psychiatry (Chicago), 10, 128–34CrossRefGoogle ScholarPubMed
Lee, R. G. (1989). Pathophysiology of rigidity and akinesia in Parkinson's disease. European Neurology, 29, 13–18CrossRefGoogle ScholarPubMed
Lee, R. G. & Tatton, W. G. (1975). Motor responses to sudden limb displacement in primates with specific CNS lesions and in human patients with motor system disorders. Canadian Journal of Neurological Sciences, 2, 285–93CrossRefGoogle Scholar
Lee, R. G. & Tatton, W. G. (1978). Long loop reflexes in man: clinical applications. In Cerebral Motor Control in Man: Long Loop Mechanisms. Progress in Clinical Neurophysiology, vol. 4, ed. Desmedt, J. E., pp. 320–33. Basel: KargerGoogle Scholar
Lelli, S., Panizza, M. & Hallett, M. (1991). Spinal inhibitory mechanisms in Parkinson's disease. Neurology, 41, 553–6CrossRefGoogle ScholarPubMed
Limousin, P., Brown, R. G., Jahanshahi, M.et al. (1999). The effects of posteroventral pallidotomy on the preparation and execution of voluntary hand and arm movements in Parkinson's disease. Brain, 122, 315–27CrossRefGoogle ScholarPubMed
McLellan, D. L. (1977). Co-contraction and stretch reflexes in spasticity during treatment with baclofen. Journal of Neurology, Neurosurgery and Psychiatry, 40, 30–8CrossRefGoogle Scholar
McLeod, J. & Walsh, J. (1972). H-reflex studies in patients with Parkinson's diseaseJournal of Neurology, Neurosurgery and Psychiatry, 35, 77–80CrossRefGoogle ScholarPubMed
Magladery, J. W., Teasdall, R. D., Park, A. M. & Languth, H. W. (1952). Electrophysiological studies of reflex activity in patients with lesions of the nervous system. I. A comparison of spinal motoneurone excitability following afferent nerve volleys in normal persons and patients with upper motor neurone lesions. Bulletin of the Johns Hopkins Hospital, 91, 219–43Google ScholarPubMed
Marque, P., Simonetta-Moreau, M., Maupas, E. & Roques, C. F. (2001). Facilitation of transmission in heteronymous group II pathways in spastic hemiplegic patients. Journal of Neurology, Neurosurgery and Psychiatry, 70, 36–42CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1972). Mammalian Muscle Spindles and their Central Action, 630 pp. London: ArnoldGoogle Scholar
Maupas, E., Marque, P., Roques, C. F. & Simonetta-Moreau, M. (2004). Modulation of the transmission in group II heteronymous pathways by tizanidine in spastic hemiplegic patients. Journal of Neurology, Neurosurgery and Psychiatry, 75, 130–5Google ScholarPubMed
Mazevet, D., Meunier, S., Pradat-Diehl, P., Marchand-Pauvert, V. & Pierrot-Deseilligny, E. (2003). Changes in propriospinally-mediated excitation of upper limb motoneurones in stroke patients. Brain, 126, 988–1000CrossRefGoogle Scholar
Mazzocchio, R. & Rossi, A. (1997). Involvement of spinal recurrent inhibition in spasticity. Further insight into the regulation of Renshaw cell activity. Brain, 120, 991–1003CrossRefGoogle ScholarPubMed
Meltzer, G. E., Hunt, R. S. & Landau, W. M. (1963). Fusimotor function. III. The spastic monkey. Archives of Neurology, 168, 133–6CrossRefGoogle Scholar
Meunier, S., Pol, S., Houeto, J. L. & Vidailhet, M. (2000). Abnormal reciprocal inhibition between antagonist muscles in Parkinson's disease. Brain, 123, 1017–26CrossRefGoogle ScholarPubMed
Milanov, I. (1992). A comparison of methods to assess the excitability of lower motor neurones. Canadian Journal of Neurological Sciences, 19, 64–8Google Scholar
Milanov, I. (2001). Motoneuron activity in patients with different types of tremor. Electromyography and Clinical Neurophysiology, 41, 479–84Google ScholarPubMed
Milanov, I. & Georgiev, D. (1994). Mechanisms of tizanidine action on spasticity. Acta Neurologica Scandinavica, 89, 274–9CrossRefGoogle ScholarPubMed
Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425CrossRefGoogle ScholarPubMed
Mizrahi, E. M. & Angel, R. W. (1979). Impairment of voluntary movement by spasticity. Annals of Neurology, 5, 594–5CrossRefGoogle ScholarPubMed
Mizuno, Y., Tanaka, R. & Yanagisawa, N. (1971). Reciprocal group I inhibition of triceps surae motoneurones in man. Journal of Neurophysiology, 34, 1010–17CrossRefGoogle Scholar
Mogyoros, I., Kiernan, M. C., Burke, D. & Bostock, H. (1998). Strength-duration properties of sensory and motor axons in amyotrophic lateral sclerosis. Brain, 121, 851–9CrossRefGoogle ScholarPubMed
Morita, H., Shindo, M., Ikeda, S. & Yanagisawa, N. (2000). Decrease in presynaptic inhibition on heteronymous monosynaptic Ia terminals in patients with Parkinson's disease. Movement Disorders, 15, 830–43.0.CO;2-E>CrossRefGoogle ScholarPubMed
Morita, H., Crone, C., Christenhuis, D., Petersen, N. T. & Nielsen, J. B. (2001). Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain, 124, 826–37CrossRefGoogle ScholarPubMed
Morita, H., Shindo, M., Morita, S., Hashimoto, T., Tada, T. & Ikeda, S. (2002). Abnormal conditioning effect of transcranial magnetic stimulation on soleus H-reflex during voluntary movement in Parkinson's disease. Clinical Neurophysiology, 113, 1316–24CrossRefGoogle ScholarPubMed
Mortimer, J. A. & Webster, D. D. (1979). Evidence for a quantitative association between electromyogram stretch responses and parkinsonian rigidity. Brain Research, 162, 169–73CrossRefGoogle ScholarPubMed
Naito, Y., Komatsu, Y., Kanazawa, I. & Nakanishi, T. (1988). F response abnormality in Parkinson's disease. Japanese Journal of Psychiatry and Neurology, 42, 811–18Google ScholarPubMed
Nakashima, K., Rothwell, J. C., Day, B. L., Thompson, P. D., Shannon, K. & Marsden, C. D. (1989). Reciprocal inhibition between forearm muscles in patients with writer's cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain, 112, 681–97CrossRefGoogle Scholar
Nakashima, K., Shimoyama, R., Yokoyama, Y. & Takahashi, K. (1994). Reciprocal inhibition between the forearm muscles in patients with Parkinson's disease. Electromyography and Clinical Neurophysiology, 34, 67–72Google ScholarPubMed
Nardone, A., Corna, S. & Schieppati, M. (2001). Group II afferent fibres in balance control: evidence from neurological disease. In MCC 2001 From Basic Motor Control to Functional Recovery II, ed. Gantchev, N., pp. 331–8. Sofia: Academic Publishing HouseGoogle Scholar
Neilson, P. D., O'Dwyer, N. J. & Nash, J. (1990). Control of isometric muscle activity in cerebral palsy. Developmental Medicine and Child Neurology, 32, 778–88CrossRefGoogle ScholarPubMed
Nickolls, P., Collins, D. F., Gorman, R. B., Burke, D. & Gandevia, S. C. (2004). Forces consistent with plateau potentials evoked in patients with chronic spinal cord injury. Brain, 127, 660–70CrossRefGoogle Scholar
Nielsen, J., Petersen, N. & Crone, C. (1995). Changes in transmission across synapses of Ia afferents in spastic patients. Brain, 118, 995–1004CrossRefGoogle ScholarPubMed
Noth, J., Schurmann, M., Podoll, K. & Schwartz, M. (1988). Reconsideration of the concept of enhanced static fusimotor drive in rigidity in patients with Parkinson's disease. Neuroscience Letters, 84, 239–43CrossRefGoogle ScholarPubMed
O'Dwyer, N. J., Ada, L. & Neilson, P. D. (1996). Spasticity and muscle contracture following stroke. Brain, 119, 1737–49CrossRefGoogle ScholarPubMed
Obeso, J. A., Quesada, P., Artieda, J. & Martinez-Lage, J. M. (1985). Reciprocal inhibition in rigidity and dystonia. In Clinical Neurophysiology in Parkinsonism, ed. Delwaide, P. J. & Agnelli, A., pp. 9–18. Amsterdam: ElsevierGoogle Scholar
