Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T21:49:38.647Z Has data issue: false hasContentIssue false

6 - Frontal lobe

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

The elusive functions of the frontal lobe continue to fascinate the neuroscientist and the neuropsychologist. The frontal lobe is impressively developed in humans and makes up more than one-third of the entire cortical area (Damasio and Anderson, 1993). It controls actions of our body through its motor areas. It also appears to be responsible for shaping our attitudes and organizing our repertoire of behaviors through the actions of the prefrontal areas. Functions that are hallmarks of human behavior, such as intentionality, self-regulation, and self-awareness, are thought to be under the executive control of the frontal lobe.

An ongoing controversy among the prefrontal cortex researchers is whether this region contains regions with discrete functions subservient to an overall executive module that provides an integrated output of the system, or whether the entire prefrontal region is involved in this integrative function. The latter hypothesis requires the neural modules of the prefrontal regions to be highly dynamic. Evidence for both theories exists and the truth is likely to have elements of both schemas where both specialization and versatility contribute to the proper functioning of this most fascinating of brain regions. Different competing, and not necessarily mutually exclusive, theories will be introduced in this chapter.

Anatomical subdivisions

The frontal lobe lies rostral (anterior) to the central sulcus and is made up of three anatomically distinct regions: the dorsolateral aspect, the medial aspect, and the orbital (inferior) aspect.

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 70 - 101
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarian, S., Kim, J. J., Potkin, S. G., Hetrick, W. P., Bunney, W. E., and Jones, E. G. 1996. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch. Gen. Psychiatry 53:425–436.CrossRefGoogle ScholarPubMed
Amuts, K., Weiss, P. H., Mohlberg, H., Pieperhoff, P., Eickhoff, S., Gurd, J. M., Marshall, J. C., Shah, N. J., Fink, G. R., and Zilles, K. 2004. Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space – the roles of Brodmann's areas 44 and 45. Neuroimage 22:42–56.CrossRefGoogle Scholar
Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., Glover, G. H., and Gabrieli, J. D. E. 2004. Neural systems underlying the suppression of unwanted memories. Science 303(5655):232–235.CrossRefGoogle ScholarPubMed
Baddeley, A. 1992. Working memory. Science 255:556–559.CrossRefGoogle ScholarPubMed
Baxter, L. R. Jr. 1992. Neuroimaging studies of obsessive compulsive disorder. Psychiatr. Clin. North Am. 15(4):871–884.Google ScholarPubMed
Baxter, L. R. Jr., Phelps, M. E., Mazziotta, J. C., Schwartz, J. M., Gerner, R. H., Selin, C. E., and Sumida, R. M. 1985. Cerebral metabolic rates for glucose in mood disorders – studies with positron emission tomography and fluorodeoxyglucose F18. Arch. Gen. Psychiatry 42:441–447.CrossRefGoogle Scholar
Baxter, L. R. Jr., Schwartz, J. M., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Selin, C. E., Gerner, R. H., and Sumida, R. M. 1989. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry 46:243–250.CrossRefGoogle Scholar
Baxter, L. R. Jr., Schwartz, J. M., Guze, B. H., Bergman, K., and Szuba, M. P. 1990. PET imaging in obsessive compulsive disorder with and without depression. J. Clin. Psychiatry 51(Suppl.):61–69.Google ScholarPubMed
Bechara, A., Damasio, H., and Damasio, A. R. 2000. Emotion, decision making and the orbitofrontal cortex. Cerebr. Cortex 10:295–307.CrossRefGoogle ScholarPubMed
Bench, C. J., Dolan, R. J., Friston, K. J., Brown, R., and Scott, L. 1992. The anatomy of melancholia: a positron emission tomography study of primary depression. Psychol. Med. 3:602–615.Google Scholar
