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Abstract

The purpose of this paper is to sketch an approach towards a rec-
onciliation of quantum theory with relativity theory. It will actually
be argued that these two theories ultimately rely on one another. A
general operator-algebraic framework for relativistic quantum theory
is outlined. Some concepts of space-time structure are translated into
algebra. Following deep results of Buchholz et al., the key role of
massless modes, photons and gravitons, and of Huygens’ Principle in a
relativistic quantum theory well suited to describe “events” and “mea-
surements” is highlighted. In summary, a relativistic version of the
“ETHApproach” to quantum mechanics is described.

—

“Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise
durchzusetzen, dass ihre Gegner überzeugt werden und sich als belehrt
erklären, sondern vielmehr dadurch, dass die Gegner allmählich ausster-
ben und dass die heranwachsende Generation von vornherein mit der
Wahrheit vetraut ist.” (Max Planck)
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1 Topics to be addressed

Anybody who attempts to work on the foundations – or “interpretation” –
of quantum theory realizes quickly that this field is in a state of utmost con-
fusion. Whether authorities in this matter or not, Richard Feynman once
said: “If someone tells you they understand quantum mechanics then all
you’ve learned is that you’ve met a liar”; and Sean Carroll, of the Califor-
nia Institute of Technology, in a popular article that appeared in the ‘New
York Times’ [1], writes: “... quantum mechanics has a reputation for being
especially mysterious. What’s surprising is that physicists seem to be O.K.
with not understanding the most important theory they have. ... Physicists
don’t understand their own theory any better than a typical smartphone
user understands what’s going on inside the device. ... The whole thing is
preposterous. Why are observations special? What counts as an “observa-
tion”, anyway? When exactly does it happen? Does it need to be performed
by a person? Is consciousness somehow involved in the basic rules of real-
ity? Together these questions are known as the “measurement problem” of
quantum theory. ... ” – Well, obviously a text like this leaves the reader
in a state of bewilderment and/or anger! In the same article Caroll also
writes: “You would naturally think, then, that understanding quantum me-
chanics would be the absolute highest priority among physicists worldwide.
... Physicists, you might imagine, would stop at nothing until they truly
understood quantum mechanics.”

Quite some time (perhaps thirty years) ago, I arrived at a conclusion
similar to the one Caroll reached in the last two sentences quoted above. In
2012, when I retired from my position at ETH and did not have to make a
career, anymore, I started to consider it to be one of my obligations to help
removing some of the confusion surrounding the foundations of quantum me-
chanics. I do not have any illusions about the chances of success in pursuing
this goal,1 not because it is impossible to understand quantum mechanics –
I actually think it is possible – but chiefly because people have so many
prejudices about it.

Here is my credo in this endeavor:

• Talking of the “interpretation” of a physical theory presupposes im-
plicitly that the theory has reached its final form, but that it is not

1A recent paper of mine on the foundations of quantum mechanics triggered the follow-
ing comment from a “colleague”: “Hi, again and again. How many time will you recycle
your papers? Cannot see (you?) that no one is interested in your obscure thinking. Adding
‘ETH’ will not help. You are old and essentially useless. Go fishing. Best, A.”
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completely clear, yet, what it tells us about natural phenomena. Oth-
erwise, we had better speak of the “foundations” of the theory. Quan-
tum Mechanics has apparently not reached its final form, yet. Thus,
it is not really just a matter of interpreting it, but of completing its
foundations.

• The only form of “interpretion” of a physical theory that I find legit-
imate and useful is to delineate approximately the ensemble of nat-
ural phenomena the theory is supposed to describe and to construct
something resembling a “structure-preserving map” from a subset of
mathematical symbols used in the theory that are supposed to repre-
sent physical quantities to concrete physical objects and phenomena
(or events) to be described by the theory. Once these items are clar-
ified the theory is supposed to provide its own “interpretation”. (A
good example is Maxwell’s electrodynamics, augmented by the special
theory of relativity.)

• The ontology a physical theory is supposed to capture lies in sequences
of events, sometimes called “histories”, which form the objects of series
of observations extending over possibly long stretches of time and which
the theory is supposed to describe.

• In discussing a physical theory and mathematical challenges it raises
it is useful to introduce clear concepts and basic principles to start
from and then use precise and – if necessary – quite sophisticated
mathematical tools to formulate the theory and to cope with those
challenges.

• To emphasize this last point very explicitly, I am against denigrating
mathematical precision and ignoring or neglecting precise mathemati-
cal tools in the search for physical theories and in attempts to under-
stand them, derive consequences from them and apply them to solve
concrete problems.

In this paper I will sketch some ideas about a formulation of local rela-
tivistic quantum theory designed to describe “events” and, ultimately, to
solve the “measurement problem” alluded to above. (In doing this I try to
follow the credo formulated above.) I will specifically address the following
topics:

1. Why is it fundamentally impossible to use a physical theory to predict
the future? – Sect. 2.

2. Why is quantum theory intrinsically probabilistic? – Sect. 2.

3. How are “locality” and “Einstein causality” expressed in relativistic
quantum theory; what is their meaning? – Sect. 3.
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4. What are “events” in quantum theory – Sect. 4 – and how does one
describe their recording? What is meant by “measuring a physical
quantity”? – Sect. 5.

5. How do states of physical systems evolve in (space-)time, according
to quantum theory? What is the probabilistic law governing their
evolution? – Sect. 4.

6. How does quantum theory distinguish between past and future; how
does it talk about space-time? Could it be that a consistent “Quantum
Theory of Events” must necessarily be relativistic and involve massless
modes? Could it be that such a quantum theory could explain why
space-time is even-dimensional and that it might incorporate gravita-
tion as an “emergent phenomenon”? – Sect. 6.