Okuma, Y., Mizuno, Y. & Lee, R. G. (2002). Reciprocal Ia inhibition in patients with asymmetric spinal spasticity. Clinical Neurophysiology, 113, 292–7CrossRefGoogle ScholarPubMed
Olsen, P. Z. & Diamantopoulos, E. (1967). Excitability of spinal motoneurones in normal subjects and patients with spasticity, parkinsonian rigidity and cerebellar hypotonia. Journal of Neurology, Neurosurgery and Psychiatry, 30, 325–31CrossRefGoogle Scholar
Ongerboer de Visser, B. W., Koelman, J. H. T. M., Bour, L. J. & Hilgevoord, A. A. J. (1993). Signs of the upper motoneuron syndrome in relation to soleus Hoffmann reflex tests. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 287–95. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Ørsnes, G., Crone, C., Krarup, C., Petersen, N. & Nielsen, J. (2000). The effect of baclofen on the transmission in spinal pathways in spastic multiple sclerosis patients. Clinical Neurophysiology, 111, 1372–9CrossRefGoogle ScholarPubMed
Perry, J., Hoffer, M. M., Giovan, P., Antonelli, D. & Greenberg, R. (1974). Gait analysis of the triceps surae in cerebral palsy. A preoperative and postoperative clinical and electromyographic study. Journal of Bone and Joint Surgery, 56, 511–20CrossRefGoogle ScholarPubMed
Perry, J., Giovan, P., Harris, L. J., Montgomery, J. & Azaria, M. (1978). The determinants of muscle action in the hemiparetic lower extremity. Clinical Orthopedics and Relative Research, 131, 71–89Google Scholar
Pierrot-Deseilligny, E. (1990). Electrophysiological assessment of the spinal mechanisms underlying spasticity. In New Trends and Advanced Techniques in Clinical Neurophysiology, ed. Rossini, P. M. & Mauguière, F., pp. 364–73. Amsterdam: ElsevierGoogle Scholar
Pol, S., Vidailhet, M., Meunier, S., Mazevet, D., Agid, Y. & Pierrot-Deseilligny, E. (1998). Overactivity of cervical premotoneurones in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 64, 166–71CrossRefGoogle Scholar
Pollock, L. J. & Davis, L. (1931). Studies in decerebration. VI. The effect of deafferentation upon decerebrate rigidity. American Journal of Physiology, 98, 47–9Google Scholar
Pompeiano, O. (2001). Role of the locus coeruleus in the static and dynamic control of posture. Archives Italiennes de Biologie, 139, 109–24Google ScholarPubMed
Pötter, M., Illert, M., Wenzelburger, R., Deuschl, G. & Volkmann, J. (2004). The effect of subthalamic stimulation on autogenetic inhibition in Parkinson's disease. Neurology, 63, 1234–9CrossRefGoogle Scholar
Powers, R. K., Marder-Meyer, J. & Rymer, W. Z. (1988). Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Annals of Neurology, 23, 115–24CrossRefGoogle ScholarPubMed
Raynor, E. M. & Shefner, J. M. (1994). Recurrent inhibition is decreased in patients with amyotrophic lateral sclerosis. Neurology, 44, 2148–53CrossRefGoogle ScholarPubMed
Remy-Néris, O., Denys, P., Daniel, O., Barbeau, H. & Bussel, B. (2003). Effect of intrathecal clonidine on excitation transmitted by interneurones activated by groups I–II afferents in paraplegics. Experimental Brain Research, 148, 509–14CrossRefGoogle Scholar
Ridding, M. C., Inzelberg, R. & Rothwell, J. C. (1995). Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Annals of Neurology, 37, 181–8CrossRefGoogle ScholarPubMed
Roberts, R. C., Part, M. J., Farquhar, R. & Butchart, P. (1994). Presynaptic inhibition of soleus Ia afferent terminals in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 57, 1488–91CrossRefGoogle ScholarPubMed
Robertson, C. T. & Koceja, D. M. (2003). Post-activation depression of the soleus H-reflex in the elderly. Electromyography and Clinical Neurophysiology, 43, 103–11Google ScholarPubMed
Rothwell, J. C., Obeso, J. A., Traub, M. M. & Marsden, C. D. (1983). The behaviour of the long latency stretch reflex in patients with Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 46, 35–44CrossRefGoogle Scholar