Benson, D. F., and Ardila, A. 1993. Depression in aphasia. In: Starkstein, S. E. and Robinson, R. G. (eds.) Depression in Neurologic Disease. Baltimore, Md.: Johns Hopkins Press, pp. 152–164.Google Scholar
Berthoz, S., Armony, J. L., Blair, R. J. R., and Dolan, R. J. 2002. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125:1696–1708.CrossRefGoogle ScholarPubMed
Blair, R. J., Morris, J. S., Frith, C. D., Perrett, D. I., and Dolan, R. J. 1999. Dissociable neural responses to facial expressions of sadness and anger. Brain 122:883–893.CrossRefGoogle ScholarPubMed
Bleasel, A., Comair, Y., and Luders, H. O. 1996. Surgical ablations of the mesial frontal lobe in humans. In: Lunders, H. O. (ed.) Supplementary Sensorimotor Area. Philadelphia, Pa.: Lippincott–Raven, pp. 217–235.Google Scholar
Bookheimer, S. Y., Zetiro, T. A., Blaxton, T. A., Gaillard, P. W., and Theodore, W. H. 2000. Activation of language cortex with automatic speech tasks. Neurology 55:1151–1157.CrossRefGoogle ScholarPubMed
Boone, K. B., Miller, B. L., Rosenberg, L., Durazo, A., McIntrye, M., and Weil, M. 1988. Neuro psychological and behavioral abnormalities in an adolescent with frontal lobe seizure. Neurology 38:583–586.CrossRefGoogle Scholar
Breier, A. 1999. Cognitive deficit in schizophrenia and its neurochemical basis. Br. J. Psychiatry 174(Suppl. 37):16–18.Google Scholar
Brodal, A. 1981. Neurological Anatomy. New York: Oxford University Press.Google Scholar
Broffman, M. 1950. The lobotomized patient during the first year at home. In: Greenblatt, M., Arnot, R., and Solomon, H. C. (eds.) Studies in Lobotomy. Orlando, Fla.: Grune and Stratton.Google Scholar
Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., and Decety, J. 2000. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11:157–166.CrossRefGoogle ScholarPubMed
Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., and Decety, J. 2003. Abnormalities of brain function during a nonverbal theory of mind task in schizophrenia. Neuropsychologia 41:1574–1582.CrossRefGoogle Scholar
Buchanan, R. W., Vladar, K., Barta, P. E., and Pearlson, G. D. 1998. Structural evaluation of the prefrontal cortex in schizophrenia. Am. J. Psychiatry 155:1049–1055.CrossRefGoogle Scholar
Butter, C. M., Mishkin, M., and Mirsky, A. F. 1968. Emotional response toward humans in monkeys with selective frontal lesions. Psychol. Behav. 4:163–171.Google Scholar
Buttner-Ennever, J. A. (ed.) 1988. Neuroanatomy of the oculomotor system. Reviews of Oculomotor Research, vol. 2. New York: Elsevier.Google Scholar
Caplan, D., Alpert, N., Waters, G., and Olivieri, A. 2000. Activation of Broca's area by syntactic processing under conditions of concurrent articulation. Hum. Brain Map. 9(2):65–71.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Cohen, H., Kaplan, Z., Kotler, M., Kouperman, I., Moisa, R., and Grisaru, N. 2004. Repe- titive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: a double-blind, placebo-controlled study. Am. J. Psychiatry 161:515–524.CrossRefGoogle Scholar
Courtney, S. M., Petit, L., Haxby, J. V., and Ungerleider, L. G. 1998. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353:1819–1828.CrossRefGoogle ScholarPubMed
Cummings, J. L. 1993. The neuroanatomy of depression. J. Clin. Psychiatry 54 (Suppl.):14–20.Google Scholar
Damasio, A. R. 1994. Descartes' Error: Emotion, Reason, and the Human Brain. New York: Grist/Putnam.Google Scholar
Damasio, A. R., and Anderson, S. W. 1993. The frontal lobes. In: Heilman, K. M. and Valenstein, E. (eds.) Clinical Neuropsychology, 3rd edn. New York: Oxford University Press.Google Scholar
Fuente, J. M., Goldman, S., Stanus, E., Vizuete, C., Morlan, I., Bobes, J., and Mendlewicz, J. 1997. Brain glucose metabolism in borderline personality disorder. J. Psychiatr. Res. 31:531–541.CrossRefGoogle Scholar
