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Abstract

RNA transcripts are the primary products of active genes in any living
organism, including many viruses. Their cellular destiny not only depends
on primary sequence signals, but can also be determined by RNA struc-
ture. Recent experimental evidence shows that many transcripts can be
assigned more than a single functional RNA structure throughout their
cellular life and that structure formation happens co-transcriptionally,
i.e. as the transcript is synthesised in the cell. Moreover, functional RNA
structures are not limited to non-coding transcripts, but can also feature
in coding transcripts.

The picture that now emerges is that RNA structures constitute an
additional layer of information that can be encoded in any RNA transcript
(and on top of other layers of information such as protein-context) in order
to exert a wide range of functional roles. Moreover, different encoded
RNA structures can be expressed at different stages of a transcript’s life
in order to alter the transcript’s behaviour depending on its actual cellular
context. Similar to the concept of alternative splicing for protein-coding
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genes, where a single transcript can yield different proteins depending on
cellular context, it is thus appropriate to propose the notion of alternative
RNA structure expression for any given transcript.

This review introduces several computational strategies that my group
developed to detect different aspects of RNA structure expression in vivo.
Two aspects are of particular interest to us: (1) RNA secondary structure
features that emerge during co-transcriptional folding and (2) functional
RNA structure features that are expressed at different times of a tran-
script’s life and potentially mutually exclusive.

Keywords:

RNA secondary structures, RNA structure prediction, co-transcriptional fold-
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1 Introduction

RNA sequences, or transcripts, are the primary products of all DNA genomes.
They and their functional products define the active state of a cell in a living
organism. Knowing them and understanding the mechanisms regulating their
expression is thus key to understanding cellular life and how it regulates (or
mis-regulates) itself.

Introducing the notion of alternative RINA structure expression

The need for taking co-transcriptional RNA structure formation into
account Almost all existing methods for RNA secondary structure predictions
ignore co-transcriptional structure formation and the influence it may have on
the predicted structures.

2 Computational strategies for investigating co-
transcriptional RNA structure formation in
VIVO0

In the following, the term “RNA secondary structure” will refer to a single set
of mutually compatible RNA structure features (e.g. helices) that can be made
or expressed by the underlying RNA sequence at the same time. During co-
transcriptional folding, a single RNA thus undergoes a time-ordered series of
different RNA secondary structures and a transcript with a known riboswitch
thus has at least two functional RNA secondary structures. The term “final
RNA secondary structure” will refer to the RNA secondary structure at the end
of a single co-transcriptional folding pathway (note that there may be several
potential pathways for any given transcript). The term “helix” will be used



to denote an RNA structure feature corresponding to a contiguous stretch of
base-paired nucleotides, i.e. without internal loops and bulges.

2.1 Goal 1: Predicting conserved transient and final RN A sec-
ondary structure features of co-transcriptional folding
pathways

Computational methods for predicting entire co-transcriptional folding path-
ways have started to emerge since the mid-1980s. These methods take a single
sequence as input and predict the folding kinetics of the emerging sequence as
function of simulated time (RNA folding pathway prediction methods). Their
raw output typically consists of a list of structural configurations encountered
during the simulated folding pathway. These methods typically work in a non-
deterministic way [1, 2, 3, 4, 5, 6, 7, 8], although exceptions exist [9], see table 1.
Different simulations for the same input sequence thus typically result in differ-
ent predicted folding pathways.

Folding pathway prediction methods model structural changes during the
kinetic folding pathway typically on the level of entire helices rather than indi-
vidual base-pairs. On extending the RNA sequence, corresponding randomised
structural changes are proposed (i.e. new helices are created or existing ones
destroyed). These changes are accepted with a probability which corresponds
to the theoretical rate of the corresponding . As the errors of these folding
pathway prediction methods are , stochastic simulation methods tend to have
a length limitation of around 200 nt. This constraint precludes the analysis of
many naturally occurring transcripts.

A more recent addition from 2008, KINWALKER [9], significantly extends
the length limitation from 200 nt to around 1000 nt by employing a deter-
ministic strategy to model distinct secondary structure configurations of the
co-transcriptional folding pathway. For this, it combines the repeated execution
of a deterministic free energy minimisation (MFE) algorithm with heuristic con-
siderations that judge the kinetic feasibility and speed of potential structural
transitions between two deterministically calculated structural configuration.
For a given input sequence, KINWALKER returns as output exactly one predicted
folding trajectory and the corresponding series of encountered RNA secondary
structures, whereas simulation-based methods typically yield different folding
pathways for multiple executions of the program for the same input sequence,
see table 2.

Conceptual limitations of folding pathway prediction programs:

e the length of input sequence limited to 200 nt or 1000 nt, in case of KIN-
WALKER

e the transcription speed is assumed to be constant

e any cis-interaction partners (proteins, ligands, RNAs) as well as their
potential effects on co-transcriptional folding are ignored.