Acknowledgements: I am very much indebted to my collaborators on mat-
ters related to the results sketched in this paper; among them to Philippe
Blanchard, Jérémy Faupin, Martin Fraas, and especially to Baptiste Schub-
nel. I also thank Detlev Buchholz, Gian Michele Graf, Klaus Hepp, Sandu
Popescu, Renato Renner, but primarily Detlef Dürr and Shelly Goldstein for
many helpful and enjoyable discussions and for serving as patient “sounding
boards”.

I wish to mention that various ideas related to ones elaborated on in [2, 3]
and in this paper have been described in [4, 5]. In particular, many years
ago, the late Rudolf Haag has emphasized the importance of introducing a
clear notion of “events” in quantum theory and to elucidate their role.

This paper is dedicated to the memory of Gian Carlo Ghirardi. My ap-
proach to the foundations of quantum mechanics (dubbed “ETH Approach”)
shares some general features with GRW [6]; in particular, an important role
is played by “state collapse”. I wish to thank Detlef Dürr for having invited
me to present my ideas in this book.

2 Why are we not able to predict the future by
using our physical theories, and why is quantum
theory intrinsically probabilistic?

Imagine that the space-time of our Universe has an event horizon that hides
what may happen in causally disconnected regions of space-time. Figure 1,
below, illustrates the claim that, for fundamental reasons, observers are then
unable to use relativistic theories to fully predict their future; for, never do
they have access to complete knowledge of the initial conditions of the Uni-
verse that would be necessary (but not necessarily sufficient) to predict the
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future.2 This argument applies to both, classical and quantum theories. But
quantum theories have an additional feature that makes it impossible to use
them to predict the future precisely: They are fundamentally probabilistic.

Figure 1 is supposed to illustrate, furthermore, that the “Past” consists
of a “History of Events” or “Facts”, while the “Future” consists of an ensem-
ble of “Potentialities”. In a proper formulation of Quantum Mechanics this
dichotomy should be retained! In this paper we will try to find out how to
implement it in relativistic quantum theory.

Fig. 1

Caption: The “observer” sits at “Present” and is unaware of the dangers lurking
from outside his past light-cone (denoted “Past”). He might get killed at †, a space-
time point in his future light-cone (denoted “Future”). Events are numbered in the
figure; events 1 and 2 are space-like separated, event 3 is in the future of event 2.

Let S be an “isolated physical system” to be described by a model of
relativistic quantum theory. – Note: An isolated system has the property
that, over some period of time, its evolution does not depend on anything
happening in its complement, i.e., in the rest of the Universe, in the sense
that, during a certain period of time, the Heisenberg-picture dynamics of
physical quantities characteristic of S is, for all practical purposes, inde-
pendent of the degrees of freedom in the complement of S, (a consequence
of cluster properties). It should be noted, however, that the state of S can
be entangled with the state of its complement!. –

The concept of an isolated physical system is important in quantum me-
chanics, because, only for such systems, we know how to describe the time
evolution of operators representing physical quantities in the Heisenberg pic-
ture (in terms of conjugation of those operators with the unitary propagator

2The same is true if there exist waves propagating at the speed of light along surfaces
of light-cones
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of the system). In order to describe the quantum dynamics of an isolated
physical system S, we will allways start from the Heisenberg-picture dy-
namics of “observables” (i.e., of self-adjoint operators representing physical
quantities) referring to S. The dynamics of states of S is considerably more
subtle to understand and is, in a sense, at the core of our considerations in
this paper – as it has been in the work of Ghirardi, Rimini and Weber.

In this paper we use (for simplicity) the following pedestrian formulation
of the quantum mechanics of an isolated physical system S in the Heisenberg
picture: States of S are given by density matrices, Ω, acting on a separable
Hilbert space, H, of “pure state vectors” of S. Let X̂ be a physical quantity of
S, and let X(t) = X(t)∗ be the self-adjoint linear operator on H representing
X̂ at time t. Then the operators X(t) and X(t′) representing X̂ at two
different times t and t′, respectively, are unitarily conjugated to one another:

X(t) = U(t′, t)X(t′)U(t, t′) , (1)

where, for each pair of times t, t′, U(t, t′) is the propagator (from t′ to t) of
the system S, which is a unitary operator acting on H, and

{
U(t, t′)

}
t,t′∈R

satisfy

U(t, t′) · U(t′, t′′) = U(t, t′′), ∀ pairs t, t′, U(t, t) = 1 , ∀ t .

It is often said that, in the Heisenberg picture, states of S are indepen-
dent of time; and that the Heisenberg picture is equivalent to the Schrödinger
picture, where physical quantities are time-independent, but states evolve ac-
cording to the propagator U(t, t′), solving a deterministic Schrödinger equa-
tion. Even if quantum mechanics were put under the auspices of the so-called
“Copenhagen interpretation”, this is, of course, nonsense, as has been amply
demonstrated on many examples; (see [10, 11, 8], and refs. given there)!
For, whenever a “measurement” is made, at some time t, say – we will later
speak, more accurately, of an “event” happening at approximately time t –
the deterministic unitary evolution of the state of S in the Schrödinger
picture is interrupted at this time, and the state “jumps”, or “collapses”
into an eigenspace of the “observable” that is measured – more accurately:
the state jumps into the image of an orthogonal projection representing the
“event” that actually happens at time t, with jumping probabilities as given
by Born’s Rule; (see also [4, 3]). Expressed in the Heisenberg picture, one
can say that, while operators representing physical quantities referring to an
isolated physical system S evolve in time according to Eq. (1), the state of
S changes randomly whenever an “event” happens; it thus exhibits a non-
trivial, stochastic evolution in time, a kind of stochastic branching process
described in [12, 2, 3, 13] and in Sect. 4 of this paper. In order to avoid
paradoxes [7, 8, 9], it is crucial to assume that the occurrence of an event
(for example, the successful completion of a measurement) has an objec-
tive meaning independent of the “observer” – and independent of whether
an “observer” is actually present or not.
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One should think that, by now, these things are exceedingly well-known
and appreciated, and hence I won’t dwell on them any further. – It might be
added, however, that, in Bohmian mechanics, randomness enters in a way
that differs from the one in other formulations of quantum mechanics: Ran-
domness is due, in Bohmian mechanics, to incomplete knowledge of initial
conditions; see [14].3

