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Graphical abstract 

 

Highlights 

 

 Discovery of a new lineage of Tursiops aduncus in the Indian Ocean. 

 Divergence times within Tursiops aduncus coincide with Pleistocene glacial 

periods. 

 Vicariance events in the northwest Indian Ocean and Australasia are proposed. 

 

Abstract 

Phylogeography can provide insight into the potential for speciation and identify 

geographic regions and evolutionary processes associated with species richness and 

evolutionary endemism.  In the marine environment, highly mobile species sometimes 

show structured patterns of diversity, but the processes isolating populations and 

promoting differentiation are often unclear.  The Delphinidae (oceanic dolphins) are a 

striking case in point and, in particular, bottlenose dolphins (Tursiops spp.).  

Understanding the radiation of species in this genus is likely to provide broader 

inference about the processes that determine patterns of biogeography and speciation, 

because both fine-scale structure over a range of kilometers and relative panmixia 
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over an oceanic range are known for Tursiops populations.  In our study, novel 

Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes 

and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic 

analysis. We discover a new ‘aduncus’ type lineage in the Arabian Sea (off India, 

Pakistan and Oman) that diverged from the Australasian lineage ~261 Ka.  Effective 

management of coastal dolphins in the region will need to consider this new lineage 

as an evolutionarily significant unit. We propose that the establishment of this lineage 

could have been in response to climate change during the Pleistocene and show data 

supporting hypotheses for multiple divergence events, including vicariance across the 

Indo-Pacific barrier and in the northwest Indian Ocean.  These data provide valuable 

transferable inference on the potential mechanisms for population and species 

differentiation across this geographic range. 

 

Keywords: Phylogeography, Pleistocene, Taxonomy, Conservation, Tursiops 

aduncus, Indian Ocean 

 

1. Introduction 

 During the Pleistocene, rapid and dramatic climatic fluctuations generated 

extensive environmental change that would have influenced the temporal and spatial 

distribution of taxa over glacial cycles (Hofreiter and Stewart, 2009; Stewart et al., 

2010). In the marine environment, fluctuations in sea level changed coastal 

topography and caused patterns of isolation between areas of available habitat (e.g. 

Gaither and Rocha, 2013). Oscillations in climate also affected oceanographic 

processes, such as the reduction and intensification of monsoon systems associated 

with upwelling (Wang et al., 1999a), which could have contributed to the spatio-



  

genetic structure and taxonomic variation in marine species.  In the coastal waters of 

the northwest Indian Ocean there is high productivity off the Arabian Peninsula 

(Singh et al., 2011; Banse and McClain, 1986; Bauer et al., 1991; Burkill, 1999; 

Kindle and Arnone, 2001) and freshwater influx from rivers (e.g. the Indus delta), 

carrying large amounts of organic material (Longhurst, 2006). This, unique, 

heterogeneous environment has the potential to promote habitat dependencies or 

resource specialisations (e.g. Hoelzel, 1998b).  

 In this study we focus on the radiation of diversity in the genus Tursiops, in 

the sub-family Delphininae.  Species within this group radiated recently, making 

genetic resolution difficult due to incomplete lineage sorting (retention of ancestral 

polymorphisms) and other confounding factors (e.g. Amaral et al., 2012a). Species 

within this group have high dispersal ability yet often exhibit genetic structure over 

unexpectedly small spatial scales (e.g. Natoli et al., 2004; Natoli et al., 2008; 

Andrews et al., 2010; Fernández et al., 2011). Various studies have shown that 

genetic sub-division within these delphinid species is often associated with 

environmental heterogeneity (e.g. Bilgmann et al., 2008; Natoli et al., 2005; Natoli et 

al., 2008; Andrews et al., 2010; Mendez et al., 2011) and/or historical climatic or 

geological events (e.g. Amaral et al., 2012b; Moura et al., 2013; Louis et al., 2014; 

Moura et al., 2014). As top predators, the pattern of genetic differentiation between 

populations of coastal delphinids may provide an insight into the broader ecological 

changes happening in the coastal waters of the Indian Ocean over time (see Fontaine 

et al., 2007).  Evolutionary endemism of marine mammal species has been 

documented in the region previously (e.g. Jefferson and Van Waerebeek, 2002; 

Mendez et al., 2011; Minton et al., 2011; Amaral et al., 2012b; Mendez et al., 2013; 

Pomilla et al., 2014).  



  

 The taxonomy of bottlenose dolphins, Tursiops spp. has been the subject of 

much discussion (e.g. IWC, 2016). Although more work is needed (see Reeves et al., 

2004), resolution is improving, with the genus receiving much taxonomic attention in 

recent decades (e.g. Mead and Potter, 1990; Ross and Cockcroft, 1990; Hoelzel et al., 

1998; Wang et al., 1999b, Möller and Beheregaray, 2001; Kemper, 2004; Natoli et 

al., 2004, Charlton-Robb et al., 2011; Moura et al., 2013; IWC, 2016). The genus 

encompasses at least two species, the common bottlenose dolphin, T. truncatus and 

the Indo-Pacific bottlenose dolphin, T. aduncus (LeDuc et al., 1999; Wang et al., 

1999b; 2000). There is recent support for a third species, the Burrunan dolphin, T. 

australis, from southern Australia (Charlton-Robb et al., 2011) and further division 

within the T. aduncus group to include distinct lineages off South Africa, Australasia 

(Natoli et al., 2004; Moura et al., 2013) and possibly Bangladesh (Amaral et al., 

2016). Analysis of mtDNA from the T. aduncus holotype specimen (Red Sea) 

revealed it to be a match for the South African T. aduncus (Perrin et al., 2007). 

Within the T. truncatus lineage, further division into regional ecotypes occupying 

coastal or pelagic habitat is recognised (Mead and Potter, 1995, Hoelzel et al., 1998; 

Torres et al., 2003). Regional patterns suggest that offshore T. truncatus can provide a 

source for colonizing coastal habitats (Tezanos-Pinto et al., 2009, Richards et al., 

2013), though the broader pattern suggests a relatively recent radiation of the offshore 

populations (see Moura et al. 2013).       