Program algorithm pseudo max seq.

knots | length (nt)
KINWALKER deterministic (MFE structures) no 1000
KINEFOLD stochastic simulation (helices) yes 200
RNAKINETICS | stochastic simulation (helices) no 200

Table 1: Key features of the three investigated folding pathway predic-
tion methods. For all three methods, a transcription rate r can be specified
by the user for each individual input sequence. We use a simulation time of
t =2-L/r equal to twice the transcription time for an input sequence of length
L to allow the program to converge. To determine the number of simulated
trajectories for each input sequence of length L, we use a quadratic function of

L as recommended by the authors of KINEFOLD and RNAKINETICS.

Program raw output

KINWALKER list of struct. configurations over simulated time

[9] (one trajectory per input sequence)

KINEFOLD list of struct. configurations over simulated time

[5, 6, 7] (multiple trajectories per input sequence)
RNAKINETICS | aggregated data across all simulated trajectories

[1, 2, 3] (for each helix, probabilities over simulated time points)

Table 2: Type of predictions generated as raw output by the three

folding pathway prediction methods.



We recently presented the first systematic performance benchmark for fold-
ing pathway prediction methods for a non-redundant dataset of 32 sequences
from six functional RNA families and showed that homologous RNA sequences
not only fold into similar RNA structures, but also use similar co-transcriptional
folding pathways [10]. For this, we investigated and compared the performance
of three folding pathway prediction methods, RNAKINETICS [1, 2, 3], KIN-
WALKER [9] and KINEFOLD [5, 6, 7]. These methods are freely available and
representative of the different underlying algorithms being employed in the field,
see table 1 and table 2 for an overview of their key features.

The six functional RN A families which constitute our test set were selected to
comprise known final RNA secondary structure as well as known transient struc-
tural features, as we were keen to explore how well these could be predicted by
the different folding pathway prediction methods. The six functional RNA fam-
ilies are: (1) Levivirus maturation gene (Levivirus), (2) bacterial ribonuclease P
type A (RNase P Type A), (3) Hepatitis delta virus ribozyme (HDV ribozyme),
(4) Bacterial signal recognition particle 4.5S RNA (SRP 4.5S RNA), (5) Tryp-
tophan operon leader (Trp operon) and (6) S-adenosylmethionine riboswitch
(SAM riboswitch). We first compiled high-quality multiple-sequence alignment
for each of the six families and then extracted a total of 32 non-redundant se-
quences that constitute of test set, see table 3 for an overview of different quality
measures.

Step 1:

In order to predict evolutionarily conserved transient and final RNA secondary
structure features encountered during co-transcriptional folding pathways, we
first need to establish a high-quality alignment of multiple homologous RNA se-
quences. This alignment will later be used to map and compare the RNA struc-
ture features predicted for individual sequences. From this multiple-sequence
alignment, we first extract representative sequences to be used for individual
analysis with one of the folding pathway prediction methods.

General recommendations for high-quality alignments to be used for subse-
quent analysis with folding pathway prediction methods are:

e The primary sequences in the alignment have to extend up to the tran-
scription start site on the 5’ end. This is key for simulating co-transcriptional
folding pathways.

e The sequences in the alignment should have an average pairwise primary
sequence identity that is neither too low nor too high (ideally, between
50% and 85%) to best prepare for comparative analysis.

e The selected representative sequences have to have a good fit to the known
RNA structure features and the alignment quality within known struc-
tured regions ought to be high. Manual adjustments of the multiple-
sequence alignment can, for example, be made with the help of 4SALE [11].



e The quality of any sub-alignment between known structured regions has
to be sufficiently high, for example using MUSCLE [12] which is guided
by primary sequence conservation only.

Step 2:

Once a high-quality alignment has been established, several so-called represen-
tative sequences are extracted from it. The goal is to identify a sub-set of
sequences that are all (1) good representatives of the reference RNA secondary
structure encoded in the multiple-sequence alignment and (2) non-redundant in
terms of pairwise primary sequence identity. This can be achieved as follows:

e First, order all sequences in the alignment based on the quality of the
structural fit to the known reference structure, e.g. the number of consen-
sus base-pairs fitting the base-pairs of the known RNA secondary structure
and the number and type of gaps within structured regions (in particular,
one-sided versus two-sided gaps). From the sub-set of resulting sequences
with a good structural fit, select the top-scoring sequence as first repre-
sentative sequence.

e Continue selecting representative sequences from the structure-fit-ranked
list of sequences as long as the pairwise primary sequence identity with
respect to every already selected representative sequences is sufficiently
low. A decent lower threshold value for the maximum pairwise sequence
identity (max. PSI) between any two representative sequences from the
same multiple-sequence alignment is 50%. Values used in our study [10]
range from 55% to 85% depending on the overall level of primary sequence
conservation in each alignment and the desired target number of repre-
sentative sequences, see table 3 for details.