3 The meaning of “locality” or “Einstein causality”
in relativistic quantum theory

In this section, I sketch remarks on “locality” or “Einstein causality”. For,
there appears to exist a certain amount of confusion concerning the question
in which sense quantum mechanics is “non-local” and in which sense it is
perfectly “local”. Let us consider an isolated system, S, consisting of two
spin-1

2 particles, p and p′, and of equipment serving to measure components
of their spins along two directions given by unit vectors ~n and ~n′, respectively.
We imagine that, after preparation of the initial state, Ω, of S, particle p
propagates into a cone, C, opening in the direction of the negative x-axis,
while p′ propagates into a cone, C ′, opening in the direction of the positive x-
axis, with only tiny probabilities for sojourn outside C and C ′, respectively.
Let us assume that the measurement of the spin of p takes place inside a
region B ⊂ C in an interval [t1, t2] of times, while the measurement of the
spin of p′ takes place in a region B′ ⊂ C ′ within a time-interval [t′1, t

′
2], and

let us imagine that the space-time regions B × [t1, t2] and B′ × [t′1, t
′
2] are

space-like separated. The results of the two measurements are described by
two orthogonal projection operators, Πp

~n,σ, σ = ±, and Πp′

~n′,σ′ , σ
′ = ±, where

“σ = +” means that the spin of p is aligned with ~n after the measurement
has been completed, while “σ = −” means that the spin of p is anti-parallel
to ~n after its measurement, and similarly for p′. The operators Πp

~n, σ, σ = ±,
have the following properties:

Πp
~n,+ ·Π

p
~n,− = 0, Πp

~n,+ + Πp
~n,− = 1 , (2)

and similarly for the operators Πp′

~n′,σ′ , σ
′ = ±. Moreover, the operators Πp

~n,σ

and Πp′

~n′,σ′ are localized in space-like separated regions, B × [t1, t2] and B′ ×
[t′1, t

′
2], respectively, of space-time, for all choices of σ and of σ′. We would

like to make an educated guess of the state used by a localized observer, O, to
predict his future if O has the property that the past light-cones of all points
inside O contain both regions, B × [t1, t2] and B′ × [t′1, t

′
2]. The answer to

the question which of the two spin measurements was initiated or completed
first then obviously depends on the past “world-tube” of the observer O.

3The Bohmian point of view cannot be discussed any further in this paper
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This is because B × [t1, t2] and B′ × [t′1, t
′
2] are space-like separated. Let

us suppose that, for an observer O, the spin of p was measured first, that
the state of S before any of these measurements were carried out was given
by a density matirx Ω, and that between the preparation of the state Ω
of S and further observations by O only the measurements of the spins of
p and of p′ happened. According to the standard “projection postulate”
(of the Copenhagen interpretation), the state used by O to predict future
measurement outcomes is then given by

ΩO = [N(~n,σ),(~n′,σ′)]
−1 Πp′

~n′,σ′ ·Π
p
~n,σ Ω Πp

~n,σ ·Π
p′

~n′,σ′ , (3)

whereN(~n,σ),(~n′,σ′) := tr
(

Πp′

~n′,σ′ ·Π
p
~n,σ Ω Πp

~n,σ·Π
p′

~n′,σ′

)
is a normalization factor.

Imagine now that O′ is an observer localized in the same space-time region
as O, but for whom the spin of p′ is measured before the spin of p. He
then proposes to use the state ΩO′ given by a formula arising form (3) by
exchanging the order of Πp

~n,σ and Πp′

~n′,σ′
. We want to impose the requirement

that the predictions made by O and O′ concerning future measurements (i.e.,
ones localized in their common future light-cone) must be compatible. This
implies that the two states ΩO and ΩO′ must agree on the algebra of all
“observables” potentially measureable in the future of O = future of O′.
This would be guaranteed if (but does not imply that)

Πp′

~n′,σ′ ·Π
p
~n,σ = Πp

~n,σ ·Π
p′

~n′,σ′ , (4)

for arbitrary choices of (~n, σ) and (~n′, σ′), assuming, as stated above, that
the localization regions B × [t1, t2] and B′ × [t′1, t

′
2] are space-like separated.

Equation (4) is what is called “locality” or “Einstein causality” in relativis-
tic quantum field theory. This is a sufficient (but not necessary) condition
to eliminate ambiguities in the predictions of possible future measurement
outcomes made by different observers that are due to the impossibility of
unambiguously ordering measurements according to the times at which they
are initiated (or completed). But Eq. (4) does not imply that quantum
mechanics is “local” in the following sense: Consider the state

Ω(~n,σ) := [N(~n,σ)]
−1Πp

~n,σ Ω Πp
~n,σ,

where N(~n,σ) is a normalization factor chosen such that tr(Ω(~n,σ)) = 1. Let
A be an “observable” localized in a space-time region space-like separated
from B × [t1, t2]; (for example A = Πp′

~n′,σ′). One might expect that

tr
(
ΩA

)
= tr

(
Ω(~n,σ)A

)
,

for any operator A with these properties. But, of course, this equality does
not hold! This fact is what people call the “non-locality” of quantum theory.
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In quantum field theory, this kind of “non-locality” is neatly reflected in the
Reeh-Schlieder theorem [15]. It results from entanglement.

