Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T20:13:27.360Z Has data issue: false hasContentIssue false

10 - Propriospinal relay for descending motor commands

Published online by Cambridge University Press:  08 August 2009

Emmanuel Pierrot-Deseilligny
Affiliation:
Groupe Hospitalier Pitié-Salpétrière, Paris
David Burke
Affiliation:
University of Sydney
Get access

Summary

The most important motor function of the spinal cord is to transmit the command for movement from higher centres to spinal motoneurones. In primates, there are monosynaptic cortico-motoneuronal projections, whereas, in the cat, the corticospinal command to forelimb motoneurones is transmitted exclusively through oligosynaptic pathways with intercalated spinal interneurones. Some are located at each segmental level (segmental interneurones). Others are rostral to motoneurones and are referred to as propriospinal neurones in the following (although the term ‘propriospinal’ has a more general meaning: that of an intrinsic spinal cord neurone, the axon of which terminates in remote spinal cord segments).

The presence of a significant contribution of the cervical propriospinal system to the control of upper limb movement in higher primates has been debated, but there is mounting evidence that, in macaque monkeys (Sasaki et al., 2004) and in humans (Pierrot-Deseilligny, 2002), a substantial part of the cortical command for movement is transmitted to motoneurones through a ‘propriospinal’ relay located rostral to motoneurones. The existence of a functional propriospinal system in human subjects is of particular interest. Indeed, because of the extensive convergence onto cervical propriospinal neurones of descending and peripheral inputs, the major role of the propriospinal system is probably to enable integration of the descending command en route to the motoneurones with the afferent feedback from the moving limb.

Type
Chapter
Information
The Circuitry of the Human Spinal Cord
Its Role in Motor Control and Movement Disorders
, pp. 452 - 510
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G., Rubino, V. & Schieppati, M. (1996). Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans. Electroencephalography and Clinical Neurophysiology, 101, 339–48CrossRefGoogle ScholarPubMed
Alstermark, B. & Kümmel, H. (1990). Transneuronal transport of wheat germ agglutinin conjugated horseradish peroxidase into last order spinal interneurones projecting to acromio- and spinodeltoideus motoneurones in the cat. Experimental Brain Research, 80, 90–103CrossRefGoogle ScholarPubMed
Alstermark, B. & Lundberg, A. (1992). The C3–C4 propriospinal system: target-reaching and food-taking. In Muscle Afferents and Spinal Control of Movement, ed. Jami, L., Pierrot-Deseilligny, E. & Zytnicki, D., pp. 327–54. Oxford: Pergamon PressGoogle Scholar
Alstermark, B. & Sasaki, S. (1986). Integration in descending motor pathways controlling the forelimb in the cat. 14. Differential projection to fast and slow motoneurones from excitatory C3–C4 propriospinal neurones. Experimental Brain Research, 63, 530–42CrossRefGoogle ScholarPubMed
Alstermark, B., Lindström, S., Lundberg, A. & Sybirska, E. (1981a). Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3–C4 propriospinal neurones also projecting to forelimb motoneurones. Experimental Brain Research, 42, 282–98CrossRefGoogle Scholar
Alstermark, B., Lundberg, A., Norrsell, U. & Sybirska, E. (1981b). Integration in descending motor pathways controlling the forelimb in the cat. 9. Differential behavioural defects after spinal cord lesions interrupting defined pathways from higher centres to motoneurones. Experimental Brain Research, 42, 299–318CrossRefGoogle Scholar
