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Abstract: The ability to accurately simulate the vibratory motion of transport vehicles is of great 

importance when designing vehicle components and product containment systems.  Direct 

measurement and analysis of the vibrations is not always practical and laboratory testing using 

synthesized road elevation data is a common alternative, as is numerical simulation. However, 

no technique exists to generate realistic nonstationary dual track road elevation data.  

This research focuses on uncovering statistical distributions that describe the nonstationary 

relationships between the left and right wheel-paths. Analysis of the short-time (nonstationary) 

coherence functions and instantaneous International Roughness Index (IRI) of measured road 

profile data provided distributions which describe variations in left to right wheel-path correlation 

and roughness variations for both tracks.  The resulting distributions can be described with a 

three-parameter Weibull distribution and can be adopted to generate nonstationary dual wheel-

path profile data that can be used to excite numerical vehicle models and physical vehicles via 

multi-axis simulators. 
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1.0 Introduction 

Numerically simulated and laboratory-based multi-axial testing and is becoming an increasingly 

important aspect of ground vehicle design and evaluation. It enables vehicles to be designed to 

withstand the rigors of travelling over uneven road surfaces and to achieve suitable ride conditions for 

the vehicle’s occupants.  The motion of the commercial vehicles also relates to the design of the 

consignments that they are transporting. To ensure that the products survive, protective packaging 

systems need to be tested to determine their ability to withstand the vibrations during of distribution 

and transport. This is especially the case for road transport which has been long-established as the 

primary source of damaging vibrations. It is also important to ensure that the protective packaging 

systems used do not place an unnecessary burden on the environment through the excessive use of 

materials. The ability to minimize packaging material use without increasing the risk of damage or 

failure of consignments requires an improved understanding of the distribution environment to support 

laboratory testing. This is a prime example of the importance of being able to accurately predict and 

simulate the multi-axial (heave, pitch and roll) vibratory motion of vehicles when travelling on 

particular road types or along particular routes [1, 2, 3].  Direct measurement and replication of heave, 

pitch and roll vibrations, although ideal are not always practical. Laboratory testing using synthesized 

road elevation data [4] is a common alternative as is numerical simulation. Numerical simulation in 

particular is becoming more attractive especially when it comes to studying the effects of various 

parameters such as vehicle geometry (wheel base, wheel track), vehicle and payload inertial 

characteristics (mass, center of gravity location, moments of inertia) and vehicle suspension properties.  

Numerical models describing the dynamic behavior of vehicles exist and can be adapted and developed 

to represent a variety of vehicle types.  However, there is no suitable method for producing realistic 

dual track wheel-path excitation records that take into account not only the varying roughness of roads 

along particular routes [4], but also the relationship between the left and right wheel-paths which is 

primarily responsible for generating roll motion to the vehicle and its payload. Several authors have 

presented studies related to the synthesis of stationary dual wheel-path excitation records [5-8] with the 

vast majority using the coherence function between the left and right wheel-paths to synthesize partially 



correlated dual path data.  However, there is no consensus on a suitable coherence model and how the 

model may vary along the length of the road (nonstationarity). 

The aim of this research is to uncover suitable statistical distributions which are capable of describing 

the nonstationary relationships between the left and right wheel-paths as well as the variations in their 

roughness. Such descriptors can then be adopted to generate realistic dual wheel-path profiles that can 

be used to excite both numerical vehicle models as well as physical vehicles via multi-axis road 

simulators. 

The paper initially presents a brief review of various proposed coherence models that have been used 

to characterize the relationship between the left and right wheel-paths as a function of spatial frequency.  

The paper then addresses the need to develop a new approach that takes into account any variation in 

the left-right wheel-path coherence along the road.  This requires the coherence to be described as a 

function of longitudinal distance as well as frequency. The paper also includes a study of the variations 

in roughness of both wheel-paths along the length of the road and any correlation roughness may have 

with variations in the left-right wheel-path coherence model.  