One major purpose of this paper is to render the “projection postulate”
(or “collapse postulate” – see Eq. (3)) more precise, to explain its origin and
to find out under what conditions it is applicable. In contrast to the ideas
described in [6], we will not invoke any mechanism extraneous to quantum
mechanics that produces “state collapse”.

4 Relativistic quantum theory, and the notion of
“events”

In this section we propose an algebraic definition of local relativistic quan-
tum theory and then introduce a precise notion of “events”. We require some
rudimentary knowledge of the theory of operator algebras. In particular,
the reader might profit from knowing what a C∗- and what a von Neumann
algebra is and what, for example, the Gel’fand-Naimark-Segal (GNS) con-
struction is. What will be used from the theory of operator algebras, in this
paper, can be learned in a few hours! A useful reference may be [16].

For the time being, we will consider space-time,M, to be given; but we
do not equipM with a Lorentzian metric. Later, we will try to clarify how
properties of algebras of operators representing localized potentialities equip
M with a causal structure. But to start with, we assumeM to be given by
Minkowski space, Md, with d = 4.

In relativistic quantum theory, all operators representing physical quan-
tities characteristic of an isolated physical system S can be localized in some
space-time regions. Given a region O ⊂M, we denote by A(O) the algebra
generated by all bounded operators localized in O that represent physical
quantities. The family

{
A(O)

}
O⊂M is called a “net of local algebras”. For

an introduction to these concepts and to algebraic quantum field theory the
reader is advised to consult [17]. In the following considerations, the regions
O are usually taken to be forward or backward light-cones with apex in an
arbitrary space-time point P ∈M.

A general formulation of local relativistic quantum theory:

We consider an isolated physical system S to be described with the help
of a model of local relativistic quantum theory.

Definition 1: By FP we denote the ∗algebra generated by all operators
representing physical quantities referring to S (such as potential events) lo-
calized in the “future” of the space-time point P , while PP denotes the alge-
bra generated by all operators representing physical quantities localized in
the “past” of P . �
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We assume that all the algebras FP are contained in a C∗-algebra E , and

E =
∨
P∈M

FP , (5)

where the closure on the right side is taken in the operator norm of E . We as-
sume that all these algebras are represented on a common separable Hilbert
space H and that all “states of physical interest” of S can be identified with
density matrices (non-negative trace-class operators normalized to have trace
= 1) acting on H.4 In our notation, we will not distinguish between an ab-
stract element of the algebra E and the linear operator on H representing it.

Definition 2: We define EP to be the von Neumann algebra obtained by
closure of the algebra FP in the weak operator topology of the algebra, B(H),
of all bounded operators on H. �

If S is a physical system in a state of finite energy describing only exci-
tations of strictly positive rest mass then

EP ' B(H) , for any point P ∈M . (6)

It is expected that this equality always holds in a space-time of odd di-
mension, even if massless particles are present. This is because Huygens’
Principle does not hold in space-times of odd dimension. (It also does not
hold in certain even-dimensional space-times with non-vanishing curvature.
But that’s another story, which, for reasons that I will not explain in any
detail, is not expected to invalidate the following considerations.) The prop-
erty expressed in Eq. (6) is one most people sub-consciously consider to be
always valid. But this is actually not the case! (If it were we would probably
be unable to introduce a reasonable notion of “events” in quantum theory,
and we would never solve the “measurement problem”.)

If there exist massless particles, in particular photons and/or gravitons
and Dark-Energy modes, and if Huygens’ Principle holds in an appropriate
sense (M even-dimensional, specifically M = M4),5 the algebra EP tends
to have an infinite-dimensional commutant, E ′P . (The commutant, M′, of an
algebra M contained in B(H) is the algebra of all bounded operators on H
commuting with all operators in M.) More specifically, within an algebraic
framework of local relativisitic quantum field theory over four-dimensional
Minkowski space-time, Detlev Buchholz has shown [18] that, in the presence
of massless particles, E ′Pt ∩ EPt0 is an infinite-dimensional, non-commutative

4It is sometimes advantageous to formulate this assumption in a more abstract, alge-
braic way involving, among other ingredients, the GNS-construction; see, e.g., [17].

5or in the presence of blackholes in space-time
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algebra, whenever Pt0 is a space-time point in the past of the space-time
point Pt, as indicated in Figure 2.

In his proof, Huygens’ Principle is exploited in the form that asymptotic
out-fields creating on-shell massless particles escaping to infinity do not prop-
agate into the interior of forward light-cones contained in the future of the
space-time region (denoted by O in Figure 2) where they are localized, but
propagate along the surface of forward light-cones with apices in O. Such
asymptotic out-fields are then shown to commute with all operators in the
algebra EPt .

Fig. 2

Caption: The black line is the world-line of an “observer” who, at time t, is localized
near Pt. Operators representing physical quantities potentially observable by the
“observer” in the future of Pt are localized inside the forward light-cone V +

Pt
. They

generate the algebra EPt . Asymptotic out-field operators describing the emission
of (on-shell) photons or gravitons in the region O propagate along the light-cones
contained in V +

Pt0
but not contained in V +

Pt
.

One expects that, if space-time is even-dimensional and in the presence
of massless particles, the algebras EP have the property that all non-zero
orthogonal projections belonging to EP have an infinite-dimensional range.
This implies that there do not exist any normal pure states on these algebras.
Furthermore, they are expected to be isomorphic to a certain “universal” von
Neumann algebra, N,6 i.e., EP ' N, ∀P ∈M.

