Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T03:13:25.592Z Has data issue: false hasContentIssue false

9 - Isolation, Diversity and Potential Use of Endophytes in the Biomass and Bioenergy Crop Miscanthus

from Part III - Diversity and Community Ecology of Endophytes

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

Endophytes have the potential to contribute to the sustainable production of bioenergy crops such as the perennial rhizomatous grass Miscanthus. They can improve plant growth on marginal land that is otherwise unsuitable for conventional agriculture and can also reduce the need for environmentally damaging chemical inputs including fertilisers and pesticides. This chapter outlines current knowledge of Miscanthus endophytes and presents new data on the diversity of root and shoot fungal endophytes isolated from three Miscanthus species (M. sacchariflorus, M. sinensis and M. ×giganteus). Malt extract, potato dextrose and Czapek Dox media were compared for isolation and growth of the endophytes. The endophytes were then identified using DNA barcoding with three DNA loci (nrITS, nrLSU and TEF). nrITS and nrLSU were found to be the most reliable and consistent barcoding regions. Internal transcribed spacer (ITS) had the highest discriminating potential and is thus recommended for single locus barcoding of endophytes in Miscanthus. Most new isolates were Ascomycota belonging to Pezizomycotina with representatives from Dothideomycetes, Eurotiomycetes and Sordariomycetes. One Basidiomycota species was recovered (a known soil yeast Rhodotorula). Comparisons between Miscanthus endophyte species composition and its better-known sister genus Saccharum (including sugarcane) are provided.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameline, A., Kerdellant, E., Rombaut, A. et al. (2015). Status of the bioenergy crop Miscanthus as a potential reservoir for aphid pests. Industrial Crops and Products, 74, 103110.CrossRefGoogle Scholar
An, G. H., Miyakawa, S., Kawahara, A., Osaki, M. and Ezawa, Z. (2008). Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Science and Plant Nutrition, 54, 517528.CrossRefGoogle Scholar
Bailey, B. A., Bae, H., Strem, M. D. et al. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46, 2435.CrossRefGoogle Scholar
Barnes, C. J., Burns, C. A., Gast, C. J., McNamara, N. P. and Bending, G. D. (2016). Spatio-temporal variation of core and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus. Frontiers in Microbiology, 7, 1278.CrossRefGoogle ScholarPubMed
Börschig, C., Klein, A.-M. and Krauss, J. (2014). Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. Journal of Plant Ecology, 7, 490498.CrossRefGoogle Scholar
Busby, P. E., Ridout, M. and Newcombe, G. (2016). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645655.CrossRefGoogle ScholarPubMed
Bush, L. P., Wilkinson, H. H. and Schardl, C. L. (1997). Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology, 114, 17.CrossRefGoogle ScholarPubMed
Chiang, Y. C., Chou, C. H., Lee, P. R. and Chiang, T. Y. (2001). Detection of leaf-associated fungi based on PCR and nucleotide sequence of the ribosomal internal transcribed spacer (ITS) in Miscanthus. Botanical Bulletin of Academia Sinica, 42, 3944.Google Scholar
Christian, D. G., Riche, A. B. and Yates, N. E. (2008). Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products, 28, 320327.CrossRefGoogle Scholar
Clifton-Brown, J., Chiang, Y.-C. and Hodkinson, T. R. (2008). Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In Genetic Improvement of Bioenergy Crops, ed. Vermerris, W. New York: Springer Science, pp. 273290.Google Scholar
Cope-Selby, N., Cookson, A., Squance, M. et al. (2017). Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy, 9, 5777.CrossRefGoogle Scholar
de Cesare, M., Hodkinson, T. R. and Barth, S. (2010). Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Molecular Breeding, 26, 539544.CrossRefGoogle Scholar
Farrar, K., Bryant, D. and Cope-Selby, N. (2014). Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 12, 11931206.CrossRefGoogle ScholarPubMed
Gamboa, M. A., Laureano, S. and Bayman, P. (2002). Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia, 156, 41–45.CrossRefGoogle ScholarPubMed
Gardes, M. and Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113118.CrossRefGoogle Scholar
Heather, W. A. and Sharma, I. K. (1987). Physiologic specialisation in the hyperparasitism of races of Melampsora larici-populina by isolates of Cladosporium tenuissimum. Forest Pathology, 17, 185188.CrossRefGoogle Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313321.CrossRefGoogle ScholarPubMed
Hibbett, D. S., Binder, M., Bischoff, J. F. et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509547.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. and Parnell, J. A. N. (2007). Introduction to the systematics of species rich groups. In Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, ed. Hodkinson, T. R and Parnell, J. A. N. Boca Raton, FL: CRC Press, pp. 320.Google Scholar
Hodkinson, T. R., Chase, M. W. and Renvoize, S. A. (2001). Genetic resources of Miscanthus. Aspects of Applied Biology, 65, 239248.Google Scholar