2.0 Literature Review 

It is now broadly accepted that the classic view of roads as an isotropic surface, first proposed by Dodds 

and Robson [9] then by Kamash and Robson [10], is not adequate [11].  Heath [12] uses the 

approximation of isotropy to express elevation cross-spectra as a function of the single-track elevation 

spectrum.  Although useful at the time for providing an insight into the relationship between parallel 

tracks along a road, the isotropy assumption is conditional upon some admissibility tests. Further, 

comparison by Kamash and Robson [13] of their coherence model with some (limited) measured data 

contains significant disagreement with the isotropic model.   Ammon [11] demonstrates the 

shortcomings of the isotropy assumption by comparing its coherence function with that computed from 

measured data (a single country road).  Ammon [11] and Ammon and Bormann (cited in [14]), propose 

a more general surface model that is claimed to better match observations: 
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Where n is the spatial frequency,   the track width, w the undulation exponent and np and p are arbitrary 

constants.  Fitting of this model (1) to a number of measured data yielded a large scatter for the values 

of a, np and p [11].  Also, Ammon presents the coherence function over a narrow wavelength range of 

10 m to 10 mm, which fails to take into account the longer important wavelengths which affect vehicle 

vibrations at higher speeds.  Moreover, Ammon shows the coherence function to reach unity at a 

wavelength of 10 m which does not appear credible.  The paper also fails to clearly explain how the 

random and bias errors associated with the computing of the coherence are addressed in his analysis of 

measured profile data.  There is no mention of the length of the data analyzed nor the number of 

independent averages used to compute the coherence spectra. 

For parallel tracks, coherence is described as the ratio the cross-spectra and the product of the auto 

spectra of the two wheel tracks.  When the signal is random, as is the case for road profiles, there is a 

need to break the signal into sub-records to allow for spectral averaging which reduces errors contained 

within the instantaneous auto and cross spectra [15]. Invariably, the calculation of the coherence 

spectrum also involves both bias and random errors [15] that are a function of the number of averaged 

independent sub-records (segments or ensembles), Nd, used to calculate the average cross and auto 

spectra as explained by Bendat and Piersol [15] and Carter et al. [16].  The bias error for the coherence 

spectrum,  2, is given by: 
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and the normalized random error by (where s.d represents standard deviation): 
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These error functions are presented graphically in Figure 1 for various values of Nd. 



 

Figure 1. Left: Bias error of coherence; Right: Random error of coherence. 

These errors are inextricably linked with the calculation of coherence spectral functions and must be 

addressed by carefully selecting the number of independent sub-records into which the signal is divided 

as well as the desired spatial frequency resolution, n, with which to compute the spectra according to: 
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Where Ls is the length of the independent sub-records.  For records with a fixed overall length, this 

shows that a compromise must be reached to achieve both acceptable errors and sufficiently fine spectral 

resolution.  This means that, if the signals (here left and right track profiles) are insufficiently long, 

coherence spectra with an acceptable frequency resolution cannot be obtained with any reasonable 

degree of accuracy.  Consequently, validating coherence models on short road profile records is fraught 

with large statistical uncertainties. 



Bogsjö [17] is the first to validate coherence models using acceptably large road profile records 

(between 5 and 45 km in length totaling 520 km) of varying quality (roughness).  Bogsjö compares the 

coherence of measured profiles with the isotropic model which he found to be often inaccurate.  A 

single-parameter model was proposed (5) and was found to accurately describe the coherence spectra 

of all 20 roads analyzed. 
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Where n is the spatial frequency,  the track width and b1 an arbitrary constant.  Bogsjö does mention 

independent (non-overlapped) sub-records and uses (2) to remove the bias error.  The random error of 

the coherence function is not mentioned. A sub-record length of 32 m (giving a spatial frequency 

resolution of 0.031 m-1) is used which, even for the shortest road, gives a reasonable number of 

independent averages (Nd =156).  Importantly, Bogsjö concludes that it is not possible to establish a 

relationship between the coherence spectrum and the road type (roughness).   Despite the availability 

of long road segments, Bogsjö’s work is limited to presenting the overall (average) coherence spectrum 

for each road and does not address the variation in coherence along the length of the road.   