Alstermark, B., Lundberg, A. & Sasaki, S. (1984a). Integration in descending motor pathways controlling the forelimb in the cat. 10. Inhibitory pathways to forelimb motoneurones via C3–C4 propriospinal neurones. Experimental Brain Research, 56, 279–92CrossRefGoogle Scholar
Alstermark, B., Lundberg, A. & Sasaki, S. (1984b). Integration in descending motor pathways controlling the forelimb in the cat. 11. Inhibitory pathways from higher motor centres and forelimb afferents to C3–C4 propriospinal neurones. Experimental Brain Research, 56, 293–307CrossRefGoogle Scholar
Alstermark, B., Lundberg, A. & Sasaki, S. (1984c). Integration in descending motor pathways controlling the forelimb in the cat. 12. Interneurones which may mediate descending feed-forward inhibition and feed-back inhibition from the forelimb to C3–C4 propriospinal neurones. Experimental Brain Research, 56, 308–22CrossRefGoogle Scholar
Alstermark, B., Gorska, T., Johannisson, T. & Lundberg, A. (1986). Hypermetria in forelimb target-reaching after interruption of the inhibitory pathway from forelimb afferents to C3–C4 propriospinal neurones. Neuroscience Research, 3, 457–61CrossRefGoogle ScholarPubMed
Alstermark, B., Kümmel, H., Pinter, M. J. & Tantisira, B. (1990). Integration in descending motor pathways controlling the forelimb in the cat. 17. Axonal projection and termination of C3–C4 propriospinal neurones in the C6–Th1 segments. Experimental Brain Research, 81, 447–61CrossRefGoogle ScholarPubMed
Alstermark, B., Isa, T., Ohki, T. & Saito, T. (1999). Disynaptic pyramidal excitation in forelimb motoneurones mediated via C3–C4 propriospinal neurones in Macaca fuscata. Journal of Neurophysiology, 82, 3580–5CrossRefGoogle Scholar
Araki, T., Eccles, J. C. & Ito, M. (1960). Correlation of the inhibitory post-synaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. Journal of Physiology (London), 154, 354–77CrossRefGoogle ScholarPubMed
Bawa, P. & Lemon, R. N. (1993). Recruitment of motor units in response to transcranial magnetic stimulation in man. Journal of Physiology (London), 471, 445–64CrossRefGoogle ScholarPubMed
Benecke, R., Meyer, B. U. & Freund, H. J. (1991). Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Experimental Brain Research, 83, 419–26CrossRefGoogle ScholarPubMed
Burke, D. (2001). Clinical relevance of the putative C3–4 propriospinal system in humans. Muscle and Nerve, 24, 1437–9CrossRefGoogle Scholar
Burke, D., Gracies, J. M., Mazevet, D., Meunier, S. & Pierrot-Deseilligny, E. (1992a). Convergence of descending and various peripheral inputs onto common propriospinal-like neurones in man. Journal of Physiology (London), 449, 655–71CrossRefGoogle Scholar
Burke, D., Gracies, J. M., Meunier, S. & Pierrot-Deseilligny, E. (1992b). Changes in presynaptic inhibition of afferents to propriospinal-like neurones in man during voluntary contractions. Journal of Physiology (London), 449, 673–87CrossRefGoogle Scholar
Burke, D., Gracies, J. M., Mazevet, D., Meunier, S. & Pierrot-Deseilligny, E. (1994). Non monosynaptic transmission of the cortical command for voluntary movement in man. Journal of Physiology (London), 480, 191–207CrossRefGoogle ScholarPubMed
Chaix, Y., Marque, P., Meunier, S., Pierrot-Deseilligny, E. & Simonetta-Moreau, M. (1997). Further evidence for non-monosynaptic group I excitation of motoneurones in the human lower limb. Experimental Brain Research, 115, 35–46CrossRefGoogle Scholar
Cheney, P. D. & Fetz, E. E. (1980). Functional classes of primate corticomotoneuronal cells and their relation to active force. Journal of Neurophysiology, 44, 773–91CrossRefGoogle ScholarPubMed