Deiber, M. -P., Honda, M., Ibañez, V., Sadato, N., and Hallett, M. 1999. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J. Neurophysiol. 81:3065–3077.CrossRefGoogle ScholarPubMed
Dimberg, U., and Petterson, M. 2000. Facial reactions to happy and angry facial expressions: evidence for right hemisphere dominance. Psychophysiology 37(5):693–696.CrossRefGoogle ScholarPubMed
Dolan, R. J., Bench, C. J., Brown, R. G., Scott, L. C., Friston, K. J., and Frackowiak, R. S. J. 1992. Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J. Neurol. Neurosurg. Psychiatry 55:768–773.CrossRefGoogle ScholarPubMed
Drewe, E. A. 1974. The effect of type and area of brain lesion on Wisconsin Card Sorting Test performance. Cortex 10:159–170.CrossRefGoogle ScholarPubMed
Elliott, R., Dolan, R. J., and Frith, D. D. 2000. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cerebr. Cortex 10(3):308–317.CrossRefGoogle ScholarPubMed
Ernst, M., Liebenauer, L. L., King, C., Fitzgerald, G. A., Cohen, R. M., and Zametkin, A. J. 1994. Reduced brain metabolism in hyperactive girls. J. Am. Acad. Child Adolesc. Psychiatry 33:858–868.CrossRefGoogle ScholarPubMed
Feinberg, T. E., Schindler, R. J., Flanagan, N. G., and Haber, L. D. 1992. Two alien hand syndromes. Neurology 42:19–24.CrossRefGoogle ScholarPubMed
Freund, H.-J., and Hummelsheim, H. 1984. Premotor cortex in man: evidence for innervation of proximal limb muscles. Exp. Brain Res. 53:479–482.CrossRefGoogle Scholar
Fuster, J. M. 1995. Memory and planning. Two temporal perspectives of frontal lobe function. Adv. Neurol. 66:9–20.Google ScholarPubMed
Fuster, J. M.1996. Frontal lobe syndromes. In: Fogel, B., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams & Wilkins, pp. 407–413.Google Scholar
Fuster, J. M. 2002. Frontal lobe and cognitive development. J. Neurocytol. 31:373–385.CrossRefGoogle ScholarPubMed
Galynker, I. I., Weiss, J., Ongseng, F., and Finestone, H. 1997. ECT treatment and cerebral perfusion in catatonia. J. Nucl. Med. 38:251–254.Google ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castelleanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., and Rapaport, J. L. 1999. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci. 2:861–863.CrossRefGoogle ScholarPubMed
Glantz, L. A., and Lewis, D. A. 1993. Synaptophysin immunoreactivity is selectively decreased in the prefrontal cortex of schizophrenic subjects (abstract). Soc. Neurosci. Abstr. 19:201.Google Scholar
Goel, V., Grafman, J., Tajik, J., Gana, S., and Danto, D. 1997. A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120:1805–1822.CrossRefGoogle Scholar
Goldman-Rakic, P. S. 1995. Anatomical and functional circuits in prefrontal cortex of nonhuman primates: Relevance to epilepsy. Adv. Neurol. 66:51–65.Google ScholarPubMed
Goldman-Rakic, P. S.1996a. Dissolution of cerebral cortical mechanisms in subjects with schizophrenia. In: Watson, S. J. (ed.) Biology of Schizophrenia and Affective Disease. Washington D.C.: American Psychiatric Press.Google Scholar
Goldman-Rakic, P. S. 1996b. Regional and cellular fractionation of working memory. Proc. Natl. Acad. Sci. U.S.A. 93:13473–13480.CrossRefGoogle Scholar
Goldman-Rakic, P. S. 1997. Space and time in the mental universe. Nature 386:559–560.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., and Selemon, L. D. 1997. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr. Bull. 23(3):437–458.CrossRefGoogle Scholar
Goldman-Rakic, P. S., Selemon, L. D., and Schwartz, M. L. 1984. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743.CrossRefGoogle ScholarPubMed
Gooding, S. R., Iacono, W. G., and Grove, W. M. 1994. Frontal lobe deficits and eye tracking dysfunction. Presented at the 34th Annual Meeting of the Society for Psychophysiological Research, Atlanta, Ga., 6 October, 1994.