The above procedure yields a non-redundant set of representative sequences
for any given alignment. These representative sequences are used as input se-
quences for the subsequent analysis with folding pathway prediction methods
to detect evolutionarily conserved transient and final RNA secondary structure
features.

Step 3:

Once the set of representative sequences has been determined for a given align-
ment of homologous transcripts, each individual representative sequence is used
as input to one of the three folding pathway prediction methods. As table 1 and
table 2 explain, the three methods KINWALKER, KINEFOLD and RNAKINET-
1cs differ considerably in their underlying algorithms and type of raw output
predicted.

All three folding pathway prediction methods allow the user to specify a
(constant) transcription speed for each individual input sequence. This param-
eter is key for influencing the corresponding simulated co-transcriptional folding



alignment N R L cons. max. gaps TTL BPs canon. cov.
PSI BPs
Levivirus 7 4 158 0.645 0.80 0.154 1.181 54 0.939  0.302
RNase P Type A | 24 7 391 0.698 0.70 0.084 4.279 122 0.966 0.441
HDYV ribozyme 10 3 152 0.819 0.85 0.070 0.499 61 0.941  0.007
SRP 4.5S RNA 10 5 141 0.726 0.80 0.024 1.240 38 0.976  0.340
trp operon 10 5 107 0.694 0.80 0.068 1.253 29 0.969  0.195
SAM riboswitch 15 7 215 0.532 0.55 0.227 4.310 66 0.895  0.276

Table 3: Overview of different features and quality measures for the
six alignments [10]. N refers to the number of sequences in the alignment, R
to the respective number of representative sequences, L to the alignment length
(nt). The conservation (cons.) indicates the average pairwise primary sequence
conservation, max. PSI the maximum pairwise sequence identity (used for select-
ing representative sequences from the respective multiple-sequence alignment),
gaps the fraction of gaps and TTL the total tree length. BPs specifies the num-
ber of base-pairs and canon. BPs the fraction of canonical base-pairs within all
base-paired alignment columns. The covariation (cov.) ranges from -2 to +2
and measures the relative frequency of compensatory mutations that retain the
base-pairing ability within pairs of base-paired alignment columns. Its value is 0
when there is no variation in paired alignment columns, positive when they com-
prise compensatory mutations that retain the base-pairing ability and negative
when they contain invalid base-pairs.

pathways as a change of transcription speed can have a major impact on co-
transcriptional RNA secondary structure formation. This is because RNA struc-
ture formation can happen on the same time scale as transcription [13]. There
is ample experimental support that a change of transcription speed can yield
different RNA structure outcomes [14, 15, 16, 17, 18] and that it need not be
constant along the entire transcript (transcriptional pausing sites) [19, 20, 21].
The latter is an effect that none of the three folding pathway prediction methods
can currently model.

For our data sets, we choose different values for the transcription speed
depending on the evolutionary domain of each representative sequence [22], see
table 4.

For KINEFOLD and RNAKINETICS, we use a simulation time of t =2 L/r
equal to twice the transcription time for an input sequence of length L to allow
the program to converge. To determine the number of simulated trajectories
for each input sequence of length L, we use a quadratic function of L as recom-
mended by the authors of KINEFOLD and RNAKINETICS.

Step 4:

The previous step generates a range of raw output data for all individual rep-
resentative sequences. For each alignment, the predictions of each method for



alignment r [nt/s]
Levivirus 30.0
RNase P Type A 22.5
HDV ribozyme 20.0
SRP 4.5S RNA 22.5
trp operon 22.5
SAM riboswitch 75.0

Table 4: Overview of different values of transcription speed r for each
RNA family. These values are used as parameters for the three folding path-
way prediction methods. Note that for Levivirus, the speed corresponds to the
speed of replication of the positive RNA. Depending on the polymerase, the
transcription speed can range from 200 nt/s for phages, 20-80 nt/s for bacteria
to 10-20 nt/s for human pol II [22].

all representative sequences are then aggregated and converted into scores for
individual, predicted base-pairs. This is done as follows:

e KINWALKER As this method works in a deterministic manner and pre-
dicts a single co-transcriptional folding pathway for each representative
sequence, each predicted base-pair is assigned a score which is equal to
the fraction of representative sequences for which this base-pair was pre-
dicted as part of the structural features encountered during the predicted
co-transcriptional folding pathway. Based on our MCC-optimised proce-
dure for known structural features, see figure 2 in [10], we recommend a
cut-off value of 0.43 for these base-pair specific scores, i.e. any predicted
base-pair with a score below 0.43 is discarded.