Múčka [14] presents a comprehensive overview of the evolution of the various coherence functions that 

aim at characterizing parallel wheel tracks.  The author uses the ‘unbiased squared-coherence’ (note 

that coherence is properly defined by  2) of some 3,492 parallel track road records to evaluate the 

adequacy of various coherence functions (11 in all).  He concludes that local road surface aberrations 

(bumps, potholes, etc.) do not affect the coherence spectra. This is unsurprising given that the coherence 

is based on spectral averages through which the occasional transients (aberrations) will be 

overwhelmed. 

One important shortcoming of Múčka’s analysis is the length of the road profile data he employs to 

validate the various coherence models.  The sections are on average 145 m long which poses a serious 

limitation to the spectral resolution of the coherence and the errors associated with coherence 

calculations.  Even by counting overlapped sub-records as independent, Múčka uses only seven 

overlapped sub-records leading to significant bias and random errors.   



General observations from Múčka’s evaluation of all 11 coherence models are summarized here. 

 The model by Vlk (2000) (cited in Múčka [14]) is a single parameter model based on the 

isotropic assumption and as such is limited. 

 The single-parameter exponential model identified by Bogsjö [17] was found to be well-

suited to selected Swedish road sections by Bogsjö yet yielded large errors when compared by 

Múčka [14].   This may well be due to the short road elevation data sets used by Múčka as 

opposed to the 5 km + data sets used by Bogsjö [17]. 

 The two-parameter exponential model (Richter, 1990) (cited in Múčka [14]) is similar to the 

model introduced by Bogsjö [17] but includes a reference spatial frequency (that is not 

specified) as well as an arbitrary parameter while making no reference to wheel track. 

 The three-parameter and two-parameter models proposed by Ammon [11] and Ammon and 

Bormann (1991) (cited in Múčka [14]) were found to yield the best results. 

 Of the three models based on rational functions with one-, two- and three-parameters, 

introduced by Múčka [14], the single parameter function was said to best describe validation 

data set. 

Despite the extensive work by Múčka [14], there is still no firm consensus on which coherence model 

is the most appropriate due to the limited data used for analysis. In saying this, Múčka’s work is of 

value as it provides an extensive list of coherence models and indicates which are most likely to be 

suitable. 

Overall, with the exception of Bogsjö [17], most of the published validation of the various proposed 

coherence models are carried-out on short or undeclared track profile lengths.  This, as discussed, has 

a significant impact on the errors associated with the computed coherence spectra and introduces some 

substantial uncertainty when using them to validate coherence models.  Bogsjö’s results, although based 

on long track lengths (5 – 45 km), present overall (average) coherence spectra and do not address the 

nonstationarity of the spectra along the length of the road. The nonstationary nature of roads has been 

clearly established [18, 19, 20]; therefore, it is expected that any relationship between the left and right 



wheel track will also be nonstationary. Understanding this nonstationary behavior is important when 

attempting to simulate realistic vehicle vibrations. This paper will seek to avoid the limitations of the 

previous studies by using a range of measured road profiles of adequate length to develop an accurate, 

yet practical, approach for describing coherence variations along parallel tracks. 

3.0 Validation Data Set 

The data used in this study includes 19 independent elevation data sets (totaling approximately 400 km) 

measured using an inertial profilometer along a wide variety of asphalted roads across the state of 

Victoria in Australia. Table 1 lists the details of each elevation record including an estimate of their 

average roughness which is described using the International Roughness Index (IRI) [21, 22, 23].  Each 

data set was measured across a track width of 1.5 m. The left wheel-path is the outer track and the right 

wheel-path is the inner track. 