Russo, R. E., Nagy, F. & Hounsgaard, J. (1998). Inhibitory control of plateau properties in dorsal horn neurones in the turtle spinal cord in vitro. Journal of Physiology (London), 506, 795–808CrossRefGoogle ScholarPubMed
Sabbahi, M., Etnyre, B., Al-Jawayed, I. A., Hasson, S. & Jankovic, J. (2002). Methods of H-reflex evaluation in the early stages of Parkinson's disease. Journal of Clinical Neurophysiology, 19, 67–72CrossRefGoogle ScholarPubMed
Satkunam, L. E. (2003). Rehabilitation medicine: 3. Management of adult spasticity. Canadian Medical Association Journal, 169, 1173–9Google ScholarPubMed
Schieppati, M. & Nardone, A. (1991). Free and supported stance in Parkinson's disease. The effect of posture and ‘postural set’ on leg muscle responses to perturbation, and its relation to the severity of the disease. Brain, 114, 1227–44CrossRefGoogle ScholarPubMed
Schiller, H. H. & Stålberg, E. (1978). Human botulism studied with single-fiber electromyography. Archives of Neurology, 35, 346–9CrossRefGoogle ScholarPubMed
Scholtz, E., Diener, H. C., Noth, J., Friedemann, H., Dichgans, J. & Bacher, M. (1987). Medium and long latency electromyogram responses in leg muscles: Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 50, 66–70CrossRefGoogle Scholar
Shefner, J. M., Berman, S. A., Sarkarati, M. & Young, R. R. (1992). Recurrent inhibition is increased in patients with spinal cord injury. Neurology, 42, 2162–8CrossRefGoogle ScholarPubMed
Simonetta-Moreau, M., Meunier, S., Vidailhet, M., Pol, S., Galitzky, M. & Rascol, O. (2002). Transmission of group II heteronymous pathways is enhanced in rigid lower limb of de novo patients with Parkinson's disease. Brain, 125, 2125–33CrossRefGoogle ScholarPubMed
Smith, G. V., Silver, K. H. C., Goldberg, A. P. & Macko, R. F. (1999). ‘Task-oriented’ exercise improves hamstring strength and spastic reflexes in chronic stroke patients. Stroke, 30, 2112–18CrossRefGoogle ScholarPubMed
Sommerfeld, D. K., Eek, E. U.-B., Svensson, A.-K., Holmqvist, L. W. & Arbin, M. H. (2004). Spasticity after stroke. Its occurrence and association with motor impairments and activity limitations. Stroke, 35, 134–40CrossRefGoogle ScholarPubMed
Sommerville, J. & Ashby, P. (1978). Hemiplegic spasticity: neurophysiologic studies. Archives of Physical Medicine and Rehabilitation, 59, 592–6Google Scholar
Stein, R. B. (1995). Presynaptic inhibition in humans. Progress in Neurobiology, 47, 533–44CrossRefGoogle ScholarPubMed
Szumski, A. J., Burg, D., Struppler, A. & Velho, F. (1974). Activity of muscle spindles during muscle twitch and clonus in normal and spastic human subjects. Electroencephalography and Clinical Neurophysiology, 37, 589–97CrossRefGoogle ScholarPubMed
Takamori, M. D. (1967). H reflex study in upper motoneurone disease. Neurology, 17, 32–40CrossRefGoogle Scholar
Tardieu, G., Shentoub, S. & Delarue, R. (1954). A la recherche d'une technique de mesure de la spasticité. Revue Neurologique, 91, 143–4Google Scholar
Tatton, W. G., Bedingham, W., Verrier, M. C. & Blair, R. D. (1984). Characteristic alterations in response to imposed wrist displacements in parkinsonian rigidity and dystonia musculorum deformans. Canadian Journal of the Neurological Sciences, 11, 281–7CrossRefGoogle ScholarPubMed
Thilmann, A. F. (1993). In Spasticity: Mechanisms & Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 1–5. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Thilmann, A. F., Fellows, S. J. & Garms, E. (1990). Pathological stretch reflexes on the ‘good’ side of hemiparetic patients. Journal of Neurology, Neurosurgery and Psychiatry, 53, 208–14CrossRefGoogle ScholarPubMed