We now use these insights to extract a general algebraic formula-
tion of local relativistic quantum theory compatible with the appearence of
“events” and promising a solution of the “measurement problem”. We assume

6 N is expected to be a von Neumann algebra of type III1
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that space-timeM is a topological space with the property that, with every
point P ∈ M, one can associate a von Neumann algebras, EP , the “algebra
of potential events that might possibly happen in the future of P ”, with the
property that EP is contained in a C∗-algebra E , for all P ∈M.

The family of algebras
{
EP
}
P∈M equips space-timeM with the following

causal structure:
Definition 3: A space-time point P ′ is in the future of a space-time point

P , written as P ′ � P , (or, equivalently, P is in the past of P ′, written as
P ≺ P ′ ) iff

EP ′ $ EP , E ′P ′ ∩ EP is an ∞− dim. non-commutative algebra (7)

�
Equation (7) expresses what I call the

“Principle of Diminishing Potentialities” (PDP)

This principle is a theorem in an axiomatic formulation of quantum electro-
dynamics over four-dimensional Minkowski space proposed by D. Buchholz
and the late J. Roberts [20].

Henceforth, the Principle of Diminishing Potentialities will always be
assumed to hold ; and, within our formulation of relativistic quantum theo-
ries, (a model of ) an isolated physical system S is defined by specifying the
following data:

S =
{
M, E ,H,

{
EP
}
P∈M satisfying PDP

}
, (8)

whereM is a model of space-time, E is a C∗-algebra represented on a Hilbert
space H, and

{
EP
}
P∈M is a family of von Neumann algebras satisfying the

“Principle of Diminishing Potentialities” introduced in Eq. (7).

Definition 4: If a space-time point P ′ is neither in the future of a space-
time point P nor in the past of P we say that P and P ′ are space-like
separated, written as P × P ′. �

Let Σ be a space-like subset of M. If M = M4 we imagine that Σ is
a subset of a space-like hypersurface of co-dimension 1 inM. Since all the
algebras EP , p ∈ M, are assumed to be contained in the C∗-algebra E , the
following definition is meaningful:

EΣ :=
∨
P∈Σ

EP , (9)

where the closure is taken in the weak topology of B(H). A state, ωΣ, on
the algebra EΣ is a normalized, positive linear functional on EΣ.
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Remark: At this point we should comment on the question of what the
operational meaning of a “state” of an isolated system S is, and how one
can prepare S in a specific state. Obviously these are important questions,
which, however, cannot be discussed here; but see [21].

Definition 5: Let M be a von Neumann algebra, and let ω be a normal
state on M. For an operator X ∈ M, we define adX(ω) to be the linear
functional on M defined by

adX(ω)(Y ) := ω([Y,X]), ∀Y ∈ M.

We define the centralizer, Cω(M), of the state ω by

Cω(M) :=
{
X |X ∈M, adX(ω) = 0

}
. (10)

It is easy to verify that Cω(M) is a (von Neumann) subalgebra of M, and that
ω is a normalized trace on Cω(M). (This property implies that centralizers
are completely classified!)
Given an algebra N, the center, Z(N), is the abelian subalgebra of N con-
sisting of all operators in N commuting with all other operators in N. We
set

Zω(M) := Z(Cω(M)) (11)

�
Motivation underlying the following notions and definitions is provided

in [2, 3, 13].

Definition 6: Given a point P ∈ M, a potential event in the future of
P is a family,

{
πξ| ξ ∈ X

}
, (X a countable set of indices7), of orthogonal

projections belonging to EP with the properties

πξ · πη = δξηπξ, ∀ ξ, η ∈ X,
∑
ξ∈X

πξ = 1 . (12)

It is expected that events usually have a finite duration. This would imply
that operators

{
πξ|ξ ∈ X

}
representing a potential event in the future of the

point P would be localized in a compact region of space-time contained in
the future of P (the future light-cone with apex in P ). �

Definition 7: Given a state ωP on the algebra EP , we say that an event
happens in the future of the space-time point P iff the algebra

ZωP := Z
(
CωP (EP )

)
7Here it is assumed that potential events can be identified with the spectral projections

of self-adjoint operators with discrete spectrum (' X); more generally, one could identify
potential events with spectral projections of families (abelian algebras) of commuting self-
adjoint operators that may have continuous spectrum
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is generated by the projections
{
πξ| ξ ∈ X

}
⊂ ZωP ⊂ EP of a potential event

in the future of P with the properties that the cardinality of X is at least 2
and that there exist projections πξ1 , ..., πξn , n ≥ 2, such that

ω(πξj ) > 0, ∀j = 1, ..., n, n ≥ 2 . (13)

(The quantity ω(πξ) will turn out to be the Born probability for πξ to occur
in the future of P .) �

Let ωP be the state of S on the algebra EP . It is easy to see that if an
event described by the family

{
πξ| ξ ∈ X

}
⊂ ZωP of projections happens in

the future of the point P then

ωP (X) =
∑
ξ∈X

ω
(
πξX πξ

)
, ∀X ∈ EP , (14)

i.e., the state ωP on the algebra EP is a mixture of the states

ωP,ξ :=
[
ωP (πξ)

]−1
ω
(
πξ(·)πξ

)
(15)

labelled by the points ξ ∈ X.

The following is a crucial axiom.

Axiom 1 (“State-collapse” postulate): If an event happens in the future
of a point P ∈ M, in the sense of Definition 7, then the state to be used
to make predictions of further events possibly happening in the future of P
is given by ωP,ξ∗ , for some ξ∗ ∈ X with ωP (πξ∗) > 0, where ωP,ξ∗ , ξ∗ ∈ X, is
defined in Eq. (15).