e KINEFOLD This method employs stochastic simulations to predict individ-
ual co-transcriptional folding pathways. For each representative sequence,
we sample N folding pathways which depends quadratically on the length
L of the input sequence. For any predicted base-pair, we first calculate the
fraction of pathways that feature this base-pair. We then average this frac-
tion across all representative sequences of the same alignment to arrive at
the final score assigned to the predicted base-pair. The MCC-optimised
cut-off value we recommend for base-pairs predicted with KINEFOLD is
0.755, see figure 2 in [10] for details.

e RNAKINETICS The raw output of this methods already corresponds to a
summary of helices predicted during any of the simulated co-transcriptional
folding pathways. As for KINEFOLD, the number N of simulated pathways
depends quadratically on the length L of the input sequence. For each pre-
dicted helix, a probability value is specified for points in simulation time.
For a predicted base-pair, we first pick the maximum probability over
time as probability for that base-pair and then assign the average value
of these probabilities for all representative sequences as final score. The



MCC-optimised cut-off value we recommend for base-pairs predicted with
RNAKINETICS is 0.0082, see figure 2 in [10].

Prediction accuracy for known transient and final RNA secondary
structures

As table 5 shows, KINWALKER and KINEFOLD have an equally high Matthews’
correlation coefficient (MCC) of 0.676 and 0.656, respectively, for all known
transient and final structural features. The MCC is a combined measure of
the sensitivity and the specificity of the prediction, see the caption of table 5
for its definition. For KINWALKER, the high MCC value is due to equally high
values for the true positive rate (TPR) and the positive predictive value (PPV),
whereas these values are more unbalanced for KINEFOLD with a significantly
higher PPV (0.885) than TPR (0.501). RNAKINETICS has a markedly lower
overall MCC value of 0.263 which can be primarily attributed to significantly
lower values for the PPV, both for known transient and known final RNA struc-
ture features. These low values cannot be rescued by the comparatively high
values for the TPR. Typically, the TPR for known transient RNA structure fea-
tures is significantly lower than for known features of the final RNA secondary
structure, RNAKINETICS being the exception with a high TPR of 0.722 for
known transient features which is even high than the TPR of 0.652 for known
final structural features. As we showed in the original paper, see figure 2 in [10],
the performance values shown in table 5 are not sensitive to the precise choice
of cutoff values.

Our MCC-optimised cutoff values, see table table 5, can thus be viewed as
robust, general recommendation unless a dedicated data set of known structures
is available for training.

Summary

Using the computational pipeline described above, individual folding pathway
prediction methods can thus be used in combination with a comparative analysis
strategy to reliably predict evolutionarily conserved RNA secondary structure
features of co-transcriptional folding pathways. Due to conceptual constraints
of the folding pathway prediction methods, this strategy is currently limited to
transcripts of 200 nt length (1000 nt in case of KINWALKER).

Known transient structure features can be predicted with roughly the same
accuracy as structural features of the final RNA secondary structure. Further-
more, the prediction accuracy of the computational analysis pipeline is robust
with respect to the recommended, MCC-optimised cutoff values. When ded-
icated data sets with known RNA secondary structures are available, there is
potential to further improve the prediction accuracy by deriving dedicated cutoff
values. If desired, the specificity of the analysis can be further increased by com-
bining the predictions of more than a single folding pathway prediction method
to significantly increase the overall PPV while only slightly lowering the TPR,
see table 3 in [10] for details.



Program Known transient | Known final All known
Cutoff | TPR PPV ‘ TPR PPV ‘ TPR PPV MCC
KINWALKER 0.430 0.428 0.318 | 0.762 0.648 | 0.693 0.667 0.676
KINEFOLD 0.755 0.183 0.378 | 0.586 0.874 | 0.501 0.885 0.656
RNAKINETICS 0.0082 | 0.722 0.191 | 0.652 0.210 | 0.678 0.231 0.263

Table 5: Performance figures for known RNA structure features for
the three folding pathway predictionmethods [10]. Average true pos-
itive rate (TPR) and positive predictive value (PPV) for known transient
and known final RNA secondary structure features using the three folding
pathway prediction programs at MCC-optimised cutoff values optimised over
known features (Cutoff) for the three folding pathway prediction methods KiN-
WALKER, KINEFOLD, and RNAKINETICS. Matthews’ correlation coefficient
(MCCQ) is a measure of both sensitivity and specificity and is defined as MCC =
(TP-TN —FP-FN)/\/(TP+FP)-(TP+ FN) - (TN + FP)- (TN + FN).
TPR is a measurement of sensitivity on base-pair level, and is defined as
TPR = TP/(TP + FN). PPV is a measurement of specificity on base-pair
level, and is defined as PPV = 1 — (FP/(TP + FP)). See also figure 5 for
the ROC curve showing the TPR as function of the FPR for all three folding
pathway prediction methods.