  



Table 1. Validation data set details. 

Road Name Road Type 

Length 

[km] 

IRI 

(left) 

[m/km] 

IRI 

(right) 

[m/km] 

IRI 

(mean) 

[m/km] 

Princes Hwy East Metro. Highway 20.3 1.5 1.4 1.5 

Murray Valley Hwy Country Highway 43.8 1.6 1.4 1.5 

Princes Hwy East Metro. Highway 22.9 1.7 1.7 1.7 

Princes Hwy East Metro. Highway 3.3 1.7 1.6 1.7 

Murray Valley Hwy Country Highway 47.7 1.9 1.7 1.8 

Princes Hwy East Metro. Highway 3.4 2.3 1.8 2.1 

South Gippsland Hwy Country Highway 11.3 2.3 2.0 2.2 

South Gippsland Hwy Country Highway 21.8 2.6 2.1 2.4 

South Gippsland Hwy Country Highway 15.0 3.1 2.6 2.9 

Midland Hwy Country Highway 14.0 3.3 3.2 3.3 

South Gippsland Hwy Country Highway 60.8 3.6 3.3 3.5 

Daylesford - Malmsbury 

Rd 

Country Road 25.4 4.0 3.3 3.7 

Northern Hwy Country Highway 5.0 4.1 3.8 4.0 

Lismore - Skipton Rd Country Road 32.6 4.2 3.7 4.0 

Bendigo - Maryborough 

Rd 

Country Road 22.3 4.3 3.8 4.1 

Wiltshire Lane Country Road 2.3 4.2 4.1 4.2 

Pyrenees Hwy Country Highway 12.4 4.8 4.2 4.5 

Timboon - Port 

Campbell Road 

Country Road 8.0 6.3 4.3 5.3 

Euroa - Mansfield Rd Country Road 8.3 6.1 5.0 5.6 



The ability to establish the variation (nonstationarity) of the coherence function along the length of the 

road requires data sets of considerable length. Therefore, to enable such analysis, a number of records 

were concatenated to produce longer records. The roads were grouped with those of similar average 

roughness levels. When synthesizing road data in accordance with standards such as ISO8608, the main 

variable is average roughness level as the shape of the average power spectral density (PSD) function 

is fixed [24]. To allow for an investigation into any potential influence of road roughness on the left-

right wheel-path coherence function four roads were created according to their nominal (IRI) roughness: 

Road 1: Roads with a mean IRI of 2.1 or less 

Road 2: Roads with a mean IRI of between 2.2 and 3.6 

Road 3: Roads with a mean IRI of 3.7 or more 

Road 4: Entire data set 

The joining of the road elevation data also allowed for adequate analysis of rough roads which are 

inherently shorter.  

Prior to concatenating the records, a high-pass filter (fourth order Butterworth set at 1/33 m-1) was 

applied to each segment in order to ensure that the long wavelength errors, that are inherent to inertial 

profilometers [25], were removed from the data. In joining the segments, particular care was also taken 

to avoid the introduction of artefacts created by discontinuities at the extremities of each record. This 

was achieved by applying a short (32 point) windowing function (inverse Hanning) to each join in the 

record once concatenated. The PSD and coherence functions of each of the resulting records are 

presented in Figures 2 and 3.  It is important to recall that these PSD and coherence functions do not 

reveal the variations that are caused by the nonstationary nature of the road profiles [26] but instead 

provide the average results for each road.  It should also be noted that all results related to spatial 

frequencies below 1/33 m-1 are deliberately excluded as the inertial profilometer used was not able to 

accurately capture this data; furthermore, the vibratory motion of the vehicle corresponding to elevation 

data at these spatial frequencies will be negligible.   



 

Figure 2. Average PSD function for each of the generated roads. 

 

Figure 3. Average coherence functions for each of the generated roads. 