Grafton, S. T., Mazziotta, J. C., Woods, R. P., and Phelps, M. E. 1992a. Human functional anatomy of visually guided finger movements. Brain 115:565–587.CrossRefGoogle Scholar
Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S. J., and Phelps, M. E. 1992b. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J. Neurosci. 12:2542–2548.CrossRefGoogle Scholar
Gray, J. A. 1987. The psychology of fear and stress. New York: Oxford University Press.Google Scholar
Gurd, J. M., and Ward, C. D. 1989. Retrieval from semantic and letter-initial categories in patients with Parkinson's disease. Neuropsychologia 27:743–746.CrossRefGoogle ScholarPubMed
Gurd, J. M., Amunts, K., Weiss, P. H., Zafiris, O., Zilles, K., Marshall, J. C., and Fink, G. R. 2002. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain 125:1024–1038.CrossRefGoogle ScholarPubMed
Gurevich, E. V., and Joyce, J. N. 1997. Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol. Psychiatry 42:529–545.CrossRefGoogle ScholarPubMed
Hall, R. E., Livingston, R. B., and Bloor, C. M. 1977. Orbital cortical influences on cardiovascular dynamics and myocardial structure in conscious monkeys. J. Neurosurg. 46:638–647.CrossRefGoogle ScholarPubMed
Halsband, U., Ito, N., Tanji, J., and Freund, H. J. 1993. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116:243–266.CrossRefGoogle ScholarPubMed
Happé, F., Ehlers, S., Fletcher, P., Frith, U., Johansson, M., and Gillberg, C. 1996. Theory in the mind of the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 8:197–201.CrossRefGoogle ScholarPubMed
Ho, A. P., Gillis, J. C., Buchsbaum, M. S., Wu, J. C., Abel, L., and Bunney, W. E. 1997. Brain glucose metabolism during non-rapid eye movement sleep in major depression: a positron emission tomography study. Arch. Gen. Psychiatry 53:645–652.CrossRefGoogle Scholar
Hoffman, R. E., and McGlashan, T. H. 1997. Synaptic elimination, neurodevelopment, and the mechanism of hallucinated “voices” in schizophrenia. Am. J. Psychiatry 154:1683–1689.CrossRefGoogle Scholar
Huttenlocher, P. R. 1979. Synaptic density in the human frontal cortex – developmental changes and effects of aging. Brain Res. 163:195–205.Google ScholarPubMed
Insausti, R., Amaral, D. G., and Cowan, W. M. 1987. The entorhinal cortex of the monkey. II Cortical afferents. J. Comp. Neurol. 264:356–395.CrossRefGoogle ScholarPubMed
Jones, B., and Mishkin, M. 1972. Limbic lesions and the problem of stimulus reinforcement associations. Exp. Neurol. 36:362–377.CrossRefGoogle ScholarPubMed
Johnson, D. L., Wiebe, J. S., Gold, S. M., Andreasen, N. C., Hichwa, R. D., Watkins, G. L., and BolesPonto, L. L. 1999. Cerebral blood flow and personality: a positron emission tomography study. Am. J. Psychiatry 156:252–257.Google ScholarPubMed
Joseph, R. 1988. The right cerebral hemisphere: emotion, music, visual-spatial skills, body-image, dreams and awareness. J. Clin. Psychol. 44:630–673.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Joseph, R.1996. Neuropsychology, Neuropsychiatry, and Behavioral Neurology, 2nd edn. New York: Plenum Press.