Crone, C. (1993). Reciprocal Ia Inhibition in Man. 16 pp. Copenhagen: Laegeforeningens ForlagGoogle ScholarPubMed
Crone, C. & Nielsen, J. (1989). Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. Journal of Physiology (London), 416, 255–72CrossRefGoogle Scholar
Crone, C., Hultborn, H., Jespersen, B. & Nielsen, J. (1987). Reciprocal Ia inhibition between ankle flexors and extensors in man. Journal of Physiology (London), 389, 163–85CrossRefGoogle ScholarPubMed
Crone, C., Hultborn, H., Mazières, L., Morin, C., Nielsen, J. & Pierrot-Deseilligny, E. (1990). Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: a study in man and the cat. Experimental Brain Research, 81, 35–45CrossRefGoogle ScholarPubMed
Davies, H. E. & Edgley, S. A. (1994). Inputs to group II-activated midlumbar interneurones from descending motor pathways in the cat. Journal of Physiology (London), 479, 463–73CrossRefGoogle ScholarPubMed
Dietz, V. (2002). Do human bipeds use quadrupedal coordination?Trends in Neurosciences, 25, 462–7CrossRefGoogle ScholarPubMed
Forget, R., Hultborn, H., Meunier, S., Pantieri, R. & Pierrot-Deseilligny, E. (1989a). Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man. 2. Changes occurring during voluntary contraction. Experimental Brain Research, 78, 21–7CrossRefGoogle Scholar
Forget, R., Pantieri, R., Pierrot-Deseilligny, E., Shindo, M. & Tanaka, R. (1989b). Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man. 1. Possible interneuronal pathway. Experimental Brain Research, 78, 10–20CrossRefGoogle Scholar
Fournier, E., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1986). Evidence for interneuronally mediated Ia excitatory effects to human quadriceps motoneurones. Journal of Physiology (London), 377, 143–69CrossRefGoogle ScholarPubMed
Gracies, J. M., Meunier, S., Pierrot-Deseilligny, E. & Simonetta, M. (1991). Pattern of propriospinal-like excitation to different species of human upper limb motoneurones. Journal of Physiology (London), 434, 151–67CrossRefGoogle ScholarPubMed
Gracies, J. M., Meunier, S. & Pierrot-Deseilligny, E. (1994). Evidence for corticospinal excitation of presumed propriospinal neurones in man. Journal of Physiology (London), 475, 509–18CrossRefGoogle ScholarPubMed
Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Reviews, 36, 169–74CrossRefGoogle Scholar
Hultborn, H., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1986). Changes in polysynaptic Ia excitation to quadriceps motoneurones during voluntary contraction in man. Experimental Brain Research, 63, 436–8CrossRefGoogle ScholarPubMed
Illert, M., Lundberg, A. & Tanaka, R. (1977). Integration in descending motor pathways controlling the forelimb in the cat. 3. Convergence on propriospinal neurones transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Experimental Brain Research, 29, 323–46Google ScholarPubMed
Illert, M., Lundberg, A., Padel, Y. & Tanaka, R. (1978). Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3–C4 propriospinal neurones. Experimental Brain Research, 33, 101–30CrossRefGoogle ScholarPubMed
Jankowska, E. (1992). Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology, 38, 335–78CrossRefGoogle ScholarPubMed
Kirkwood, P. A., Maier, M. A. & Lemon, R. N. (2002). Interspecies comparisons for the C3–C4 propriospinal system: unresolved issues. Advances in Experimental Medicine and Biology, 508, 299–308CrossRefGoogle ScholarPubMed
Kostyuk, P. G. (1967). Neuronal mechanisms of cortico-spinal motor systems. Sechenov Physiological Journal of USSR, 53, 1311–21 (in Russian)Google Scholar
Kozhanov, V. M. & Shapovalov, A. L. (1977). Synaptic organization of the supraspinal control of propriospinal ventral horn interneurons in cat and monkey cord. Neurophysiology USSR, 1, 5–14Google Scholar