2.2 Goal 2: Predicting novel, conserved RNNA secondary
structure features of co-transcriptional folding path-
ways

The computional pipeline described above for goal 1 gives a sense of the expected
prediction accuracy for known transient and final RNA secondary structure
features. One limitation of the above comparative analysis pipeline, however,
is that it can only be applied to rather short transcripts. In order to detect
RNA structure features that may play important functional roles during any
time of the RNA transcripts’ life in its cellular environment in transcripts of
arbitrary length, we require a technically and conceptually different approach.

We devised a computational prediction method called TRANSAT [23] in order
to address this situation. This method works in a comparative way by taking a
multiple-sequence alignment and a corresponding evolutionary tree linking the
sequences in the multiple-sequence alignment as input. It predicts as output
a set of evolutionarily conserved helices with calculated log-likelihood values
and corresponding estimated p-values. TRANSAT thus implicitly captures the
hypothesis that structural features that have been conserved during certain
evolutionary times (as specified by the input tree) are likely to be of functional
importance.

In devising TRANSAT, we deliberate avoided conceiving a method for pre-
dicting RNA secondary structures, i.e. sets of helices that could all be present
at one point in time. Instead, TRANSAT only aims to identify individual, evolu-
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tionarily conserved helices. By deliberately ignoring the grouping of predicted
helices into distinct RNA secondary structures and leaving the interpretation of
the raw TRANSAT predictions to the user, however, we gain the ability to:

e identify pseudo-knotted configurations of helices that most RNA secondary
structure prediction methods cannot identify

e not having to model the details the cellular environment (such as ion
concentrations, temperature, potential trans-interaction partners, tran-
scription speed and potential transcription pausing sites) and the influence
they may have on in vivo RNA structure formation. If any RNA structure
feature is conserved during evolution, TRANSAT will be able to identify it
irrespective of the cellular circumstances and molecular mechanisms that
lead to their conservation.

e find mutually exclusive helices such as those involved in the two distinct
structural configurations of riboswitches

e predict potential transient helices that may not be part of the final RNA sec-
ondary structure configuration, but may have distinct functional roles at
some time during the RNA transcripts’ life in the cell, e.g. by function-
ing as local RNA secondary structure features that regulate alternative
splicing via RNA editing [24] or as helices interacting with trans-acting
molecules during co-transcriptional folding in the cell [25].

e generate predictions without having to assume that any input sequence of
the input multiple-sequence alignment folds into a global RNA secondary
structure spanning the entire transcript. The latter is usually the implicit
assumption of any RNA secondary structure prediction method that is
based on the principle of free energy minimisation. These so-called MFE
methods cannot be used to identify regions devoid of conserved RNA struc-
ture features as they will aim to predict additional base-pairs in order to
lower the overall free energy of the predicted structure.

2.3 How TRANSAT works:

TRANSAT is a probabilistic method, both in terms of the underlying algorithms
and the predictions being made as output. It takes as input a multiple-sequence
alignment of homologous RNA sequences and a corresponding evolutionary tree.
This tree relates the sequences in the input alignment quantitatively in terms
of topology and branch distances.

In its first step, TRANSAT calculates potential helices for each individual, un-
gapped RNA sequence in the multiple-sequence alignment using a fast dynamic
programming procedure that depends quadratically on the sequence length.

In a second step, these sequence-specific helices are mapped onto the input
multiple-sequence alignment without altering the multiple-sequence alignment
itself. This results in a list of candidate helices along the alignment which
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can each be uniquely specified by a corresponding pair of base-paired outer
alignment columns z' and y' as well as a helix length L. Each candidate helix
along the alignment can thus be viewed as a list of 5-alignment columns, x =
(x',22,... 2%), that constitute the “left” arm of the helix, and a corresponding
list of consecutive 3’-alignment columns, y = (y%,...,y? y'), that constitute
the “right” arm of the helix. A candidate helix of length L thus forms base-
pairs between pairs of alignment columns starting with (x!,y') as the outer
base-pair up to (z%, y”) as the inner-most base-pair.

In the third step, TRANSAT calculates a log-likelihood score A(h) for each
candidate helix h along the alignment. For this, it computes the likelihood
P(%ywpaired) that the “left” alignment columns x are indeed base-paired
with the corresponding “right” alignment columns y as well as the likelihood
P(x’ywunpaired) that they are all unpaired. The first hypothesis is captured
by a probabilistic evolutionary model which spells out how pairs of base-paired
nucleotides evolve as function of evolutionary time. The second hypothesis
corresponds to a different probabilistic evolutionary model which specifies how
unpaired nucleotides evolve over time, see [23] for more details. Both likelihood
values are calculated using the Felsenstein algorithm [26]. For a given candi-
date helix h along the alignment, this algorithm takes the nucleotides observed
in the actual alignment columns of the multiple-sequence alignment (i.e. at time
t = now) and evolves them back in time along the input tree using the evolu-
tionary model of the respective hypothesis. The log-likelihood ratio assigned to
each candidate helix h along the alignment can then be expressed as