 Patterns of divergence within bottlenose dolphins, and reconstructions of 

ancestral biogeography, suggest a coastal and Australasian origin for the Tursiops 

genus (Moura et al., 2013). The South African T. aduncus (hereafter referred to as the 

holotype lineage) and the Australasian lineage diverged during the Pleistocene ~327 

Ka (Moura et al., 2013). To date, few phylogenetic studies have incorporated genetic 



  

data from bottlenose dolphins in the northwest Indian Ocean. A study by Särnblad et 

al., (2011; in review) showed that coastal bottlenose dolphins off Oman (n = 4) 

grouped with the holotype lineage of T. aduncus. Sightings data from the broader 

region suggest the presence of both coastal and pelagic Tursiops species; the latter 

recognized as T. truncatus based on morphology (Ponnampalam, 2009; Minton et al., 

2010) and mtDNA markers (n = 13) (Ballance and Pitman, 1996; Curry, 1997; 

Ballance and Pitman, 1998).  As fisheries related mortalities (IWC, 1999; Collins et 

al., 2002; Anderson, 2014), pollution (Preen, 1991; IWC, 1999; Freije, 2015) and 

habitat fragmentation (IWC, 1999; Baldwin et al., 2004) continue to threaten regional 

populations; clarification of the taxonomic status of Tursiops sp. in this region has 

become a conservation concern. 

 In the present study we combine new T. aduncus mitogenomic sequences from 

the northwest Indian Ocean with the mitogenome dataset generated by Moura et al., 

(2013). In addition, a dataset consisting of T. aduncus and T. truncatus samples from 

the northwest Indian Ocean and sequences from five mtDNA loci and two nuDNA 

loci were analysed to improve representation from the region and include bi-

parentally inherited markers. We investigate whether ancestral distributions and 

divergence times at key phylogenetic nodes, particularly within the T. aduncus 

lineage, coincide with historic climatic events throughout the Pleistocene.  In 

particular, we test the hypothesis that historical climate transitions during the 

Pleistocene are consistent with the timing and pattern of differentiation.  

Understanding this will provide important insight into the processes underlying the 

evolution of diversity in mobile marine taxa. 

 

2. Material and methods 



  

2.1. Sample Acquisition and DNA Extraction 

Among the 98 samples included in phylogenetic reconstructions, representing 

various regional populations and putative species, new regions were represented by 

Oman, collected from strandings (n = 1) or free-ranging (n = 7) individuals and from 

strandings in Pakistan (n = 2; see Table S1).  Samples from India (n = 11) were 

provided by the Environmental Specimen Bank (es-BANK) of Ehime University, 

Japan. All mitogenome sequences generated by Moura et al., (2013) and two 

generated by Xiong et al., (2009) were incorporated into the study (see Table S1 for 

locations and Table S2 for Accession Numbers). Figures 1 a) and b) show the 

geographic locations of samples. DNA extraction was carried out on all tissue 

samples using phenol-chloroform DNA extraction protocols, as adapted from Hoelzel 

(1998a).  

 

2.2. Mitogenome Sequencing and Assembly 

Mitogenome sequences were generated from one Oman and two Pakistan 

samples following the protocols in Moura et al., (2013).  DNA extractions were 

quantified using a Qubit Fluorometer (Life Technologies Inc.). Aliquots were made to 

a concentration of 10 ng/μl and randomly sheared to a range of 100-600 base pairs 

(bp) using a sonicator (Diagenode Biopruptor Pico). Fragment size distributions were 

checked on a Bioanalyzer (Agilent Technologies) and samples were concentrated to 

20 μl using a centrifugal evaporator. Dual indexed sequencing libraries were then 

prepared following protocols adapted from Meyer and Kircher (2010).  Capture-

enrichment of mitogenomic DNA was then performed on the libraries (500 ng) using 

a target-enrichment kit (MYbaits, MYcroarray Inc.). Bait probes were synthesised 

(20,000 probes, 100bp each, 2x coverage) with bait design based on an alignment of 



  

killer whale, Orcinus orca, mitogenomes (Accession Numbers GU187171, 

GU187200, GU187194, GU187181, GU187209).  Captured libraries were quantified 

using qPCR and pooled in equimolar concentrations. The final sample pool was 

quantified using the KAPA Universal qPCR quantification kit (KAPA Biosystems), 

validated on a TapeStation 2200 (Agilent Technologies) and then sequenced on the 

Illumina HiSeq 2500 in rapid run mode using 150 bp paired-end reads. 

 After sequencing, adapters were trimmed using the Reaper tool in Kraken v. 

13-274 (Davis et al., 2013) and de-multiplexing was carried out using the 

process_radtags program in Stacks v. 1.44 (Catchen et al., 2013). Reads for each 

individual were then transferred to Geneious v. 7.1.2 (http://www.geneious.com, 

Kearse et al., 2012) for quality trimming and assembly. Reads were mapped to a T. 

aduncus mitogenome reference sequence (GenBank Accession Number EU557092) 

using the algorithm available in Geneious. The Geneious map reader algorithm is a 

multi-step procedure which processes reads one at a time to match short sequences of 

10 - 15 bp, ‘words’, to a reference sequence. Matched locations in the reference 

sequence are then used to ‘seed’ a mapping process that expands across the length of 

the read (see the user manual for details). Mapping was set to ‘medium-low 

sensitivity/fast’ with up to five iterations. Consensus sequences were generated using 

the ‘50% - Strict’ threshold. A minimum depth of coverage threshold of 5X was used. 

 

2.3. Amplification of mtDNA loci 

To construct additional phylogenies based on both mtDNA and nuclear loci, 

an informative region of the mitochondrial genome comprising a total of 4,301 bp 

was sequenced for 21 individuals from Oman (n=8), Pakistan (n=2) and India (n=11). 