Kesler-West, M. L., Andersen, A. H., Smith, C. D., Avison, M. J., Davis, C. E., Kryscio, R. J., and Blonder, L. X. 2001. Neural substrates of facial emotion processing using fMRI. Cogn. Brain Res. 11:213–226.CrossRefGoogle ScholarPubMed
Ketter, T., George, M., Ring, H., Pazzaglia, P., Marangel, L., Kimbrell, T., and Post, R. 1994. Primary mood disorders: structural and resting functional studies. Psychiatr. Ann. 24:642–647.CrossRefGoogle Scholar
Knight, R. T., Grabowecky, M. F., and Scabini, D. 1995. Role of human prefrontal cortex in attention control. Adv. Neurol., 66:21–36.Google ScholarPubMed
Lane, R. D., Reiman, E. M., Ahern, G. L., Schwartz, G. E., and Davidson, R. J. 1997. Neuroanatomical correlates of happiness, sadness, and disgust. Am. J. Psychiatry 154:926–933.Google ScholarPubMed
Lau, H. C., Rogers, R. D., Haggard, P., and Passingham, R. E. 2004. Attention to intention. Science 303:1208–1210.CrossRefGoogle ScholarPubMed
Leslie, K. R., Johnson-Frey, S. H., and Grafton, S. T. 2004. Functional imaging of face and hand imitation; towards a motor theory of empathy. Neuroimage 21:601–607.CrossRefGoogle ScholarPubMed
Levenson, R. W., Ekman, P., and Friesen, W. V. 1990. Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology 27(4):363–384.CrossRefGoogle ScholarPubMed
Levin, H., and Kraus, M. F. 1994. The frontal lobes and traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 6:443–454.Google ScholarPubMed
Lhermitte, F. 1986. Human autonomy and the frontal lobes. Ann. Neurol. 19:335–343.CrossRefGoogle ScholarPubMed
Liddle, P. R., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T., and Frackowiak, R. S. J. 1992. Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry 160:179–186.CrossRefGoogle Scholar
Manoach, D. S. 2003. Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr. Res. 60 (2–3): 285–298.CrossRefGoogle ScholarPubMed
Mayberg, H. S. 1997. Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 9:471–481.Google Scholar
McGuire, P. K., Shah, G. M. S., and Murray, R. M. 1993. Increased blood flow in Broca's area during auditory hallucinations in schizophrenia. Lancet 342:703–706.CrossRefGoogle Scholar
McGuire, P. K., Silberswieg, D. A., Murray, R. M., David, A. S., Frackowiak, R. S. J., and Firth, C. D. 1996. Functional anatomy of inner speech and auditory verbal imagery. Psychol. Med. 26:29–38.CrossRefGoogle ScholarPubMed
Mendez, M. F., and Clark, D. G. 2004. Aphemia-like syndrome from a right supplementary motor area lesion. Clin. Neurol. Neurosurg. 106(4): 337–339.CrossRefGoogle ScholarPubMed
Mendez, M. F., and Zander, B. A. 1992. Reversible frontal lobe dysfunction from neurosarcoidosis. Psychosomatics 33:215–217.CrossRefGoogle Scholar
Mendez, M. F., Bagart, B., and Edwards-Lee, T. 1997. Self-injurious behavior in frontotemporal dementia. Neurocase 3:231–236.CrossRefGoogle Scholar
Miller, E. K. 2000. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 1:59–65.CrossRefGoogle ScholarPubMed
Milner, B. 1995. Aspects of human frontal lobe function. In: Jasper, H. H., Riggio, S., and Goldman-Rakic, P. W. (eds.) Epilepsy and the Functional Anatomy of the Frontal Lobe. New York: Raven Press.Google Scholar
Morris, P. L. P., Robinson, R. G., and Raphael, B. 1992. Lesion location and depression in hospitalized stroke patients. Neuropsychiatry Neuropsychol. Behav. Neurol. 5:75–82.Google Scholar
Murphy, B. L., Arnsten, A. F., Goldman-Rakic, P. S., and Roth, R. H. 1996. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc. Natl. Acad. Sci. U.S.A. 93:1325–1339.CrossRefGoogle ScholarPubMed