A(h) = log(P(xvy‘epaired)/P(xvy|9unpaired)) : 1/L

One key difference with respect to the usual way that these probabilistic
models of evolution are employed in the context of RNA secondary structure
prediction is that we interpret one-sided gaps within candidate pairs of align-
ment columns not as missing data, but explicitly penalise them by treating them
as non-consensus base-pairs. This correctly captures the observation that helices
evolve over time by acquiring or losing entire base-pairs and significantly con-
tributes to TRANSAT’s ability to correctly distinguish base-paired form unpaired
alignment columns.

In the fourth and last step of TRANSAT, each candidate helix h along the
alignment is assigned an estimated p-value. This quantifies the statistical sig-
nificance of the corresponding log-likelihood value A(h). This step addresses the
following issue. An input multiple-sequence alignment consisting primarily of
G and C nucleotides has a generally higher propensity to form spurious helices
than a multiple-sequence alignment with a different nucleotide, di-nucleotide
and gap composition. In order to be able to distinguish the different propensi-
ties of different input multiple-sequence alignment to form spurious helices, we
thus have to assign estimated p-values to the calculated log-likelihood values
A. These p-values then allow the user to rank predicted helices for a given
alignment and, more importantly, allow the ranking of helices deriving from
different alignments. P-values are estimated by first re-aligning the original
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multiple-sequence alignment using T-COFFEE [27]. The resulting alignment is
then carefully randomised by swapping entire alignment column within bins
of similar primary sequence conservation and gap composition [28]. Each ran-
domised multiple-sequence alignment is then assumed to no longer contain any
real helices. By default, TRANSAT generates 500 randomised versions for a given
input multiple-sequence alignment. The log-likelihood values of all candidate
helices “detected” in these randomised multiple-sequence alignment are then
aggregated to form a null-distribution of log-likelihood scores from which the
p-values of the log-likelihood values for the original multiple-sequence alignment
are derived, see pages 5 in [23] for more details.

2.4 Key features of TRANSAT and summary:

First, TRANSAT’s prediction accuracy is terms of sensitivity, PPV and FPR is
almost independent of the length of the input alignment, see figure 5 in [23]. For
an individual sequence, the number of potential bi-secondary RNA secondary
structures grows exponentially with the sequence length [29]. For any non-
comparative structure prediction method, we thus expect a marked decrease
in PPV as function of increasing sequence length. As TRANSAT works in a
comparative way by taking a multiple-sequence alignment rather than a single
RNA sequence as input, it alleviates this problem as there is a priori no reason
to expect the number of evolutionarily conserved helices to grow quadratically
with the sequence length.

That said, the performance of any method used for automatically generat-
ing input alignments for TRANSAT may very well (and strongly) depend on the
length of the sequences and the alignment. In this case, one also expects a cor-
responding decrease in the prediction accuracy of TRANSAT as TRANSAT keeps
input alignments fixed. TRANSAT has been devised to tolerate some amount of
alignment errors, see [23] and step one and two above, but it technically cannot
fix any errors in the input alignment.

Second, TRANSAT works best for input alignment that correspond to a total
tree length (TTL) of 2 or more, see figure 1. Below a TTL of 1, the primary
sequences in the input multiple-sequence alignments tend to be too closely re-
lated both in terms primary sequence identity and lack of co-variation within
base-paired regions, resulting in a sub-optimal performance of TRANSAT.

In practice, there is no doubt also an upper limit for the TTL beyond which
we expect a decrease in predictive accuracy. This can be attributed to either
(1) too many RNA structure variations between the sequences to render the
comparative approach meaningful or (2) too significant deviations in terms of
primary sequence identity to enable the assembly of a trustworthy input align-
ment for TRANSAT. Both potential complications have to be considered on a
case-by-case basis as they strongly depend on the cellular constraints on the
primary RNA sequence and on the RNA secondary structure of the specific
RNA family being studied. Cases of RNA structure variation in the setting of
viral sequences are, for example, shown in [30].
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Third, TRANSAT can successfully identify known transient helices and mu-
tually exclusive helices as shown for the hok and trp-attenuator data sets for
which more than a single functional RNA secondary structure is known, see
figure 2 and page 13 in [23] for more details. As each predicted helix is assigned
an estimated p-value, the user of TRANSAT can easily focus on those with the
highest statistical significance.

Fourth, TRANSAT can be employed to also identify regions of the input
multiple-sequence alignment that are devoid of any conserved RNA structure
features, see e.g. RFAM alignments RF00018 (which is known to be bound by
multiple copies of the CsrA protein that binds single-stranded regions) and
RF00023 (which contains an open reading frame (ORF) that has to remain
single-stranded), see figure 4. This cannot be readily achieved using MFE-based
methods.