PCR amplifications were performed for five mtDNA fragments spanning five loci: the 



  

control region, cytochrome-b, 12SrRNA, 16SrRNA and ND6. Primers (n=9; see 

Table S3) were designed in Primer3 v. 2.3.4 (Untergrasser, 2012) as implemented in 

Geneious, which were combined with previously published primers (see Table S3) for 

the final PCR amplification. All amplifications were performed in a 20 μl final 

reaction volume containing 1.0 μl of template DNA, 1.25 U of GoTaq Flexi DNA 

polymerase (Promega), 1x GoTaq Flexi buffer (Promega), 0.2 mM dNTP, 1-2 mM 

MgCl2 and 0.16-0.2 μM of each primer. The PCR temperature profile for each 

fragment included an initial heating step at 95◦C for 2 min, followed by 45 cycles of 

95◦C for 30 s, annealing temperature for 40 s and 72◦C for 1 min, and a final 

extension of 72◦C for 10 min. PCR products were purified with QIAgen PCR 

purification columns (Qiagen, GmbH, Germany) and Sanger sequenced using an ABI 

automated sequencer. Primer sequences, annealing temperatures and product sizes are 

summarised in Table S3. 

 

2.4. Amplification of nuDNA loci 

Two nuclear loci were amplified, chosen based on good resolution in 

published multi-species phylogenies (Banguera-Hinestroza et al., 2008; Caballero et 

al., 2008; Banguera-Hinestroza et al., 2014). A segment of 995 bp from Actin intron 1 

and 472 bp from α-Lactalbumin intron 2 were amplified for 40 individuals (see Table 

S2). The Actin gene codes for a muscle protein whereas the α-Lactalbumin gene 

codes for a mammary secretory protein (Milinkovitch et al., 1998; Harlin-Cognato 

and Honeycutt, 2006). A final reaction volume of 20 μl contained 1.0 μl of template 

DNA, 1.25 U of GoTaq Flexi DNA polymerase (Promega), 1x GoTaq Flexi buffer 

(Promega), 0.2 mM dNTP, 2 mM MgCl2 and 0.16 μM of each primer. The PCR 

temperature profile began with an initial denaturation step at 94◦C for 2 min, followed 



  

by 45 cycles at 92◦C for 30 s, and annealing temperature for 30 s and an extension at 

72◦C for 30 s. A final extension step of 72◦C for 5 min was also included. PCR 

products were purified and sequenced as above. See Table S3 for details. 

 

2.5. Phylogeny Reconstruction 

Two datasets were analysed: 1) mitogenomes and 2) concatenated mtDNA 

and nuDNA loci. For the mitogenome trees, extending the phylogeny published 

earlier (Moura et al., 2013), our novel mitogenomes were aligned with database 

mitogenomes (see Table S2) using the MUSCLE algorithm (Edgar, 2004) as 

implemented in Geneious.  For the combined mtDNA and nuclear locus phylogenies, 

each nuDNA locus was phased using the PHASE algorithm (Stephens and Donnelly, 

2003; Stephens et al., 2001) as implemented in DnaSP v5 (Librado and Rozas, 2009). 

As it was reasonable to assume no linkage between these different nuclear loci, they 

were concatenated randomly for each individual. Sequences of mtDNA for each 

individual were assigned to their respective nuDNA haplotypes and concatenated 

together. Where mitogenome sequences were available from Moura et al., (2013), 

homologous mtDNA regions were excised and included in the combined nuDNA 

(1,467 bp) and mtDNA (4,301bp) phylogeny (see below and Table S2). Dusky 

dolphin (Lagenorhycnhus obscurus) sequences, available from GenBank, were used 

as an outgroup (Table S2). All sequences were aligned using the MUSCLE algorithm 

(Edgar, 2004) as implemented in Geneious. 

MrBayes v. 3.2.2 (Huelsenbeck and Ronquist, 2001) was implemented online 

using the CIPRES Scientific Gateway v. 3.3 (Miller et al., 2010) to estimate separate 

phylogenies for the mitogenome dataset and the concatenated mtDNA/nuDNA 

dataset. Following Moura et al., (2013), four independent MCMC were run for 



  

22,000,000 iterations with a burn-in period of 2,200,000 iterations and a sampling 

frequency of 4,000 iterations. Three of the four chains were heated and the analysis 

was run twice. Convergence was confirmed through examination of various 

diagnostic outputs, particularly the ESS (Effective Sample Size) and PSRF (Potential 

Scale Reduction Factor) values. All ESS values were greater than 100 (minimum 

values ranged from 1741.93 - 4501.00) and all PSRF values approached one, 

indicative of convergence and that a sufficient number of generations had been 

implemented. The best partitioning scheme was inferred using the ‘greedy’ algorithm 

as implemented in PartitionFinder v. 1.0.1 (Lanfear et al., 2012; 2014) considering the 

evolutionary models available to MrBayes. Substitution model and partitioning 

selection was carried out using the Bayesian Information Criterion (BIC) metric. 

Partitioning schemes are shown in Table S4.   

 A maximum likelihood (ML) phylogenetic tree was generated for both the 

mitogenome and concatenated mtDNA/nuDNA datasets using RaxML v. 8.0.24 

(Stamatakis 2014) as implemented on CIPRES. The alignments were partitioned 

following the best partitioning scheme identified in PartitionFinder considering the 

evolutionary models available to RaxML. The best supported model was GTR 

(general-time-reversible) with gamma substitution rate hetereogeneity (see Table S4) 

and this was applied across all partitions with individual alpha-shape parameters, 

GTR-rates, and empirical base frequencies optimized for each partition during 

analysis. Bootstrap node support values were generated over 5,000 iterations. 

 

2.6. Congruence Between mtDNA and nuDNA Markers 

To examine congruence between the mtDNA and nuDNA markers, partitioned 

Bremer support indices (PBSIs) (Baker and DeSalle, 1997) were calculated for each 



  

node in a phylogeny generated from the concatenated mtDNA/nuDNA dataset in 

PAUP* v. 4.0b10 (Swofford, 2011).  PBSIs are a measure of each locus’ contribution 

to the estimated topology, whereby positive values indicate support for a node and 

negative values indicate the contrary in a combined analysis (Baker et al., 1998). The 

sum of all PBSIs at a node is equal to the total Bremer support value for that node 

(Baker et al., 1998). A heuristic maximum parsimony analysis was performed with 

Tree-Bisection-Reconnection branch swapping and 1,000 random-addition-sequence 

replications. The maximum number of saved trees ‘maxtrees’ was set to automatically 

increase by 100. Node support was obtained from 500 bootstrap replicates. Outgroups 

were defined as dusky dolphin and harbour porpoise using sequences available from 

GenBank (Table S2). All characters were unordered and equally weighted and a strict 

consensus phylogeny was generated from the tree output. This phylogeny was used to 

generate a PAUP* command file which was subsequently run in TreeRot v. 3 

(Sorenson and Franzosa, 2007). PBSI values were parsed from the output in TreeRot 

and plotted on a 50% majority-rule consensus phylogeny based on the heuristic 

analysis. 