The probability that ωP,ξ∗ is selected among the states
{
ωP,ξ| ξ ∈ X

}
is

given by Born’s Rule, namely it is given by ωP (πξ∗). The projection πξ∗ is
called the “actual event” happening in the future of P . �

Next, we consider two points, P and P ′, in a subset Σ ofM, with P×P ′,
(i.e., P and P ′ are space-like separated), We assume that the state ωΣ de-
fined in Eq. (9) is given, so that the states ωP = ωΣ|EP and ωP ′ = ωΣ|E ′P
are known, too. We suppose that, given ωΣ, events happen in the future of
P and of P ′. Let ZωP denote the center of the centralizer of the state ωP
on the algebra EP , which describes the event

{
πPξ |ξ ∈ X

P
}
happening in the

future of P , and let ZωP ′ be the algebra describing the event happening in
the future of the point P ′. We require the following axiom.

Axiom 2 (Events in the future of space-like separated points commute):
Let P×P ′. Then all operators in ZωP commute with all operators in ZωP ′ .
In particular, [

πPξ , π
P ′
η

]
= 0, ∀ ξ ∈ XP and all η ∈ XP ′ . �
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This axiom may be one reflection of what people sometimes interpret
as the fundamental non-locality of quantum theory: Projection operators
representing events in the future of two space-like separated points P and P ′

in space-time are constrained to commute with each other! Actually, this
implies what in quantum field theory is understood to express locality or
Einstein causality.

Next, we assume that some slice, F, in space-timeM is foliated by space-
like hypersurfaces, Στ : F :=

{
Στ |τ ∈ [0, 1]

}
, where τ is a time coordinate

in the space-time region filled by F. Let P be an arbitrary space-time point
in the leaf Σ1, and let the “recent past” of P , V −P (F), consist of all points
in
⋃
τ<1 Στ that are in the past of P , in the sense specified in Definition 3,

above. The task we propose to tackle is the following one: We suppose that
we know the state ωΣ0 on the algebra EΣ0 , (see Eq. (9)). Assuming that
Axioms 1 and 2 hold, we propose to determine the state ωP on EP , for the
given point P ∈ Σ1. Let

{
Pι|ι ∈ I(F)

}
denote the subset of points in V −P (F)

in whose future events happen (see Definition 7), and let{
πPιξι |ι ∈ I(F)

}
⊂ EΣ0

be the actual events (see Axiom 1) that happen in the future of the points
Pι , ι ∈ I(F); (here I(F) is a set of indices labelling the points in V −P (F) in
whose future events happen; it is here assumed to be countable). We define
a so-called “History Operator”

H
(
V −P (F)

)
:= ~Πι∈I(F) π

Pι
ξι
, (16)

where the ordering in the product ~Π is such that a factor πPκξκ corresponding
to a point Pκ stands to the right of a factor πPιξι corresponding to a point Pι
iff Pκ ≺ Pι, (i.e., if Pκ is in the past of Pι). But if Pι×Pκ, i.e., if Pι and Pκ
are space-like separated the order of the two factors is irrelevant – thanks to
Axiom 2!

The state on the algebra EP relevant to make predictions about events
happening in the future of P , in the sense of Definition 7, is then given by

ωP (X) ≡ ωFP
(
X
)

=
[
N FP

]−1
ωΣ0

(
H(V −P (F))∗XH(V −P (F))

)
, X ∈ EP , (17)

where the normalization factor N FP is given by

N FP = ωΣ0

(
H(V −P (F))∗ ·H(V −P (F))

)
. (18)

We recall that, according to Definition 7, an event happens in the future
of a point P ∈ Σ1 iff the center, ZωP , of the centralizer of the state ωP
on the algebra EP , defined in (17), contains at least two disjoint orthogonal
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projections of strictly positive probability, as given by Born’s Rule; (see
Axiom 1).

The quantities N FP can be used to equip the tree-like space (the so-called
“non-commutative spectrum” of S) of all possible histories of events in the
future of points belonging to the foliation F with a probability measure; see
[3].

The ideas and results discussed here are illustrated in Figure 3, below.

Fig. 3

Caption: It is tacitly assumed here that all events that happened in the past of the
point P have a strictly finite duration. They are marked by small “diamonds” and
are numbered from 1 to n. Notice that 1×2 and 2 ≺ n.

To conclude this discussion, in the approach to relativistic quantum the-
ory presented in this paper (called “ETHApproach”), the evolution (along
the foliation F) of the state of an isolated physical system S, given the initial
state ωΣ0 on the algebra EΣ0 defined in Eq.(9),8 can be viewed as a general-
ized stochastic branching process, whose state space is what I have called the
“non-commutative spectrum” of the system S, (see [3], and Eq. (27), Sect. 6,
for a definition), and with branching rules derived from Definition 7, Axioms
1 and 2 and Eqs. (16) - (18).9

Mathematical details can be made precise if space-time is discretized.
Additional information can be found in [3, 23, 24].

8and assuming the axiom of choice
9This picture has reminded my former student P.-F. Rodriguez of the sentence from the

short story “The Garden of Forking Paths”, by Jorge Luis Borges, that I have appended
to the abstract of this paper

16



5 Monitoring events by measuring physical quanti-
ties

Let S =
{
M, E ,H,

{
EP
}
P∈M satisfying PDP

}
be the data defining an

isolated physical system, with the properties specified in Sect. 4, Eq. (8), and
assumed to satisfy Axioms 1 and 2. In Sect. 4, we have introduced a precise
notion of “events” featured by S. In this section, we propose to explain how
events can be recorded/monitored by measuring physical quantities referring
to S.