Fifth, TRANSAT can be used to identify potential novel, evolutionarily con-
served transient features of the co-transcriptional folding pathways of homolo-
gous RNAs, see table 6 for a comparison of key alignment features and figure fig-
ure 5 for the predictive performance for folding pathway prediction methods
KINEFOLD, RNAKINETICS and KINWALKER for new transient features identi-
fied by TRANSAT.

KINEFOLD (blue) and RNAKINETICS (green) have a similar prediction per-
formance and manage to detect 76.5% (RNAKINETICS) and 67% (KINEFOLD)
of the new transient features with a false positive rate (FPR) of 7% (both).
The outlier is KINWALKER (red) which can detect only 28.1% of the new fea-
tures with a FPR of 4%. The performance plot shows that KINEFOLD and
RNAKINETICS are capable of detecting truly novel transient features identified
by TRANSAT provided the default cutoff values (that were determined based on
known features, see table 5) are relaxed and higher FPRs tolerated.

Finally, despite predicting only individual, conserved helices, these TRANSAT
predictions can often be readily interpreted to suggest a time-ordered potential
co-transcriptional folding pathway, see the example of the Cripavirus internal
ribosomal entry site in figure 3.

2.5 Goal 3: Detecting final RN A structures formed during
co-transcriptional folding

Any of the three folding pathway prediction methods described for goal 1 can be
employed in order to predict the final RNA secondary structures that are formed
as the result of co-transcriptional folding pathways, see the text, tables and fig-
ures of section 2.1 above. All three methods work in a non-comparative way and
take a single RNA as input. One major drawback of these methods, however, is
that they can only handle rather short input sequences, up to 200 nt in case of
RNAKINETICS and KINEFOLD and up to 1000 nt in case of KINWALKER. This is
primarily due to conceptual reasons: As any of these methods simulate/calculate
an actual co-transcriptional folding pathway, any errors made in the early stages
of the prediction (i.e. while the RNA is still relatively short) are magnified as
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Figure 1: TRANSAT performance for helices as function of the total tree
lengths (TTLs) for a test set of 990 artificially generated, structure
encoding multiple-sequence alignments [23]. Different values of the TTL
ranging between 0.5 and 16 are indicated by different colours, see the legend.
The quality of helices predicted by TRANSAT are measured in terms of MCC as
function of the p-value threshold, see caption of table 5 for the MCC definition.
The peak MCC-values are highest for TTLs of around 2 or more.

the transcript is elongated and the prediction/simulation progresses. This lim-
itation prevents their use on many naturally occurring RNA transcripts.

We thus set out to devise a new prediction method CoFoLD [33] with the
following goals. The new method should:

e take as input a single RNA,
e predict as output a single RNA secondary structure,

e take some effects of co-transcriptional folding explicitly into account, how-
ever, without predicting or simulating an actual co-transcriptional folding
pathway,

e be also guided to some degree by free energy minimisation and, hopefully,

e outperform the prediction accuracy of existing MFE methods that do
not take co-transcriptional effects into account, especially for longer se-
quences (> 200 nt) for which the prediction accuracy of non-comparative
MFE methods tends to significantly decrease [34].
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Figure 2: Conserved helices predicted by TRANSAT for the hok data
set for a p-value threshold value of right 1072 [23]. The horizontal axis
corresponds to the hok alignment that was used as input to TRANSAT. Each
arc corresponds to a single base-pair linking the corresponding pair of columns
in the input alignment. Arcs above the x-axis correspond to known base-pairs,
those below to newly predicted base-pairs (false positives). Known base-pairs
that are missing from the prediction are shown as black arcs (false negatives).
All predicted base-pairs are shown as arcs in a colour that corresponds to their
respective, estimated p-values: < 107° green, < 10~* blue and < 10~2 orange.
All helices of the known structure are predicted well. In addition, TRANSAT
predicts three new helices with statistically significant p-values that may guide
the co-transcriptional formation of the final RNA secondary structure. Figure
made with R-cHIE [31, 32].

For this, we used the widely used, non-comparative MFE methods MFOLD [35]
and RNAFOLD [36] as a starting point. Both methods take a single RNA se-
quence as input and predict as output an RNA secondary structure. Both are
guided by free energy minimisation alone and do not take any effects of co-
transcriptional folding into account.