Lemon, R. N. (1999). Pathways for corticospinal control of motoneurones in man and other primates. Journal of Physiology (London), 518, 31SGoogle Scholar
Lloyd, D. P. C. (1941a). Activity in neurons of the bulbospinal correlation system. Journal of Neurophysiology, 4, 115–34CrossRefGoogle Scholar
Lloyd, D. P. C. (1941b). Spinal mechanism of the pyramidal system in cats. Journal of Neurophysiology, 4, 525–46Google Scholar
Lourenço, G., Simonetta-Moreau, M., Pierrot-Deseilligny, E. & Marchand-Pauvert, V. (2005). Cortical control of spinal reflex pathways in the human lower limb. Electroncephalography and Clinical Neurophysiology, in preparation
Lundberg, A. (1992). To what extent are brain commands for movements mediated by spinal interneurones?Behavioral and Brain Sciences, 15, 775Google Scholar
Lundberg, A. (1999). Descending control of forelimb movements in the cat. Brain Research Bulletin, 50, 323–4CrossRefGoogle ScholarPubMed
Maertens de Noordhout, A., Rothwell, J. C., Day, B. L.et al. (1992). Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. Journal of Physiology (London), 447, 535–48CrossRefGoogle ScholarPubMed
Maertens de Noordhout, A., Rapisarda, G., Bogacz, D.et al. (1999). Corticomotoneuronal synaptic connections in normal man. An electrophysiological study. Brain, 122, 1327–40CrossRefGoogle Scholar
Maier, M., Illert, M., Kirkwood, P. A., Nielsen, J. & Lemon, R. N. (1998). Does a C3–C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. Journal of Physiology (London), 511, 191–212CrossRefGoogle ScholarPubMed
Mailis, A. & Ashby, P. (1990). Alterations in group Ia projections to motoneurones following spinal lesions in humans. Journal of Neurophysiology, 64, 637–47CrossRefGoogle Scholar
Malmgren, K. & Pierrot-Deseilligny, E. (1987). Evidence that low threshold afferents both evoke and depress polysynaptic excitation of wrist flexor motoneurones in man. Experimental Brain Research, 67, 429–32CrossRefGoogle ScholarPubMed
Malmgren, K. & Pierrot-Deseilligny, E. (1988a). Evidence for non-monosynaptic Ia excitation of wrist flexor motoneurones, possibly via propriospinal neurones. Journal of Physiology (London), 405, 747–64CrossRefGoogle Scholar
Malmgren, K. & Pierrot-Deseilligny, E. (1988b). Inhibition of neurones transmitting non-monosynaptic Ia excitation to human wrist flexor motoneurones. Journal of Physiology (London), 405, 765–83CrossRefGoogle Scholar
Marchand-Pauvert, V. & Nielsen, J. B. (2002). Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human gait. Journal of Physiology (London), 538, 647–57CrossRefGoogle Scholar
Marchand-Pauvert, V., Mazevet, D., Pierrot-Deseilligny, E., Pol, S. & Pradat-Diehl, P. (1999a). Handedness related asymmetry in non-monosynaptic transmission of cortical excitation to human forearm motoneurones. Experimental Brain Research, 125, 323–34CrossRefGoogle Scholar
Marchand-Pauvert, V., Simonetta-Moreau, M. & Pierrot-Deseilligny, E. (1999b). Cortical control of spinal pathways mediating group II excitation to thigh motoneurones. Journal of Physiology (London), 517, 301–13CrossRefGoogle Scholar
Marchand-Pauvert, V., Mazevet, D., Nielsen, J., Petersen, N. & Pierrot-Deseilligny, E. (2000). Distribution of non-monosynaptic excitation to early and late recruited units in human forearm muscles. Experimental Brain Research, 134, 274–8CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V., Mazevet, D., Pradat-Diehl, P., Alstermark, B. & Pierrot-Deseilligny, E. (2001). Interruption of a relay of corticospinal excitation by a spinal lesion at C6–C7. Muscle and Nerve, 24, 1554–61CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V., Nicolas, G., Burke, D. & Pierrot-Deseilligny, E. (2002). Suppression of the H reflex by disynaptic autogenetic inhibitory pathways activated by the test volley. Journal of Physiology (London), 542, 963–76CrossRefGoogle Scholar