 

2.7. Reconstruction of Ancestral Distributions 

To reconstruct the biogeographic state of ancestral nodes, statistical dispersal-

vicariance analysis (S-DIVA; Ronquist, 1997) was implemented in RASP v.2.2 (Yu 

et al., 2010). We randomly sampled 10,000 trees from a Bayesian phylogenetic 

Markov Chain Monte Carlo (MCMC) analysis, generated from a mitogenome 

alignment including all Tursiops individuals and a rough-toothed dolphin (Steno 

bredanensis; Accession Number JF339982) as outgroup. S-DIVA analysis was run on 

all trees, and results were plotted on a majority-rule consensus tree, generated from 



  

the MCMC output in RASP. Sampling locations were used to provide populations 

with unique distributions (see Fig. 1). Following Moura et al., (2013), a further 

distinction was made between coastal vs pelagic ecotypes. Both the Australasian T. 

aduncus (including individuals from China) and the Burrunan dolphin T. australis 

were considered as occupying Australasia. The maximum number of areas considered 

for each node was constrained to four in order to limit the number of possible 

distribution regions assigned to ancestral nodes. This is because optimization of 

ancestral areas becomes less reliable as we approach the root node (Ronquist, 1996). 

The outgroup was assigned a null distribution by using a location unique to it.  

 A Bayesian Binary MCMC (BBM) analysis was also performed in RASP 

using the same dataset. A null root distribution was assigned to the outgroup and a 

maximum of four areas for each node was configured. The BBM analysis was run for 

5,000,000 iterations with a burn-in of 5,000. The sampling frequency was set to 100, 

and 10 chains were run with a temperature of 0.1. The Fixed Jukes-Cantor model for 

state frequencies was applied with the gamma shape parameter for among-site rate 

variation. The analysis was run twice to check for convergence. Both S-DIVA and 

BBM analyses were repeated on a Bayesian phylogeny derived from the concatenated 

mtDNA and nuDNA dataset. 

 

2.8. Estimates of Divergence Dates using Mitogenomic Data 

Divergence dates were estimated from the mitogenome dataset using a 

partitioned analysis using BEAST v.1.8 (Drummond and Rambaut, 2007). Eight 

partitions were identified in the data (see Table S4 for details and evolutionary 

models). Using a very similar dataset, Moura et al., (2013) performed rigorous model 

testing using different tree priors (including coalescent priors), different clocks and 



  

different calibration points (and associated priors). The model that performed 

optimally, based on Bayes factors, considered a Yule Process tree prior, an 

exponential relaxed clock and only a biogeographic calibration point, defined 

according to the opening of the Bosphorous Strait. However, this model resulted in 

divergence dates that were inconsistent with older divergence times reported in other 

studies and the fossil record (Moura et al., 2013). Similarly, models considering only 

fossil calibrations resulted in divergence times that were too old. The model that 

Moura et al., (2013) considered the best was a ‘total evidence’ model, which 

performed well (based on Bayes factors) but also provided inference that was 

consistent with geological data and published mutation rates.   

Therefore, in light of the more extensive model testing performed in Moura et 

al., (2013) we only consider three of their models (see Table S5) to determine 

whether our inference was different to that reported in Moura et al., (2013). We 

consider: 1) the best, ‘total evidence’, model, 2) the most optimal model (which only 

considers biogeographic calibration nodes) and 3) a model which considers only fossil 

calibration nodes.  

For all models, the initial tree was generated at random, the exponential 

distribution of mutations model was used for the uncorrelated relaxed clock model 

and the tree prior followed a Yule branching model (following Moura et al., 2013). 

For models 1 and 2, the two terminal clades including Eastern Mediterranean and 

Black Sea groups (BSEM) were each constrained to monophyly with the same time to 

most recent common ancestor (TMRCA) priors. The TMRCA priors for these nodes 

were given a uniform distribution between 3 and 10 Ka, consistent with the opening 

of the Bosphorous Strait (see Moura et al., 2013). For models 1 and 3, two fossil 

calibration points were also used; the TMRCA for Delphinoidea (McGowen et al., 



  

2009; Steeman et al., 2009; Xiong et al., 2009) and the TMRCA for the clade that 

includes all Tursiops species (Barnes, 1990; Fitzgerald, 2005). The ancestor to 

Delphinoidea was defined by constraining the clade that includes Monodontidae and 

Delphinidae to monophyly, and the Tursiops ancestor was defined by constraining the 

clade that included all Tursiops, and other delphinids nested within that group, to 

monophyly. Normal distributions were assigned to both fossil TMRCA priors, with 

means of 10 Ma for the Delphinoidea ancestor and 5 Ma for the Tursiops ancestor, 

each with a standard deviation of 1.5 Ma (see Table S5).  

For all models, MCMC analyses were run with 150 million iterations with 

10% burn-in, sampling every 5,000 generations. Convergence was confirmed by 

examining the posterior probability distributions of parameters from the different runs 

in TRACER v.1.6 (Rambaut et al., 2014). ESS values for most parameters exceeded 

200 for individual runs, suggesting an appropriate number of iterations had been 

performed. All ESS values exceeded 200 when individual runs were combined in 

LogCombiner v. 1.7.5 (Drummond and Rambaut, 2007). Trees from the different runs 

were similarly combined and resampled at a lower frequency of 60,000 runs, yielding 

9,000 trees, for each model.  These trees were summarised in TreeAnnotator v.1.7.5 

(Drummond and Rambaut, 2007).  