  



4.0 Analyzing Coherence   

There are two major parts to the analysis of the coherence function. The first is to establish the most 

appropriate coherence model for describing the measured left-right wheel-path coherence function. The 

second is to use this model to describe any variations in the coherence function along the length of the 

road. This requires a model which is easily defined and ideally includes as few arbitrary parameters as 

possible. Once a suitable model is found, variations in the coherence model will be compared with 

changes found in the IRI of the elevation data to establish whether or not the two are dependent.  

4.1 Overall (average) coherence 

To determine which models are likely best suited to the analysis, an average coherence function for 

each individual measurement record was found following a similar approach to that used by Múčka 

[14] but with records of greater segment length. This approach, despite not considering the potential 

nonstationary behavior of the coherence function, allows the models to be compared with the average 

coherence of each of the roads.  In order to generate sufficient coherence estimates across the bandwidth 

of interest (i.e. to allow for accurate curve-fitting of coherence models) the spatial frequency resolution 

was set at 0.0075 m-1 (the reciprocal of four times the longest relevant wavelength in this instance) for 

all data sets. Furthermore, to contain the coherence uncertainty to acceptable levels, the number of 

independent sub-records, Nd, was set at 75 or greater.  Consequently, the determination of the average 

coherence functions will be limited to the track elevations with a length of greater than 10 km 

(75/0.0075 m-1). 

The analysis of suitable coherence models was achieved by comparing each against a cloud of 

coherence data. This cloud includes the left-right coherence functions of all individual road elevation 

records which are greater than 10 km in length. This will allow each coherence model to be compared 

as a fit of the average coherence function across the entire data set.  

4.2 Nonstationary Coherence 

Subsequent to the analysis of the average coherence function for each road, the four concatenated road 

records were subjected to short-length spatial frequency domain analysis to reveal the nonstationary 



nature, if any, of the coherence function. The approach taken is to divide a road profile record into 

segments which themselves will be taken as quasi-stationary; hence representable by a single average 

(yet short-time) coherence function.  This assumption was proven valid by Rouillard [19] who showed 

that nonstationary road data can be described by a number of independent quasi-stationary, Gaussian 

segments. Rouillard’s work is supported by Bogsjo et al. [18] who suggest that shorter road segments 

are more likely to be homogeneous (stationary).  Furthermore, Bogsjö et al. recognize that a 

compromise between the segment length and statistical uncertainties needs to be made when the data is 

non-homogeneous (nonstationary).   This means that the segment lengths should be small enough to 

satisfy the stationarity assumption while being sufficiently long to produce coherence spectra with 

acceptably small errors (through spectral averaging).  Further compromise is required to ensure that the 

spatial frequency resolution is also sufficiently small. 

The analysis was implemented through the use of a modified version of the short-time Fourier transform 

which has the additional feature of averaging the individual spectra associated with each of the adjacent 

sub-records (Ls) to provide “short-time” (semi-instantaneous) coherence estimates for each segment. 

Figure 4 illustrates how the track profile data is separated into segments made-up of a series of sub-

records on which Fourier analysis is performed to obtain the spectral estimates. Prior to performing any 

Fourier analysis, a Hanning window is applied to each sub-record to reduce side-lobe leakage [27]. To 

compensate for loss of information resulting from the application of the windowing function, 

overlapping of adjacent sub-records by a proportion (olav) is required [27, 28].  Typically at least 50% 

overlap is recommend when using the Hanning window [27]. In addition to averaging overlap (olav), 

the segments used for each short-time coherence function estimate can also be overlapped by a fraction, 

olen, to aid the visual interpretation of the results. When using the short-time Fourier transform, Randall 

[27] recommends using 75% overlap (olen).  



 

Figure 4. Schematic of nonstationary coherence tracking algorithm. 

In this study, the averaging and ensemble overlaps were both set at 75% with 23 independent (90 

overlapped) averages and the spatial frequency resolution was set at 0.0152 m-1 (the reciprocal of twice 

the longest relevant wavelength). These settings yield a spatial resolution of approximately 1,520 m.  