Thilmann, A. F., Fellows, S. J. & Garms, E. (1991). The mechanism of spastic muscle hypertonus. Brain, 114, 233–44Google ScholarPubMed
Thilmann, A. F., Fellows, S. J. & Ross, H. F. (1993). Pathological changes in spastic muscle reflexes evoked by passive stretch or tendon taps. In Spasticity: Mechanisms & Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 239–50. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Trembley, F. & Trembley, L. (2002). Cortico-motor excitability of the lower limb motor representation: a comparative study in Parkinson's disease and healthy controls. Clinical Neurophysiology, 113, 2006–12CrossRefGoogle Scholar
Tsai, C. H., Chen, R. S. & Lu, C. S. (1997). Reciprocal inhibition in Parkinson's disease. Acta Neurologica Scandinavica, 95, 13–18CrossRefGoogle ScholarPubMed
Tsai, C. T., Chen, H. W. & Chang, C. W. (2003). Assessments of chronodispersion and tacheodispersion of F waves in patients with spinal cord injury. American Journal of Physical Medicine and Rehabilitation, 82, 498–503CrossRefGoogle ScholarPubMed
Tuzson, A. E., Granata, K. P. & Abel, M. F. (2003). Spastic velocity threshold constrains functional performance in cerebral palsy. Archives of Physical Medicine and Rehabilitation, 84, 1363–8CrossRefGoogle ScholarPubMed
Valls-Sole, J., Pascal-Leone, A., Brasil-Neto, J. P., Cammarota, A., McShane, L. & Hallett, M. (1994). Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease. Neurology, 44, 735–41CrossRefGoogle ScholarPubMed
Vattanasilp, W., Ada, L. & Crosbie, J. (2000). Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. Journal of Neurology, Neurosurgery and Psychiatry, 69, 34–9CrossRefGoogle ScholarPubMed
Vaughan, C. W., Neilson, P. D. & O'Dwyer, N. J. (1988). Motor control deficits of orofacial muscles in cerebral palsy. Journal of Neurology, Neurosurgery and Psychiatry, 51, 534–9CrossRefGoogle ScholarPubMed
Wallin, B. G., Hongell, A. & Hagbarth, K.-E. (1973). Recordings from muscle afferents in Parkinsonian rigidity. In New Developments in Electromyography & Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 263–72. Basel: KargerGoogle Scholar
Walshe, F. M. R. (1924). Observations on the nature of the muscular rigidity of paralysis agitans, and its relationship to tremor. Brain, 47, 159–77CrossRefGoogle Scholar
Watts, R. L., Wiegner, A. W. & Young, R. R. (1986). Elastic properties of muscles measured at the elbow in man. II. Patients with parkinsonian rigidity. Journal of Neurology, Neurosurgery and Psychiatry, 49, 1177–81CrossRefGoogle ScholarPubMed
Yanagisawa, N. (1980). Reciprocal reflex connections in motor disorders in man. In Spinal and Supraspinal Mechanisms of Voluntary Motor Control and Locomotion, ed. Desmedt, J. E., pp. 129–41. Basel: KargerGoogle Scholar
Yanagisawa, N. & Tanaka, R. (1978). Reciprocal Ia inhibition in spastic paralysis in man. In Contemporary Clinical Neurophysiology, ed. Cobb, W. A. & Duijn, H., pp. 521–6. Amsterdam: ElsevierGoogle Scholar
Yanagisawa, N., Tanaka, R. & Ito, Z. (1976). Reciprocal Ia inhibition in spastic hemiplegia of man. Brain, 99, 555–74CrossRefGoogle Scholar
Yanagisawa, N., Shindo, M., Morita, H. & Yanagawa, S. (1993). Methodological problems in the Hoffmann reflex study of spasticity. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 273–86. Heidelberg: Springer VerlagCrossRefGoogle Scholar
Yap, C. B. (1967). Spinal and long-loop reflexes on spinal motoneurone excitability in spasticity and rigidity. Brain, 90, 887–96CrossRefGoogle ScholarPubMed
Yelnik, A., Albert, T., Bonan, I. & Laffont, I. (1999). A clinical guide to assess the role of lower limb extensor overactivity in hemiplegic gait disorders. Stroke, 30, 580–5CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×