Models were compared using stepping-stone sampling (Xie et al., 2011), 

which is the most reliable means available of estimating marginal likelihoods for 

model comparison (Baele et al., 2013). For each model, four independent runs were 

performed with 100 power-posteriors run for 1,000,000 iterations. Stepping-stone 

sampling was then used to estimate the log marginal likelihoods from the combined 

outputs (Baele et al., 2012; 2013). Log Bayes factors were generated from the log 



  

marginal likelihoods for model comparison. To check log marginal likelihoods were 

converging, the runs were carried out again for longer (2,000,000 iterations). 

 

3. Results 

3.1. Phylogenetic Reconstructions 

 The Bayesian (Fig. 2 - 3) and ML (Fig. S1 - S2) phylogenies showed similar 

topologies for each dataset, and phylogenies generated from the different datasets 

(concatenated mtDNA/nuDNA vs mitogenomes) also had similar topologies. The 

maximum parsimony tree for the mtDNA/nuDNA dataset also has similar topology 

(see Fig. 4). In the combined mtDNA and nDNA phylogenies, mtDNA provided the 

stronger inference (Fig.s 4, S4, S5).  Comparing lineages, divergence of the new T. 

aduncus lineage from the Australasian lineage (node ‘d’ in Fig. 4) is 1.79% and from 

the holotype lineage is 2.12% (node ‘c’). The holotype lineage and Australasian 

lineage diverge by 2.04% (node ‘b’). 

The values for key nodes from the concatenated mtDNA/nuDNA phylogeny 

PBSIs are presented in Fig. 4.  The majority of loci were consistent in their node 

support, and where not, PBSI values were > - 0.2 (Fig. 4). There were four and ten 

segregating sites for Actin and α-Lactalbumin, respectively, and PBSIs ranged 

between -0.14 and 2.9 for these loci. The mtDNA loci generally showed stronger 

support for nodes (up to a PBSI value of 22.8 for the cytochrome-b locus at node ‘a’; 

see Fig. S4), though there was some positive support from nuclear loci as well across 

the tree (Fig. 4, S5). Both nuDNA loci supported the nodes between T. australis and 

the broader Tursiops lineage (node ‘a’), between the T. aduncus and T. truncatus 

lineages (node ‘b’), and between the T. aduncus holotype lineage and the broader T. 

aduncus lineage (node c). Where PBSI values were low, there were only slight 



  

deviations from a PBSI = 0 (min = -0.14), indicating that all loci were either 

congruent or uninformative in their support for key divergence events across the 

Tursiops lineage. 

 

3.2. Reconstruction of Ancestral Distributions 

For the mitogenome tree the biogeographic distribution of the ancestor to T. 

aduncus and T. truncatus (Node 157, Fig. 5a) is unresolved based on the S-DIVA 

analysis, however, the BBM analysis suggests Australasia as most likely (55.97%) 

(Node 157, Fig. 5b). The origin of the T. aduncus lineage (Node 109) is also 

unresolved in the S-DIVA analysis (Fig. 5a), however again the BBM analysis (Fig. 

5b) suggests Australasia as most likely (47.47%). The S-DIVA analysis strongly 

indicates that the ancestral origin of the Australasian and Arabian Sea lineages (Node 

108) is Australasia/Pakistan (100% support) (Fig. 5a) while the BBM analysis 

indicates an Australasian origin (77.59% support) (Fig. 5b). Although the BBM 

analysis does not distinguish between dispersal and vicariance for any of the key 

nodes, the S-DIVA analysis indicates that both the node separating the Australasian 

and holotype lineages (node 109) and the node separating the Australasian and 

Arabian Sea lineages (node 108) were likely vicariant events. 

 In reconstructions generated from the concatenated mtDNA-nuDNA 

sequences, the S-DIVA (Fig. S3a) and BBM (Fig. S3b) results are largely congruent 

with those derived from the mitogenome dataset (Fig. 5). An Australasian origin for 

the ancestor to all extant Tursiops species and ecotypes is supported. Furthermore, an 

Australasian distribution is supported for the ancestors common to all extant T. 

aduncus (Nodes 108 and 109) and the ancestor to T. aduncus and T. truncatus (Node 

157). BBM reconstructions using the concatenated mtDNA-nuDNA phylogeny 



  

support the hypothesis that T. truncatus ancestors were a coastal ecotype.  Nodes 108 

and 109 are again supported as vicariance events by S-DIVA in this tree. 

 

3.3. Estimates of Divergence Dates using Mitogenomic Data 

Inferred node dates for the ‘total evidence’ model (model 1) were congruent 

with those estimated in Moura et al., (2013) (see Fig. 6 and Table S6). Within T. 

aduncus, the holotype lineage diverged from other T. aduncus ~342 Ka (95% HPD: 

143, 630 Ka) and divergence of the Australasian and Arabian Sea lineages was 

estimated to have occurred ~ 261 Ka (95% HPD: 111, 509). Comparison of the three 

models using log Bayes factors suggested that model 1, which was the Moura et al. 

(2013) ‘total evidence’ model that included both fossil and biogeographic 

calibrations, outperformed the others (see Table S7). Our use of stepping-stone 

sampling to estimate log marginal likelihoods (distinct from Moura et al. 2013), has 

been suggested to be the most robust method (Baele et al., 2013).  

 

4. Discussion 

During the Pleistocene, the effects of climate change on sea level and 

oceanographic properties were substantial across the Indo-Pacific (Kassler, 1973; 

Fontugne and Duplessy, 1986; Shackleton, 1987; Wang et al., 1999a; Almogi-Labin 

et al., 2000; Voris, 2000; Sun et al., 2003; Bailey, 2009; Gaither and Rocha, 2013). 

The contemporary oceanography in the Indian Ocean is also particularly 

heterogeneous, harbouring potential environmental breaks (discontinuities) (e.g. 

Mendez et al., 2011) and therefore opportunities for resource polymorphisms to 

develop (Skúlason and Smith, 1995; Hoelzel, 1998b). These factors are likely to 

contribute to population and taxonomic structure across various marine taxa in the 



  

region, e.g. reef fish (Bay et al., 2004; Gaither et al., 2011; Hubert et al., 2012), 

gastropods (Crandall et al., 2008), sea stars (Williams and Benzie, 1998) and 

cetaceans (Jefferson and Van Waerebeek, 2002, 2004; Mendez et al., 2011, 2013; 

Pomilla et al., 2014). 