Marchand-Pauvert, V., Marque, P., Nicolas, G., Iglesias, C. & Pierrot-Deseilligny, E. (2005). Posture-related increase in group II excitation from pretibial flexors to quadriceps motoneurones. Journal of Physiology (London) (in press)CrossRefGoogle Scholar
Marque, P., Pierrot-Deseilligny, E. & Simonetta-Moreau, M. (1996). Evidence for excitation of the human lower limb motoneurones by group II muscle afferents. Experimental Brain Research, 109, 357–60CrossRefGoogle ScholarPubMed
Marque, P., Nicolas, G., Marchand-Pauvert, V., Gautier, J., Simonetta-Moreau, M. & Pierrot-Deseilligny, E. (2001a). Group I projections from intrinsic foot muscles to motoneurones of leg and thigh muscles in humans. Journal of Physiology (London), 536, 313–27CrossRefGoogle Scholar
Marque, P., Simonetta-Moreau, M., Maupas, E. & Roques, C. F. (2001b). Facilitation of transmission in heteronymous group II pathways in spastic hemiplegic patients. Journal of Neurology, Neurosurgery and Psychiatry, 70, 36–42CrossRefGoogle Scholar
Mazevet, D. & Pierrot-Deseilligny, E. (1994). Pattern of descending excitation of presumed propriospinal neurones at the onset of voluntary movement in man. Acta Physiologica Scandinavica, 150, 27–38CrossRefGoogle Scholar
Mazevet, D., Pierrot-Deseilligny, E. & Rothwell, J. C. (1996). A propriospinal contribution to electromyogram responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man. Experimental Brain Research, 109, 495–9CrossRefGoogle ScholarPubMed
Mazevet, D., Meunier, S., Pradat-Diehl, P., Marchand-Pauvert, V. & Pierrot-Deseilligny, E. (2003). Changes in propriospinally-mediated excitation of upper limb motoneurones in stroke patients. Brain, 126, 988–1000CrossRefGoogle Scholar
Meunier, S., Pierrot-Deseilligny, E. & Simonetta-Moreau, M. (1994). Pattern of heteronymous recurrent inhibition in the human lower limb. Experimental Brain Research, 102, 149–59CrossRefGoogle ScholarPubMed
Muir, R. B. & Lemon, R. N. (1983). Corticospinal neurons with a special role in the precision grip. Brain Research, 261, 312–16CrossRefGoogle ScholarPubMed
Nakajima, K., Maier, M. A., Kirkwood, P. A. & Lemon, R. N. (2000). Striking differences in transmission of corticospinal excitation to upper limb motoneurones in two primate species. Journal of Neurophysiology, 84, 698–709CrossRefGoogle Scholar
Nicolas, G., Marchand-Pauvert, V., Burke, D. & Pierrot-Deseilligny, E. (2001). Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans. Journal of Physiology (London), 533, 903–19CrossRefGoogle ScholarPubMed
Nielsen, J. & Petersen, N. (1994). Is presynaptic inhibition distributed to corticospinal fibres in man?Journal of Physiology (London), 477, 47–58CrossRefGoogle ScholarPubMed
Nielsen, J. & Pierrot-Deseilligny, E. (1991). Pattern of cutaneous inhibition of the propriospinal-like excitation to human upper limb motoneurones. Journal of Physiology (London), 434, 169–82CrossRefGoogle ScholarPubMed
Nielsen, J., Morita, H., Baumgarten, J., Petersen, N. & Christensen, L. O. (1999). On the comparability of H-reflexes and motor evoked potentials. Electroencephalography and Clinical Neurophysiology, Suppl. 51, 93–101Google Scholar
Olivier, E., Baker, S. N., Nakajima, K., Brochier, T. & Lemon, R. N. (2001). Investigation into non-monosynaptic corticospinal excitation of macaque upper limb single motor units, Journal of Neurophysiology, 86, 1573–86CrossRefGoogle ScholarPubMed