Myers, R. E., Swett, C., and Miller, M. 1973. Loss of social group affinity following prefrontal lesions in free-ranging macaques. Brain Res. 64:257–269.CrossRefGoogle ScholarPubMed
Nauta, W. J. H. 1971. The problem of the frontal lobe: a reinterpretation. J. Psychiatr. Res. 8:167–187.CrossRefGoogle ScholarPubMed
Nestler, E. J. 1997. An emerging pathophysiology. Nature 385:578–579.CrossRefGoogle Scholar
Nitschke, J. B., Nelson, E. E., Rusch, B. D., Fox, A. S., Oakes, T. R., and Davidson, R. J. 2004. Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. Neuroimage 21:583–592.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., and Gabrieli, J. D. E. 2002. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Sci. 14(8):1215–1229.Google ScholarPubMed
O'Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., and Dolan, R. J. 2003. Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia 41(2):147–155.CrossRefGoogle Scholar
Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., and Toru, M. 1997. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636.CrossRefGoogle ScholarPubMed
Owen, A. M. 2000. The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp. Brain Res. 133:33–43.CrossRefGoogle ScholarPubMed
Pandya, D. N., and Yeterian, E. H. 1990. Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings, H. B. M., Eden, C. G., DeBruin, J. P. C., Corner, M. A., and Feenstra, M. G. P. (eds.) The Prefrontal Cortex: Its Structure, Function and Pathology. Amsterdam: Elsevier, pp. 63–94.Google Scholar
Pandya, D. N., and Yeterian, E. H.1996. Morphological correlations of human and monkey frontal lobe. In: Damasio, A. R., Damasio, H., and Christen, Y. (eds.), Neurobiology of Decision Making. New York: Springer-Verlag, pp. 13–46.CrossRefGoogle Scholar
Pfefferbaum, A., Desmond, J. E., Galloway, C., Menon, V., Glover, G. H., and Sullivan, E. V. 2001. Reorganization of frontal systems used by alcoholics for spatial working memory: an fMRI study. Neuroimage 14:7–20.CrossRefGoogle Scholar
Picard, N., and Strick, P. L. 1996. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6:342–353.CrossRefGoogle ScholarPubMed
Price, C. J., Wise, R. J. S., and Frackowiak, R. S. J. 1996. Demonstrating the implicit processing of visually presented words and pseudo words. Cerebr. Cortex 6:62–70.CrossRefGoogle Scholar
Price, J. L., Carmichael, S. T., Carnes, K. M. et al. 1991. Olfactory input to the prefrontal cortex. In: Davis, J. L. and Eichenbaum, H. (eds.) Olfaction: A Model System for Computational Neuroscience. Cambridge, Mass.: MIT Press, pp. 101–120.Google Scholar
Quintana, J., and Fuster, J. M. 1992. Mnemonic and predictive functions of cortical neurons in a memory task. Neuro report 3:721–724.Google Scholar
Rangaswamy, M., Porjesz, B., Ardekani, B. A., Choi, S. J., Tanabe, J. L., Lim, K. O., and Begleiter, H. 2004. A functional MRI study of visual oddball: evidence for frontoparietal dysfunction in subjects at risk for alcoholism. Neuroimage 21:329–339.CrossRefGoogle ScholarPubMed
Rauch, S. L., Jenike, M. A., Alpert, N. M., Baer, L., Breiter, H. C., Savage, C. R., and Fischman, A. J. 1994. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 51:62–70.CrossRefGoogle ScholarPubMed
Rauch, S. L., Savage, C. R., Alpert, N. M., Miguel, E. C., Baer, L., Breiter, H. C., Fischman, A. J., Manzo, P. A., Moretti, C., and Jenike, M. A. 1995. A positron emission tomographic study of simple phobic symptom provocation. Arch. Gen. Psychiatry 52:20–28.CrossRefGoogle ScholarPubMed
Rauch, S. L., Kolk, B. A., Fisler, R. E., Alpert, N. M., Orr, S. P., Savage, C. R., Fischman, A. J., Jenike, M. A., and Pitman, R. K. 1996. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry 53:380–387.CrossRefGoogle ScholarPubMed