 Using samples obtained from the northwest Indian Ocean, we provide 

evidence for a new lineage of T. aduncus that is closely related to the Australasian T. 

aduncus lineage. The mtDNA/nuDNA phylogeny, where sample representation from 

the region is greatest, shows that the new lineage (hereafter referred to as the Arabian 

Sea lineage) can be found off Oman, Pakistan and India (Fig. 3 and Fig. S2). We also 

confirm the presence of T. truncatus among samples collected in India and Oman, and 

show that they group with the broader pelagic and European coastal populations, 

suggesting incomplete lineage sorting.  Reconstruction of ancestral biogeography 

revealed Australasia as the most likely origin for several Tursiops lineages within the 

lower Pleistocene (as reported previously by Moura et al., 2013). Here we show that 

the holotype T. aduncus lineage diverged from other T. aduncus ~342 Ka (95% HPD: 

143, 630 Ka) and the Australasian and Arabian Sea lineages diverged ~261 Ka (95% 

HPD: 111, 509). While we cannot confirm whether these occurred during glacials or 

interglacials, due to large credible intervals, the relative ~100 Ka periodicity of 

divergence events is consistent with glacial oscillations (Gildor and Tziperman, 2000; 

Rohling et al., 2014). From this, it seems apparent that events in Australasia during 

the Pleistocene were important in driving multiple divergence events in Tursiops, and 

possibly other closely related delphinids in the region (e.g. Mendez et al., 2013). 

The range of the newly described Arabian Sea lineage evidently overlaps with 

that of the holotype lineage, as both are found in Oman and India, which is suggestive 

of secondary contact or sympatric/paraptric divergence in the northwest Indian Ocean. 



  

In order to explain the presence of three distinct T. aduncus lineages in the Indo-

Pacific, we need to consider two systems: one driving multiple allopatric divergence 

events in Australasia followed by recolonisations, and the other facilitating sympatric 

divergence and maintenance of reproductive isolation in the northwest Indian Ocean.  

During glacial periods, exposure of the Sunda and Sahul shelves (Voris, 2000) in 

Australasia caused the contraction of suitable habitat between the eastern Indian 

Ocean and the western Pacific (Gaither and Rocha, 2013), establishing the conditions 

for allopatric divergence, impeding gene flow between once adjacent populations. 

Various studies have implicated this barrier as a factor promoting marine species 

diversity in that part of the world (e.g. Bay et al., 2004; Gaither et al., 2011; Hubert et 

al., 2012; Gaither and Rocha, 2013).   

 The nature of a putative barrier and a divergence process in the northwest 

Indian Ocean is less clear. There is some evidence to suggest that the Sea of Oman 

coastline could provide a barrier off Oman (see Baldwin et al., 2004). However, 

individuals that group with the holotype lineage have been found either side of this 

barrier, in the Arabian Gulf and Arabian Sea (Gray, 2016), so present day habitat 

differences between the Arabian Sea and Sea of Oman coasts are, at least, not a strict 

barrier off Oman. The distributional overlap between the holotype and Arabian Sea 

lineages could be construed as secondary contact between lineages that diverged in 

allopatry following the recent disappearance of a historic barrier.  Palaeoclimatic and 

palaeoproductivity data suggest there was great variability in the monsoon systems 

during the Pleistocene. In contrast to today, the northeast and East Asian monsoons 

intensified and were the dominant feature during certain glacial events, while the 

southwest monsoons weakened (Fontugne and Duplessy, 1986; Wang et al., 1999a; 

Almogi-Labin et al., 2000; Sun et al., 2003). These changes may have altered the 



  

distributions of available prey and habitat, creating an ecological barrier in the 

northwest Indian Ocean.  

 Alternatively, divergence may have occurred in sympatry driven by 

environmental heterogeneity and associated discontinuities in the region, perhaps 

resulting in local adaptation through the acquisition of resource polymorphisms (such 

as foraging specialisations; Skúlason and Smith 1995; Hoelzel 1998b).  This process 

may also continue to reinforce lineages that diverged in allopatry and are currently in 

secondary contact (see above). Briggs and Bowen (2012) delineate marine 

biogeographic provinces based on fish endemism and show the region from the 

central Indian Ocean to the eastern limits of the Western Pacific to be a separate 

province from the western Indian Ocean. These differences in fish species 

assemblages may be indicative of different prey compositions available to the 

different T. aduncus lineages occupying them. 

 The processes discussed above (Fig. 7a) imply that the Arabian Sea lineage is 

more closely related to the holotype lineage than to the Australasian lineage, which is 

at least superficially incongruent with the phylogeny estimated here. However, during 

the interglacial that followed the first divergence event (~342 Ka) more introgression 

may have occurred between populations experiencing secondary contact across the 

Indo-Pacific boundary than across the putative barrier in the northwest Indian Ocean, 

resulting in the Arabian Sea lineage having a closer phylogenetic affinity to the 

Australasian lineage than to the holotype lineage. An alternative process, whereby 

populations in the east displaced those in the west during interglacial periods (see Fig. 

7b), could also explain the phylogenetic pattern. However, to the extent that the 

exhibition of habitat preferences and site fidelity (as is the tendency for this species; 

e.g. Gross et al., 2009; Moura et al., 2013) was also an ancestral trait, this mechanism 



  

seems less credible.  Given the recent divergence in these lineages, it is important to 

also note that the tree topology may not reflect the true relationships due to 

incomplete lineage sorting (especially for inference dominated by mtDNA data). 

 It is interesting to note that Sousa spp., a closely related delphinid that shares 

coastal habitat with T. aduncus (Wang and Yang, 2009), shows a similar 

phylogeographic pattern, with three putative lineages across the Indian Ocean 

(Mendez et al., 2013). Jefferson and Van Waerebeek (2002) propose a similar process 

for the divergence of the common dolphin D. capensis tropicalis, which also occurs in 

waters off the northwest and northern Indian Ocean.  