Although it is acknowledged that there may be some level of nonstationary behavior within the 1,520 m 

segments, these settings were found to provide the best compromise between spatial resolution and 

uncertainty in the estimated coherence functions. Since each coherence function estimate is obtained 

using a relatively high number of averages, no correction for bias had been applied to the data. 

For more information on the modified short-time Fourier transform and its application when analyzing 

nonstationary random data, the reader is referred to Lamb [29]. 



5.0 Results 

Of all the coherence function models presented in the literature, the single parameter model of Bogsjö 

[17] (5) showed the greatest potential as it has been successfully applied to large data sets and it allows 

the coherence function to be described by a single parameter. However, the work undertaken by Múčka 

[14] suggests that the three-parameter and two-parameter models proposed by Ammon [11] and 

Ammon and Bormann (cited in Múčka [14]), coherence models no. 5 (6) and 6 in Múčka (7), were 

better suited and that Múčka’s own, no. 10, one parameter rational function model (8) adequately 

described the validation data set. The first stage of the research presented herein was to establish which 

of these models best describes that data set available and if the two and three parameter models provided 

a significantly improved description when compared to the single parameter models. This was achieved 

by estimating the average coherence function and fitting each of the coherence models to the resulting 

cloud. In effect, this is the same as fitting the model to the average coherence functions of the combined 

roads with the benefit of seeing the variation in coherence for each of the independent roads. The results 

from the analysis are presented in Figure 5 and include the other single-parameter model presented by 

Múčka, model no. 1 (9), for the purposes of completeness. The coherence function for the models shown 

in Figure 5 are listed in Table 2. 

Table 2. Selected coherence models where bi are arbitrary constants. 
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The results show that Bogsjö’s [17] single parameter model is able to describe the coherence functions 

as well as the more complex two and three parameter models (Múčka [14] no. 5 and 6) of Ammon 



(1992) and Ammon and Bormann (cited in Múčka [14]) and is far better suited than the other single 

parameter models presented in Múčka’s review. A curve-fit of Bogsjö’s model as extracted from the 

cloud data is compared to the average coherence function of Road 4 (concatenation of all road data in 

the validation data set) in Figure 6 to show that it is representative of the overall average coherence 

function. 

 

Figure 5. Suitability of various mathematical models for fitting average coherence function on cloud 

data.  



 

Figure 6. Comparison of single parameter function with average coherence function of Road 4 (entire 

data set).  

Figure 7 compares the results obtained from the validation data set in this research to the results 

presented by Bogsjö [17]. As can be seen, despite the analysis being undertaken on two distinctly 

different data sets, there is strong agreement between the results in terms of both the average coherence 

function and the variation in the coherence functions across the roads analyzed. 



 

Figure 7. Comparison of findings from Australian road data with that of Bogsjö.  

The next stage of the analysis was to attempt to characterize the variations (nonstationarity) in the 

coherence functions using the exponent b1 of Bogsjö’s [17] model as an index. Using the previously 

mentioned analysis parameters, coherence functions were estimated over approximately 380 m 

intervals, however, the true spatial resolution was only approximately 1,520 m (75% ensemble overlap).  

Figure 8 illustrates variations in the coherence function of Road 4 resulting from the nonstationary 

relationship between the left and right wheel-paths. Notice the significant variation in the coherence 

function which is not captured when assuming stationarity. 



 

Figure 8. Nonstationary nature of the coherence function (left shows selected coherence functions 

and their curve-fits; right shows all coherence function curve-fits).  

The distribution of the coherence function as described by Bogsjö’s [17] model is presented in Figure 

9 and is compared with the average IRI of the 1,520 m segments which the coherence was estimated 

from. Notice that the roads have been sorted from rough to smooth and that no correlation between 

roughness and the coherence function is evident. This lack of correlation is more clearly presented in 

Figure 10 which compares the exponent b1 and the average of the left-right IRI directly.  