Pauvert, V., Pierrot-Deseilligny, E. & Rothwell, J. C. (1998). Role of spinal premotoneurones in mediating corticospinal input to forearm motoneurones in man. Journal of Physiology (London), 508, 301–12CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E. (1996). Transmission of the cortical command for human voluntary movement through cervical premotoneurones. Progress in Neurobiology, 48, 489–517CrossRefGoogle Scholar
Pierrot-Deseilligny, E. (2002). Propriospinal transmission of part of the corticospinal excitation in humans. Muscle and Nerve, 26, 155–72CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E. & Mazevet, D. (1993). Propriospinal transmission of voluntary movement in humans. In Spasticity: Mechanisms and Management, ed. Thilmann, A., Burke, D. J., & Rymer, W. Z., pp. 40–56. Berlin: SpringerCrossRefGoogle Scholar
Pierrot-Deseilligny, E., Morin, C., Bergego, C. & Tankov, N. (1981). Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Brain Research, 42, 337–50Google Scholar
Pierrot-Deseilligny, E., Mazevet, D. & Meunier, S. (1995). Cutaneous inhibition of the descending command passing through the propriospinal relay might contribute to curtail human movements. In Alpha and Gamma Motor System, ed. Taylor, A., Gladden, M. H. & Durbaba, R., pp. 607–15. New York: PlenumCrossRefGoogle Scholar
Pol, S., Vidailhet, M., Meunier, S., Mazevet, D., Agid, Y. & Pierrot-Deseilligny, E. (1998). Overactivity of cervical premotoneurones in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 64, 166–71CrossRefGoogle Scholar
Rémy-Néris, O., Denys, P., Daniel, O., Barbeau, H. & Bussel, B. (2003). Effect of intrathecal clonidine on excitation transmitted by interneurones activated by groups I-II afferents in paraplegics. Experimental Brain Research, 148, 509–14CrossRefGoogle Scholar
Rothwell, J. C. (2002). Spinal interneurones: reevaluation and controversy. Advances in Experimental Medicine and Biology, 508, 259–63CrossRefGoogle Scholar
Sasaki, S., Isa, T., Pettersson, L. G.et al. (2004). Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. Journal of Neurophysiology, 92, 3142–7CrossRefGoogle ScholarPubMed
Schomburg, E. D. (1990). Spinal sensorimotor systems and their supraspinal control. Neuroscience Research, 7, 265–340CrossRefGoogle ScholarPubMed
Shapovalov, A. I. (1975). Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Reviews of Physiological and Biochemical Pharmacology, 72, 1–54CrossRefGoogle ScholarPubMed
Simonetta-Moreau, M., Marque, P., Marchand-Pauvert, V. & Pierrot-Deseilligny, E. (1999). The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents. Journal of Physiology (London), 517, 287–300CrossRefGoogle ScholarPubMed
Simonetta-Moreau, M., Meunier, S., Vidailhet, M., Pol, S., Galitzky, M. & Rascol, O. (2002). Transmission of group II heteronymous pathways is enhanced in rigid lower limb of de novo patients with Parkinson's disease. Brain, 125, 2125–33CrossRefGoogle ScholarPubMed
Stinear, J. W. & Byblow, W. D. (2004). The contribution of cervical propriospinal premotoneurons in recovering hemiparetic stroke patients. Journal of Clinical Neurophysiology, 21, 426–34CrossRefGoogle ScholarPubMed
Taylor, B. A., Ridding, M. C. & Rothwell, J. C. (1995). Some evidence for a mid-thoracic nucleus in the human motor pathway. In Alpha and Gamma Motor Systems, ed. Taylor, A., Gladden, M. H. & Durbaba, R., pp. 629–31. New York: PlenumCrossRefGoogle Scholar
Turton, A., Wroe, S., Trepte, N., Fraser, C. & Lemon, R. N. (1996). Contralateral and ipsilateral electromyogram responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalography and Clinical Neurophysiology, 101, 316–28CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×