 Being a coastal cetacean, T. aduncus is under particular threat in the northwest 

Indian Ocean from an expanding fisheries industry (Salm et al., 1993; IWC, 1999; 

Collins et al., 2002; Anderson, 2014), pollution (Preen, 1991; Freije, 2015), and 

habitat degradation (IWC, 1999; Baldwin et al., 2004). Although there is national and 

international legislation in place across much of the region to prevent hunting/trade of 

dolphins (e.g. IWC, CITES), there are no management strategies currently in place to 

address indirect impacts on dolphin populations (Ponnampalam, 2009). The 

identification of a previously unrecognized, monophyletic lineage in the northern 

Indian Ocean (the Arabian Sea lineage) is an important step towards resolving 

bottlenose dolphin taxonomy in the region (IWC, 1999; Reeves et al., 2004; IWC, 

2016), and will have important conservation implications. Especially important is the 

fact that a minority of samples collected off Oman and off India fall into two different 

genetic lineages of T. aduncus, which implies some degree of range overlap across the 

Arabian Sea and Sea of Oman, and a need to manage mixed assemblages.   

  

5. Conclusions 



  

As outlined above, the Pleistocene altered the spatio-temporal distribution of 

available habitats, and the taxa that occupied them, such that populations could 

differentiate by vicariance (Hofreiter and Stewart, 2009; Stewart et al., 2010). In the 

marine environment, variation in the Asian monsoon systems during the Pleistocene 

may have driven phylogenetic structure in regional marine taxa, such as the spiny 

lobster, Panulirus homarus (Pollock, 1993). Exposure of a land bridge in Australasia, 

during low sea level stands, formed a physical barrier between the Indian and Pacific 

Oceans. This barrier has been implicated in the phylogeographic patterns observed in 

several reef fish species (Gaither and Rocha, 2013), such as the peacock grouper, 

Cephalopholis argus (Gaither et al., 2011). In the northern Indian Ocean, higher 

turbidite deposits from the Indus delta during glacial periods suggest the environment 

may have been particularly turbid (von Rad and Tahir, 1997). River deltas in the 

region, such as the Ganges and Indus, may prove credible candidates for barriers to 

dispersal. For example, the Amazon delta has been implicated in the phylogeographic 

pattern exhibited in several Atlantic reef fish (Rocha et al., 2002; Floeter et al., 2008). 

Here we show that the distribution and timing of differentiation within the genus 

Tursiops, particularly within the T. aduncus lineage which relies on coastal habitat, 

could be consistent with these same processes, and reveal a newly discovered 

evolutionary significant unit within this radiation.   
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Figure Captions 

 

Fig1_Map_FINAL.pdf [Figure]  

Fig. 1 a) Sample locations from worldwide populations of bottlenose dolphins 

(Tursiops spp.). Tt = Tursiops truncatus; Ta = Tursiops aduncus; GC = Gulf of 

California; WNAC = northwest Atlantic (coastal ecotype); WNAP = northwest 

Atlantic (pelagic ecotype); SCO = Scotland; EMED = eastern Mediterranean; BSEA 

= Black Sea; OM = Oman; PAK = Pakistan; IND = India; SA = South Africa; SABD 

= Burrunan dolphin, T. australis; AUS = Australasian Indo-Pacific bottlenose 

dolphin; CHINA = Australasia (China); Rectangle delineates study area. b) 

Approximate locations of novel samples analysed in our study.  Filled circles = 

known sample locations; Open circles = unknown sample locations from respective 

country; numbers = sample numbers associated with each circle.  Indian samples were 

collected within the following grid cell: 7°15' 59.2'' N - 62° 38' 53.61'' E to 32° 59' 

13.54'' N - 88° 17' 31.53'' E. 

 

Fig2_Bayesian_Phylogeny_Mtgenome.pdf [Figure]  

Fig. 2 Bayesian phylogeny inferred from the mitogenome dataset using MrBayes v. 

3.2.2 (Huelsenbeck & Ronquist 2001). Note that posterior probabilities less than 1 are 

shown at respective nodes, and that nodes without a value shown all have the value of 

1. Scale bar=substitutions/site. 

 

Fig3_Bayesian_Phylogeny_mtDNA_nuDNA.pdf [Figure]  

Fig. 3 Bayesian inferred phylogeny generated from concatenated mtDNA/nuDNA 

dataset. Note that posterior probabilities less than 1 are shown at respective nodes, 

and that nodes without a value shown all have the value of 1. Proportional 

transformation applied to the branch lengths to emphasise tree topology. 

 

Fig4_Max_Parsimony_TreeRot.pdf [Figure]  

Fig. 4 Maximum parsimony tree and partitioned Bremer support indices for different 

loci. Mitochondrial markers: ND6, Cytochrome-b, D-loop, 12SrRNA and 16SrRNA. 

Nuclear DNA markers: Acting intron 1 and α-Lactalbumin intron 2.  Nodes and 

charts: a) divergence of T. australis from other Tursiops species; b) divergence of T. 

truncatus and T. aduncus lineages; c) divergence of T. aduncus holotype lineage from 

other T. aduncus lineages; d) divergence of Australasian and novel T. aduncus 

lineages. Bootstrap support values less than 100 are indicated at respective nodes, and 

all other nodes have a value of 100.   

 

Fig5_Mitogenomes_S-DIVA_BBM.pdf [Figure]  

Fig 5. a) Statistical Dispersal Vicariance Analysis (S-DIVA) and b) Bayesian Binary 

MCMC Analysis (BBM) for mitogenome dataset as implemented in RASP v.2.2 (Yu 

et al. 2010). Nodes of interest are indicated by a small black circle with a unique 

number. Colours and letters correspond to the locations of the various populations, 

ecotypes and species represented in the tree. Black bars = divergence by dispersal; 

white bars=divergence by vicariance; grey bars = divergence by both dispersal and 

vicariance. Under each analysis, each node of interest has its own table showing the 

likely biogeographic reconstructions. 

 

Fig6_BEAST_Tree.pdf [Figure]  



  

Fig. 6 Estimation of divergence dates in BEAST v.1.8 (Drummond & Rambaut 

2007). Divergence times indicated next to respective nodes. Grey bar indicates 95% 

highest posterior densities. Branch lengths are in Ka units according to the scale bar. 