 

Figure 9. Top: Distribution of the coherence function using b1 as the descriptor. Bottom: Distribution 

of average road roughness for analysis segments using IRI as a descriptor.  

 

Figure 10. Correlation between b1 and IRI. 



In order to be able to synthesize dual wheel-path data for the purposes of multi-axial vibration 

simulation, a mathematical description of the distribution of the coherence function is required. There 

exists a number of mathematical distribution functions, two which have previously been shown to 

suitably describe a range of road vibration distributions are the modified Rayleigh [30] and the three-

parameter Weibull [31]. With its ability to shift its shape, breadth (scale) and offset (location), the three 

parameter Weibull distribution is capable of fitting a wide range of data. Figure 11 presents the 

distribution of the coherence function for each of the roads in this study along with a mathematical 

model of the distribution of Road 4 (entire data set) achieved using a nonlinear least squares regression 

curve-fit of the three parameter Weibull distribution (10) [32].  
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Where β is the shape parameter, η is the scale parameter, xo is the location parameter and x is the 

independent variable. 

The resulting Weibull function enables suitable randomization of the coherence function when 

synthesizing nonstationary dual track road elevation data for road simulation purposes. In addition, 

Figure 11 again shows that, for the roads analyzed, the roughness of the road does not significantly 

influence the shape of the distribution of b1; hence the shape and spread of the coherence function. This 

is significant as it allows the coherence function and road roughness level to be independently set when 

synthesizing the nonstationary dual track road records. 



 

Figure 11. Probability density function (PDF) of the coherence function with for roads with varying 

levels of roughness 

The only issue remaining to allow for the generation of synthesized nonstationary dual track data is the 

distribution of the road roughness for the left and right tracks. To achieve this, the instantaneous IRI 

values corresponding to each data point in roads 1-3 were determined and a 100 m moving average 

filter was applied. This resulted in average IRI estimates over 100 m intervals for each of the three 

roads. The resulting distributions from the analysis are presented in Figure 12 where they are compared 

to the closest fitting three-parameter Weibull distribution. These distributions allow asphalted roads of 

similar roughness levels (indicated by the average IRI) to the three test roads to be synthesized. With 

access to a greater number of road elevation records which cover a greater range of roughness levels, 

distributions which describe roads of any roughness could easily be achieved.  



 

Figure 12. IRI distributions for roads with of various roughness content. Top: Left track. Bottom: 

Right track. 

6.0 Conclusions 

This research focused on uncovering statistical distributions that describe the nonstationary 

relationships between the left and right wheel-paths which will allow for the synthesis of realistic dual 

wheel-path profile data. The results showed that the coherence function which describes the correlation 

between the left and right wheel-path to be nonstationary and independent of road roughness. Simple 

three-parameter Weibull distribution models which describe the variation in the coherence function and 

the rough roughness (IRI) were established. These models make the synthesis of realistic dual track 

road elevation data possible for roads with average IRI values between 1.4 and 4 m/km. The synthesized 

models will be able to be used to excite numerical vehicle models and physical vehicles via multi-axis 

simulators for a range of applications including protective packaging design. 



One limitation of the approach is that, as shown by the theoretical coherence error function, it is not 

possible to obtain accurate coherence spectra without compromise to the spatial frequency resolution 

and spatial resolution (short road segments).  It may well be possible that a better description of the 

variations in left to right track relationship along the direction of travel can be achieved using spatial 

domain techniques which afford improved spatial resolution. Future work can address this by analysing 

the instantaneous camber of the road as the main descriptor of the correlation of the left and right wheel-

paths. Further work should also focus on establishing a greater number of road roughness distributions 

to enable the synthesis of roads of elevated (IRI above 4m/km) roughness and for non-asphalt type 

roads.  
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