Hodkinson, T. R., Chase, M. W., Lledó, D. M., Salamin, N. and Renvoize, S. A. (2002). Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research, 115, 381392.CrossRefGoogle Scholar
Hodkinson, T. R., Salamin, N., Chase, M. W. et al. (2007a). Large trees, supertrees, and diversification of the grass family. Aliso, 23, 248258.CrossRefGoogle Scholar
Hodkinson, T. R., Waldren, S., Parnell, J. A. N. et al. (2007b). DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research, 120, 1729.CrossRefGoogle ScholarPubMed
Hodkinson, T. R., Jones, M. B., Waldren, S. and Parnell, J. A. N., eds. (2011). Climate Change Ecology and Systematics. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
Hodkinson, T. R., Klaas, M., Jones, M., Prickett, R. and Barth, S. (2015). Miscanthus: a case study for the utilization of natural genetic variation. Plant Genetic Resources, 13, 219237.CrossRefGoogle Scholar
Hodkinson, T. R., Petrunenko, E., Klaas, M. et al. (2016). New breeding collections of Miscanthus sinensis, M. sacchariflorus and hybrids from Primorsky Krai, Far Eastern Russia. In Perennial Biomass Crops for a Resource-Constrained World, ed. Barth, S, Murphy-Bokern, D., Kalinina, O., Taylor, G. and Jones, M. B. Berlin: Springer, pp. 105118.CrossRefGoogle Scholar
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Johnson, L. J. and Caradus, J. R. (2019). The science required to deliver Epichloë endophytes to commerce. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 16.Google Scholar
Jones, M. B. and Walsh, M., eds. (2001). Miscanthus for Energy and Fibre. London: James and James.Google Scholar
Jones, M. B., Finnan, J. and Hodkinson, T. R. (2015). Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy, 7, 375385.CrossRefGoogle Scholar
Karpyn Esqueda, K. M., Yen, A. L., Rochfort, S. et al. (2017). A review of perennial ryegrass endophytes and their potential use in the management of African black beetle in perennial grazing systems in Australia. Frontiers in Plant Science, 8, 3.CrossRefGoogle ScholarPubMed
Kim, K. W. (2015). Three-dimensional surface reconstruction and in situ site-specific cutting of the teliospores of Puccinia miscanthi causing leaf rust of the biomass plant Miscanthus sinensis. Micron, 73, 1520.CrossRefGoogle ScholarPubMed
Kim, S., Da, K. and Mei, C. (2012). An efficient system for high-quality large-scale micropropagation of Miscanthus × giganteus plants. In Vitro Cellular & Developmental Biology-Plant, 48, 613619.CrossRefGoogle Scholar
Kunkel, B. A., Grewal, P. S. and Quigley, M. F. (2004). A mechanism of acquired resistance against an entomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboring a fungal endophyte. Biological Control, 29, 100108.CrossRefGoogle Scholar
Lee, W. C. and Kuan, W. C. (2015). Miscanthus as cellulosic biomass for bioethanol production. Biotechnology Journal, 10, 840854.CrossRefGoogle ScholarPubMed
Leme, A. C., Bevilaqua, M. R. R., Rhoden, S. A. et al. (2013). Molecular characterization of endophytes isolated from Saccharum spp based on esterase and ribosomal DNA (ITS1-5.8S-ITS2) analyses. Genetics and Molecular Research, 12, 40954105.CrossRefGoogle ScholarPubMed
Malinowski, D. P., Alloush, G. A. and Belesky, D. P. (2000). Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant and Soil, 227, 115126.CrossRefGoogle Scholar
Martín, J. A., Macaya-Sanz, D. and Witzell, J. (2015). Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. European Journal of Plant Pathology, 142, 185196.CrossRefGoogle Scholar
McGrath, S., Hodkinson, T. R. and Barth, S. (2007). Extremely high cytoplasmic diversity in natural and breeding populations of Lolium (Poaceae). Heredity, 99, 531544.CrossRefGoogle ScholarPubMed
Mejía, L. C., Herre, E. A., Sparks, J. P. et al. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 479.Google Scholar
Mekete, T., Sikora, R. A., Kiewnick, S. and Hallmann, S. (2011). Description of plant parasitic nematodes associated with coffee in Ethiopia. Nematologia mediterranea, 36, 6977.Google Scholar
Moreira, A. S., Germaine, K. J., Lloyd, A. et al. (2016). Draft genome sequence of three endophyte strains of Pseudomonas fluorescens isolated from Miscanthus giganteus. Genome Announcements, 4(5), e00965–16.CrossRefGoogle ScholarPubMed
Moritz, C. and Cicero, C. (2004). DNA barcoding: promise and pitfalls. PLoS Biology, 2, e354.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2014). Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. BioControl, 60, 281292.CrossRefGoogle Scholar
Murphy, B. R., Batke, S. P., Doohan, F. M. and Hodkinson., T. R. (2015a). Media manipulations and the culture of beneficial fungal root endophytes. International Journal of Biology, 7, 94102.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015b). Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis, 65, 17.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015c). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015d). Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology, 6, 139150.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24, 211.CrossRefGoogle ScholarPubMed