 

Fig7_Putative_Mechanism.pdf [Figure]  

Fig. 7 Two proposed processes; a and b, for divergence events within T. aduncus. 

Black arrows indicate the direction of movement of dolphins. White arrow indicates 

the location of a putative physical or ecological barrier in the northwest Indian Ocean. 

The timing of movement across this barrier, illustrated during the interglacial in 

panels 3a and 3b, is unknown. Note the gradient in colour across the transitional zone 

between the Holotype and the Arabian Sea lineages to illustrate, approximately, 

where they occur in sympatry. 
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IND-Ta

IND-Ta
IND-Ta

IND-Ta
IND-Ta

IND-Ta

IND-Ta

IND-Ta
IND-Ta

IND-Ta
IND-Ta

IND-Ta
IND-Ta

IND-Ta
IND-Ta

PAK-Ta
PAK-Ta

Common bottlenose dolphin, 
T. truncatus

Holotype lineage,
T. aduncus

Australasian lineage,
T. aduncus

Novel lineage, Arabian Sea
T. aduncus

Phocoena phocoena

d

c

b

a

91

69

63

96

63

73

89

85

66

62

97

61

98

96

93

97

68

77

81

99

98

93



  

158

157

156

109

108

155

154
153

152

137

125

136
135

151
150

149

Burrunan dolphin, 
Tursiops australis

Steno bredanensis

Holotype lineage,
Tursiops aduncus

Novel lineage,
Tursiops aduncus

Australasian lineage,
Tursiops aduncus

Common bottlenose dolphin, 
Tursiops truncatus

Biogeographic locations: Divergence event:

Node 108

1AB:

Node 151

EG: 0.3976
E: 0.3324

EFG: 0.27

Node 109

ABC: 0.3333
BC: 0.3333
AC: 0.3333

Node 152

G: 0.1482
EGH: 0.1461

GH: 0.1437
E: 0.1206

EG: 0.12
EH: 0.1177

EFGH: 0.1018
FGH: 0.1017

*: 0.0002

Node 125

FG: 0.3437
EFG: 0.3282
EG: 0.3282

G:
EGH:

EG:
GH:

*:

Node 153

0.3508
0.214
0.2133
0.2052
0.0167

Node 135

GH: 1

Node 154

GI: 0.2772
EGI: 0.1475
GHI: 0.1463

EGHI: 0.1441
EI: 0.1441

EHI: 0.1409

Node 136

EGH: 0.3331
EG: 0.3318
EH: 0.3312

*: 0.0039

Node 155

G: 0.5724
E: 0.4276

Node 137

H: 0.2615
GH: 0.2604

EGH: 0.2604
EH: 0.2177

Node 156

GJ: 0.5724
EJ: 0.4276

Node 149

EF: 1

Node 157

ACG: 0.0418
*: 0.9508

Node 150

EG: 0.4738
FG: 0.3496

EFG: 0.1766

Node 158

BCG: 0.076
ABG: 0.076

ABCG: 0.076
ABC: 0.076

ABCJ: 0.0618
BCGJ: 0.0618
ABGJ: 0.0618

BGJ: 0.0618
BCJ: 0.0618
ABJ: 0.0618

ABCE: 0.0596
BCE: 0.0596
ABE: 0.0596

*: 0.1464

Node 108

B: 0.7759
AB: 0.0943

A: 0.0716
*: 0.0582

Node 109

B: 0.4727
C: 0.3181

BC: 0.1223
*: 0.0869

Node 125

G: 0.8358
EG: 0.0601

E: 0.0511
*: 0.0530

Node 135

H: 0.5771
GH: 0.1803

G: 0.1393
*: 0.1033

Node 136

E: 0.4230
H: 0.2195

EH: 0.2076
G: 0.0504
*: 0.0995

Node 137

H: 0.4384
E: 0.2306

EH: 0.1893
G: 0.0528
*: 0.0889

Node 149

E: 0.7475
EF: 0.1062

F: 0.0583
*: 0.0880

Node 150

E: 0.3902
G: 0.3069

EG: 0.2705
*: 0.0324

Node 151

E: 0.7037
EG: 0.1993

G: 0.0794
*: 0.0176

Node 152

E: 0.4852
G: 0.2026

EG: 0.1682
H: 0.0544
*: 0.0896

Node 154

G: 0.6970
E: 0.0832
I: 0.0791

EG: 0.0524
*: 0.0883

Node 156

G: 0.3711
J: 0.3711

GJ: 0.0645
B: 0.0532
*: 0.1401

Node 157

B: 0.5597
G: 0.1249
C: 0.1072
J: 0.0541
*: 0.1541

Node 153

G: 0.7375
EG: 0.1380

E: 0.0811
*: 0.0434

Node 155

G: 0.7984
E: 0.0632
*: 0.1384

Node 158

B: 0.8661
K: 0.0540
*: 0.0799

b) Bayesian Binary MCMC (BBM)

a) Statistical Dispersal Vicariance (S-DIVA)



  

Burrunan dolphin
Tursiops australis

Holotype lineage
Tursiops aduncus

Novel lineage
Tursiops aduncus

Australasian lineage
Tursiops aduncus

Common bottlenose dolphin
Tursiops truncatus

Tursiops ancestor

Delphinoidea ancestor



  

a b
1.

2.

3.

4.

5.

Glacial

~342 Ka
Divergence of 
Holotype 
lineage.

Interglacial

Interglacial

Glacial

~261 Ka
Divergence of 
Arabian Sea 
and 
Australasian 
lineages.

Present

Arabian Sea lineage
Australasian Sea lineage

Holotype lineage Ancestral lineage 1
Ancestral lineage 2
Putative Arabian Sea lineage (unsampled regions)



  

Highlights 

 

 Discovery of a new lineage of Tursiops aduncus in the Indian Ocean. 

 Divergence times within Tursiops aducnus coincide with Pleistocene glacial 

periods. 

 Vicariance events in the northwest Indian Ocean and Australasia are proposed. 
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