For the purposes of the present exposition it is convenient to define a
“physical quantity” to be an abstract self-adjoint linear operator X̂ with the
property that, for every point P ∈ M, there exists a concrete self-adjoint
linear operator X(P ) ∈ EP acting on the Hilbert space H of S and repre-
senting the quantity X̂; (see [3] for a somewhat more general and abstract
notion of physical quantities).

Remark: If space-timeM is given by Minkowski space M4 the operator
X(P ) is conjugated to the operator X(P ′) by a unitary operator on the
Hilbert space H representing the space-time translation from P to P ′. But
on general space-times a simple relation between X(P ) and X(P ′) may not
exist.

We define
OS :=

{
X̂ι = X̂∗ι | ι ∈ I(S)

}
(19)

to be a list of all physical quantities available, at present, to characterize
properties of S for which there exists a prescription of how they can be
measured.10 The list OS is not intrinsic to the theoretical description of the
system S; rather it specifies those physical quantities referring to S that,
during a given era, can be expected to be measurable in real experiments. In
quantum theory, this list is not an algebra (unless all operators belonging to
OS commute with one another), and it is usually not even a real linear vector
space. The question to be addressed in the following is what we mean by
saying that some quantity X̂ ∈ OS is measured in the future of a space-time
point P , and how such a measurement can be used to record an event that
happens in the future of P .

Suppose that, for some point P ∈M, the center ZωP (of the centralizer
CωP (EP ) ⊂ EP of the state ωP on the algebra EP ) is non-trivial and is gen-
erated by a family

{
πξ| ξ ∈ X

}
of disjoint orthogonal projections describing

an event happening in the future of P . Let ε be a positive number; (it will
turn out to be a measure of the “resolution” of the recording of this event in
a measurement of a physical quantity X̂ ∈ OS). We let

{
π1, . . . , πN

}
be a

finite number of disjoint orthogonal projections contained in ZωP with the
10For simplicity, we assume that all operators in OS have discrete spectrum
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property that

ω(πj) ≥ ε, ∀ j = 1, ..., N, ω(1−
N∑
i=1

πi) < ε . (20)

The projections
{
π1, . . . , πN

}
form the basis of an N -dimensional vector

space, V(ε)
ωP , equipped with a (positive-definite) scalar product, 〈·, ·〉, given

by
〈πi, πj〉 := ω(πi · πj) = ω(πi) δij ≥ ε δij , for i, j = 1, ..., N . (21)

Every vector Z ∈ V(ε)
ωP can be represented as a linear combination,

Z =
N∑
j=1

zjπj ∈ ZωP , for complex numbers z1, ..., zN . (22)

We can thus identify V(ε)
ωP with an N -dimensional subspace, actually an N -

dimensional subalgebra of ZωP .
Let HωP be the Hilbert space and ΩP the cyclic vector in HωP obtained

by applying the Gel’fand-Naimark-Segal construction to the pair
(
EP , ωP

)
;

(see. e.g., [16]). There is a bijection between the vector space V(ε)
ωP and the

subspace W(ε)
ωP ⊂ HωP spanned by the vectors{

Z ΩP |Z ∈ V(ε)
ωP

}
.

By Q(ε) we denote the orthogonal projection onto W(ε)
ωP .

Let X̂ ∈ OS be a physical quantitiy characteristic of S, and letX(P ) ∈ EP
denote the self-adjoint operator representing X̂. We consider the spectral
decomposition of X(P ):

X(P ) =
M∑
k=1

xj Πj(P ) , (23)

where the operators Πk(P ) ∈ EP , k = 1, ...,M ≤ ∞, are the spectral projec-
tions of X(P ), with

Πk(P ) = Πk(P )∗ , Πj(P ) ·Πk(P ) = δjk Πj(P ), ∀j, k ,
M∑
k=1

Πk(P ) = 1,

and x1, ..., xM are the eigenvalues of X(P ) (= eigenvalues of X̂), ordered in
such a way that the sequence

(
ωP (Πk(P ))

)M
k=1

is decreasing. Let L ≤M be
such that

ωP (1−
L∑
k=1

Πk) < ε .
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Given an operator A ∈ EP , we denote by εωP (A) the unique operator in the
algebra V(ε)

ωP ⊂ ZωP given by

Q(ε)AΩP =: εωP (A)ΩP , εωP (A) ∈ V(ε)
ωP
. (24)

The map
εωP : EP → V(ε)

ωP

is called a “conditional expectation”; (see [25] for a systematic theory). Claim-
ing that a measurement of the physical quantity X̂ can be expected to be
possible and to record the event

{
πξ| ξ ∈ X

}
generating ZωP with a resolu-

tion of order ε relies on the validity of the following

Basic Assumption:

‖Πk(P )− εωP
(
Πk(P )

)
‖ < ε, ∀ k = 1, ..., L . (25)

It is not hard to verify (but see [3], Eqs. (22), (23), for a proof) that this
Assumption implies that

ωP (A) =

L∑
k=1

ω
(
Πk(P )AΠk(P )

)
+O

(
Lε ‖A‖

)
, ∀A ∈ EP , (26)

i.e., the state ωP is an incoherent superposition of eigenstates of the oper-
ator X(P ), up to an error of order ε. In this very precise sense, one can say
that Assumption (25) implies that there is an approximate measurement of
the physical quantity X̂ in the future of the point P .

Using a simple lemma (see [22], Lemma 8 and Appendix C), one can
show that if ε is sufficiently small Assumption (25) implies that there are
orthogonal projections πk(X̂) ∈ ZωP with the property that

‖Πk(P )− πk(X̂)‖ < O(ε),

and

ωP (A) =

L∑
k=1

ω
(
πk(X̂)Aπk(X̂)

)
+O

(
Lε ‖A‖

)
, ∀A ∈ EP .