Nutaratat, P., Srisuk, N., Arunrattiyakorn, P. and Limtong, S. (2014). Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biology, 118, 683694.CrossRefGoogle ScholarPubMed
O’Neil, N. R. and Farr, D. F. (1996). Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp.. Plant Disease, 80, 980987.CrossRefGoogle Scholar
Pandey, R. R., Arora, D. K. and Dubey, R. C. (1993). Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia, 124, 3139.CrossRefGoogle Scholar
Perdereau, A., Klaas, M., Barth, S. and Hodkinson, T. R. (2017). Plastid genome sequencing reveals biogeographical structure and extensive population genetic variation in wild populations of Phalaris arundinacea L. in north-western Europe. GCB Bioenergy, 9, 4656.CrossRefGoogle Scholar
Rehner, S. A. and Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 8489.Google ScholarPubMed
Saikkonen, K., Young, C. A., Helander, M. and Schardl, C. L. (2016). Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Molecular Biology, 90, 665675.CrossRefGoogle ScholarPubMed
Salamin, N., Hodkinson, T. R. and Savolainen, V. (2005). Towards building the tree of life: a simulation study for all angiosperm genera. Systematic Biology, 54, 183196.CrossRefGoogle ScholarPubMed
Scauflaire, J., Gourgue, M., Foucart, G. et al. (2013). Fusarium miscanthi and other Fusarium species as causal agents of Miscanthus × giganteus rhizome rot in Belgium. European Journal of Plant Pathology, 137, 13.CrossRefGoogle Scholar
Schardl, C. L. (2001). Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genetics and Biology, 33, 6982.CrossRefGoogle ScholarPubMed
Schmidt, C. S., Mrnka, L., Frantík, T. et al. (2017). Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in Miscanthus × giganteus. Plant Physiology and Biochemistry, 120, 120e131.CrossRefGoogle ScholarPubMed
Schoch, C. L., Seifert, K. A., Huhndorf, S. et al. (2012). Fungal barcoding consortium. Proceedings of the National Academy of Sciences of the United States of America, 109, 62416246.CrossRefGoogle Scholar
Sharma, G. and Pandey, R. R. (2010). Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. Journal of Yeast and Fungal Research, 1, 157164.Google Scholar
Shrestha, P., Ibáñez, A. B., Bauer, S. et al. (2015). Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnology for Biofuels, 8, 38.CrossRefGoogle ScholarPubMed
Stielow, J. B., Lévesque, C. A., Seifert, K. A. et al. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes, Persoonia, 22, 242263.CrossRefGoogle Scholar
Straub, D., Rothballer, M., Hartmann, A. and Ludewig, U. (2013a). The genome of the endophytic bacterium H.frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants. Frontiers in Microbiology, 4,168.CrossRefGoogle ScholarPubMed
Straub, D., Yang, H., Liu, Y., Tsap, T. and Ludewig, U. (2013b). Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. Journal of Experimental Botany, 64, 4603–4615.CrossRefGoogle ScholarPubMed
Stuart, R. M., Romao, A. S., Pizzirani-Kleiner, A. A., Azevedo, J. L. and Araujo, W. L. (2010). Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Archives of Microbiology, 192, 307313.CrossRefGoogle ScholarPubMed
Teerawatananon, A., Jacobs, S. W. L. and Hodkinson, T. R. (2011). Phylogenetics of Panicoideae (Poaceae) based on chloroplast and nuclear DNA sequences. Telopea, 13,115142.CrossRefGoogle Scholar
Vega, F. E., Posada, F., Aime, M. C. et al. (2008). Entomopathogenic fungal endophytes. Biological Control, 46, 7282.CrossRefGoogle Scholar
Verma, S., Varma, A., Rexer, K. et al. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90, 896903.CrossRefGoogle Scholar
Vilgalys, R. and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 42384246.CrossRefGoogle ScholarPubMed
Waller, F., Achatz, B., Baltruschat, H. et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 1338613391.CrossRefGoogle ScholarPubMed
Wang, Y., Li, H., Feng, G., Du, L. and Zeng, D. (2017). Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One, 12, e0182556.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T., Lee, S. and Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, ed. Innis, M. A Gelfand, D. H, Sninsky, J. J and White, T. J. New York: Academic Press Inc., pp. 315322.Google Scholar
Wilson, R.T. (1995). Livestock Production Systems. Umberleigh, UK: Bartridge Partners.Google Scholar
Xue, S., Kalinina, O. and Lewandowski, I. (2015). Present and future options for the improvement of Miscanthus propagation techniques. Renewable & Sustainable Energy Reviews, 49, 12331246.CrossRefGoogle Scholar
Yahr, R., Schoch, C. L. and Dentinger, B. T. M. (2016). Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philosophical Transactions of the Royal Society B, 371, 20150336.CrossRefGoogle ScholarPubMed
Yost, M. A., Randall, B. K., Kitchen, N. R., Heaton, E. A. and Myers, R. L. (2017). Yield potential and nitrogen requirements of Miscanthus × giganteus on eroded soil. Agronomy Journal, 109, 684695.CrossRefGoogle Scholar
You, Y.-H., Yoon, H.-J., Woo, J.-R. et al. (2011). Plant growth-promoting activity of endophytic fungi isolated from the roots of native plants in Dokdo Islands. Journal of Life Science, 21, 16191624.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×