Reiman, E. M., Lane, R. D., Ahern, G. L., Schwartz, G. E., Davidson, R. J., Friston, K. J., Yun, L.-S., and Chen, K. 1997. Neuroanatomical correlates of externally and internally generated human emotion. Am. J. Psychiatry 154:918–925.Google ScholarPubMed
Reynolds, J. R., Donaldson, D. I., Wagner, A. D., and Braver, T. S. 2004. Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding. Neuroimage 21:1472–1483.CrossRefGoogle Scholar
Riggio, S., and Harner, R. N. 1992. Frontal lobe epilepsy. Neuropsychiatry Neuropsychol. Behav. Neurol. 5:283–293.Google Scholar
Rizzolatti, G., Luppino, G., and Matelli, M. 1996. The classic supplementary motor area is formed by two independent areas. In: Lunders, H. O. (ed.) Supplementary Sensorimotor Area. Philadelphia, Pa.:Lippincott–Raven, pp. 45–56.Google Scholar
Rolls, E. T. 1990. A theory of emotion, and its applications to understanding the neural basis of emotions. Cognit. Emot. 4:161–1990.CrossRefGoogle Scholar
Rolls, E. T. 1997a. Taste and olfactory processing in the brain and its relation to the control of eating. Crit. Rev. Neurobiol. 11:263–287.CrossRefGoogle Scholar
Rolls, E. T.1997b. Brain mechanisms of vision, memory, and consciousness. In: Ito, M., Miyashita, Y., and Rolls, E. T. (eds.) Cognition, Computation, and Consciousness. Oxford: Oxford University Press, pp. 81–120.Google Scholar
Rolls, E. T. 2000. The orbitofrontal cortex and reward. Cerebr. Cortex 10:284–294.CrossRefGoogle ScholarPubMed
Rolls, E. T., and Baylis, L. L. 1994. Gustatory, olfactory and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 14:5437–5452.CrossRefGoogle ScholarPubMed
Sackeim, H. A., Prohovnik, I., Moeller, J. R., Brown, R. P., Apter, S., Prudic, J., Devanand, D. P., and Mukherjee, S. 1990. Regional cerebral blood flow in mood disorders. I. Comparison of major depressives and normal controls at rest. Arch. Gen. Psychiatry 47:60–70.CrossRefGoogle ScholarPubMed
Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., and Matthews, P. M. 2003. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage 21:568–575.CrossRefGoogle Scholar
Sandson, J., and Albert, M. L. 1987. Perseveration in behavioral neurology. Neurology 37:1736–1741.CrossRefGoogle ScholarPubMed
Seeman, M. V. 1997. Psychopathology in women and men: focus on female hormones. Am. J. Psychiatry 154:1641–1647.CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., and Goldman-Rakic, P. S. 1995. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch. Gen. Psychiatry 52:805–818.CrossRefGoogle ScholarPubMed
Sirigu, A., Cohen, L., Zalla, T., Pradat-Diehl, P., Eeckhout, P., Grafman, J., and Agid, Y. 1998. Distinct frontal regions for processing sentence syntax and story grammar. Cortex 34:771–778.CrossRefGoogle ScholarPubMed
Smiley, J. F., and Goldman-Rakic, P. S. 1996. Serotonergic axons in monkey prefrontal cerebral cortex synapse predominately on interneurons as demonstrated by serial section electron microscopy. J. Comp. Neurol. 467:431–443.3.0.CO;2-6>CrossRefGoogle Scholar
Smith, E. E., and Jonides, J. 1999. Storage and executive processes in the frontal lobes. Science 283:1657–1661.CrossRefGoogle ScholarPubMed
Smith, J. D., Reisberg, D., and Wilson. M. 1992. Subvocalization and auditory imagery: interactions between the inner ear and inner voice. In: Reisberg, D. (ed.) Auditory Imagery. New Jersey: Lawrence Erlbaum, pp. 95–119.Google Scholar
Sonnby-Borgström, M. 2002. Automatic mimicry reactions as related to differences in emotional empathy. Scand. J. Psychol. 43:433–443.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Tessner, K. D., and Toga, A. W. 2001. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during post adolescent brain maturation. J. Neurosci. 21:8819–8829.CrossRefGoogle Scholar