In this precise sense, if L ≥ 2 a measurement of the quantity X̂ in the
future of P yields non-trivial information about the event described by ZωP
happening in the future of P . If L = N the projections

{
πk(X̂)|k = 1, ..., L

}
must coincide with the projections

{
πj |j = 1, ..., N

}
introduced right before

(20), provided ε � 1 is sufficiently small. In this case, a measurement of
X̂ yields very precise information about the event happening in the future
of P .

For further discussion of these matters see [3], (Sect. 3, V.).
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6 Conclusions and outlook

In this last section, some scattered remarks and speculations that grow out
of the results sketched in Sections 4 and 5 are presented.

1. In our attempt to cast local relativistic quantum theory in a form com-
patible with the manifestation of what we have defined to be “events”
and with a solution of the “measurement problem”, the “Principle of
Diminishing Potentialities” (PDP), (see Definition 3, Sect. 4, Eq. (7),
and [3]), plays a fundamental role. We have seen that if space-time is
even-dimensional (e.g.,M = M4) and if there exist massless particles –
photons, gravitons and, possibly, Dark-Energy modes – satisfying some
form of Huygens’ Prinicple, (see [18]), then (PDP ) holds. One may ar-
gue that (PDP ) also holds in space-times containing blackholes. From
a very general point of view, it appears that a quantum theory sat-
isfying (PDP ) is necessarily “relativistic”, and the dimension of its
space-time must be even.

2. In Definitions 3 and 4 of Sect. 4, we have seen that there is a purely
algebraic way to equip space-timeM with a causal structure: A space-
time point P is in the past of a space-time point P ′ (written as P ≺ P ′)
iff

EP ′ $ EP ,

and the relative commutant, E ′P ′∩EP , of the algebra EP ′ in EP is a non-
commutative algebra. Two points P and P ′ are space-like separated
(written as P×P ′) iff P is not in the past of P ′ and P ′ is not in the
past of P . It would be desirable to further elucidate the relationship
of the algebras EP and EP ′ in case the points P and P ′ are space-like
separated.

Ultimately, we would like to reconstruct space-time from purely al-
gebraic data concerning a family (or families) of operator algebras
equipped with certain relations, in particular inclusions and statements
about relative commutants, given a state on these algebras. A (pre-
sumably not entirely successful) attempt in this direction has been
made in [26].

3. In the formalism described in Sect.4, “events” are localized in the
future of certain space-time points, P ; in the sense that they are de-
scribed in terms of the abelian algebras ZωP ⊂ EP , where, for a given
point P , ZωP is the center of the centralizer of the state ωP on the al-
gebra EP , with EP describing all potentialities in the future of P . The
actual event happening in the future of some point P is an orthogonal
projection, πPξ , belonging to ZωP , for some point ξ in an index set
X
P , and having a strictly positive probability as predicted by Born’s
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Rule. In view of Axiom 2, Sect. 4, it would be important to have a
more precise idea about the space-time regions where the operators
πPξ , ξ ∈ X

P , are localized. This might actually yield information about
the geometry of space-time and, ultimately, support the view that
gravitation is an “emergent” (or “derived”) phenomenon.

To render these remarks a little more precise, we recall that one expects
that all the algebras EP are isomorphic to a “universal” von Neumann
algebra N. One would like to know more about properties of states, ω,
on N for which the centers, Zω(N), of the centralizers Cω(N) of ω are
non-trivial, in the sense of Definition 7, Sect. 4. In [3],

ZS :=
⋃
ω

Zω(N), (27)

where ω ranges over all “states of physical interest”, has been dubbed
the “non-commutative spectrum” of the system S. It is the “state space”
of the stochastic branching process defined by Eqs. (16), (17) and (18)
of Sect. 4, which describes the stochastic evolution of states of S. Un-
fortunately, we have very little insight into the structure of the non-
commutative spectrum ZS .

It would be important to equip the algebra N (and hence EP , for
P ∈M) with a local structure, (in the sense that N is generated by
a net of local sub-algebras), and to attempt to show that events, i.e.,
elements of one of the algebras Zω(N), with ω a “state of physical in-
terest”, are typically contained in sub-algebras of N corresponding to
what can be considered a “bounded region” of space-time. This would
help to introduce a more precise version of Axiom 2. But this topic,
too, remains to be clarified.

4. One would expect that, for initial conditions given by states, ωΣ0 ,
of S of “physical interest”, (see Eq. (9), Sect. 4), the ensemble of
events happening in the future of the points belonging to a foliation{

Στ |τ ∈ [0, 1]
}
of some slab of space-time (see Sect. 4, after Axiom 2)

is countable, and that these events are localizable in bounded regions
of space-time. One would expect, moreover, that the metric extension
of a space-time region within which an event can be localized is con-
strained by space-time uncertainty relations of a kind discussed, e.g.,
in [27]. This ought to be a consequence of time-energy uncertainty
relations and of the possibility that blackholes form in the aftermath
of energetic events, which, afterwards, would evaporate.

Alas, I don’t know how to even start to derive these expectations from
a more precise formalism of local relativistic quantum theory. Yet,
the results reviewed in this paper and in [24] suggest that, once we
truly understand what is meant by a local relativistic quantum theory
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of events, we will view events as the basic building blocks weaving
the fabric of space-time and the relations between events as determining
the geometry of space-time.

To conclude, I want to express the hope that the results, problems and
speculations reviewed in this paper might challenge colleagues with more
technical knowledge and strength than I am able to muster to go further
towards the goal of truly understanding the miracles of quantum theory.
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