Starkstein, S. E., and Robinson, R. G. 1993. Depression in cerebrovascular disease. In: Starkstein, S. E. and Robinson, R. G. (eds.) Depression in Neurologic Disease. Baltimore, Md.: Johns Hopkins Press, pp. 28–49.Google Scholar
Starkstein, S. E., Robinson, R. G., and Price, T. R. 1987. Comparison of cortical and subcortical lesions in the production of post-stroke mood disorders. Brain 110:1045–1059.CrossRefGoogle Scholar
Sukhwinder, S. S., Bullmore, E., Simmons, A., Murray, R., and McGuire, P. 2000. Functional anatomy of auditory verbal imagery in schizophrenic patients with auditory hallucinations. Am. J. Psychiatry 157:1691–1693.Google Scholar
Swedo, S. E., Pietrini, P., Leonard, H. L., Schapiro, M. B., Rettew, D. C., Goldberger, E. L., Rapoport, S. I., Rapoport, J. L., and Grady, C. L. 1992. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch. Gen. Psychiatry 49:690–694.CrossRefGoogle ScholarPubMed
Tamminga, C. A. 1999. Pruning during development. Am. J. Psychiatry 156:168.Google Scholar
Tamminga, C. A., Thaker, G. K., Buchanan, R., Kirkpatrick, B., Alphs, L. D., Chase, T. N., and Carpenter, W. T. 1992. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch. Gen. Psychiatry 49:522–530.CrossRefGoogle ScholarPubMed
Teasdale, J. D., Howard, R. J., Cox, S. F., Ha, Y., Brammer, M. J., Williams, S. C. R., and Checkley, S. A. 1999. Functional MRI study of the cognitive generation of affect. Am. J. Psychiatry 156:209–215.Google ScholarPubMed
Volkow, N. D., Hitzemann, R., Wang, G. -J., Fowler, J. S., Wolf, A. P., Dewey, S. L., and Handlessman, L. 1992. Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11:184–190.CrossRefGoogle ScholarPubMed
Wager, T. D., and Smith, E. E. 2003. Neuroimaging studies of working memory: a meta-analysis. Cognit. Affect. Behav. Neurosci. 3(4):255–274.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F., and Chase, T. N. 1986. Prefrontal cortex physiological activation in Parkinson disease: effect of l-dopa. Neurology 36(Suppl.):170.Google Scholar
Wicker, B., Perrett, D. I., Baron-Cohen, S., and Decety, J. 2003. Being the target of another's emotion: a PET study. Neuropsychologia 41(2):139–146.CrossRefGoogle ScholarPubMed
Williams, M. S., and Goldman-Rakic, P. S. 1993. Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cerebr. Cortex 3:199–222.CrossRefGoogle ScholarPubMed
Wise, S. P., Fried, I., Olivier, A., Paus, T., Rizzolatti, G., and Zilles, K. J. 1996. Workshop on the anatomic definition and boundaries of the supplementary sensorimotor area. In: Lunders, H. O. (ed.) Supplementary Sensorimotor Area. Philadelphia, Pa.:Lippincott–Raven, pp. 489–496.Google Scholar
Wise, S. P., Boussaloud, D., Johnson, P. B., and Caminiti, R. 1997. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci. 20:25–42.CrossRefGoogle ScholarPubMed
Yingling, C. D., and Skinner, J. E. 1977. Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In: Desmedt, J. (ed.) Attention, Voluntary Contraction and Event Related Cerebral Potential. Basel: Karger, pp. 70–96.Google Scholar
Zald, D. H., and Kim, S. W. 1996. Anatomy and function of the orbital frontal cortex: II. Function and relevance to obsessive-compulsive disorder. J. Neuropsychiatry Clin. Neurosci. 8(3):249–261.Google ScholarPubMed
Zametkin, A. J., Nordahl, T. E., Gross, M., King, A. L., Semple, W. E., Rumsey, J., Hamberger, S., and Cohen, R. M. 1990. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N. Engl. J. Med. 323:1361–1366.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×