2.6 How CoFoLD works:

TRANSAT employs a modified version of the Zuker-Stiegler algorithm [36]. em-
ployed by MFoLD and RNAFOLD to calculate the thermodynamically most
favourable, pseudo-knot-free RNA secondary structure for any given input RNA.
For this, the algorithm (1) decomposes the overall free energy of any possible
(pseudo-knot free) RNA secondary structure into a sum of free-energy contri-
butions from various structural lego-like building blocks (such as stacking in-
teractions between pairs of adjacent base pairs, unpaired nucleotides and hair-
pin loops) and (2) employs a dynamic programming procedure to derive the
RNA secondary structure that minimises the overall free energy for a given in-
put RNA sequence. The latter takes O(L?) time, where L denotes the length of
the input sequence. RNA structures predicted by MFOLD and RNAFOLD are
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Figure 3: TRANSAT predictions for the Cripavirus internal ribosomal
entry site (IRES), RFAM family RF00458, for a p-value threshold of
1073 [23]. The helices that render the known structure pseudo-knotted are
correctly predicted by TRANSAT. In addition, TRANSAT predicts a few distinct
helices that clash with helices of the known, final structure and that may help to
guide the overall co-transcriptional structure formation, see the numbers next
to the respective helices. The numbering of helices is not part of the TRANSAT
predictions, but an interpretation by the user. New helix 4 may yield to final
helix 8, new helix 6 to final helix 7 and new helix 10 to final helix 12. These novel
helices may thus serve as guiding transient helices during the co-transcriptional
formation of the known, final RNA structure. Figure made with R-CHIE [31, 32].

correspondingly called minimum-free energy (MFE) structures and the methods
themselves referred to as MFE methods.
Our modification of the Zuker-Stiegler algorithm consists of

e altering the default free-energy contribution associated with any base-pair
by a scaling function «(d) whose value only depends on the distance d of
the two base-paired nucleotides along the input sequence.

Technically, this is achieved via a scaling function which is defined as

¥(d) :=a- (e_% -1)+1

This is an exponential decay function with two free parameters o €]0, 1] and
7> 0 [nt7!. As limge0ov(d) = 1 — @, the value of o determines the range
of values of v: v(d) €]1 — a,1]. For example, setting ov = 0.3 modifies energy
values to vary within 70% to 100% of their original values. Parameter 7 defines
the steepness of the exponential decay as function of the distance d between
base-pairing nucleotides. More precisely, 7 is the nucleotide distance at which
the max-value of y(d = 0) = 1 is lowered by a(1 — 1/e). Nucleotides close
to each other along the input sequence are thus more likely to base-pair than
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Figure 4: TRANSAT predictions for a bacterial tmRNA (RraM family
RF00023 with alignment length 655 bp) for a p-value threshold value
of 107 [23]. TRANSAT captures the helices of the known pseudo-knotted
RNA secondary structure well, see arcs above the horizontal line. The known
open reading frame (ORF) is predicted to be completely devoid of statistically
significant helices. This indicates that this region has to remain single-stranded
for the tmRNA to function properly in the cell. The arcs below the horizontal
line correspond to new base-pairs predicted by TRANSAT. Arcs with a p-value
< 107° are shown in green green, those with p-values < 10~ in blue. Figure
made with R-cHIE [31, 32].

nucleotides further apart as a higher value of d implies a correspondingly lower
scaling factor v(d).

This is what we expect as one overall effect of co-transcriptional folding: ,
nucleotides close to each other along the sequence have less difficulty “finding
each other” than nucleotides further apart. We expect this effect to be more
pronounced the faster the transcription speed is. This secondary effect can
actually be captured via different values of o and 7, as was shown for a sub-set
of viral sequences [33].

2.7 Key features of CoFoLD:

One goal in devising COFOLD was to come up with an MFE method that also
performs well for longer sequences, in particular those longer than 200 nt. We
thus compiled a corresponding data set of 248 sequences with known functional
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cons. gaps canon. cov.
BPs

New transient 0.915 0.009 0.954 0.036

Known transient | 0.767 0.023 0.909 0.100

Known final 0.758 0.021 0.963 0.305

Table 6: Comparison of alignment features for known and novel
RNA structure features of co-transcriptional folding pathways of ho-
mologous RNAs [10]: novel transient features (“New transient”), known
transient features (“Known transient”) and known features of the final RNA sec-
ondary structure (“Known final”). As before, see caption of table 3, the conser-
vation (cons.) indicates the average pairwise primary sequence conservation and
gaps the fraction of gaps in the alignments. Canon. BPs specifies the fraction of
canonical base-pairs within all base-paired alignment columns. Values for the
covariation (cov.) range from -2 to +2 and measure the relative frequency of
compensatory mutations that retain the base-pairing potential within pairs of
base-paired alignment columns. The covariation is 0 when there is no variation
in paired alignment columns, positive when they comprise compensatory muta-
tions that retain the base-pairing ability and negative when they contain invalid
base-pairs. The features for new transient helices are based on the six statisti-
cally most significant helices predicted by TRANSAT for each alignment in [10]
that have less than 50% overlap with the known structural features. New tran-
sient helices are more highly conserved than known transient and final helices,
both in terms of primary sequence conservation (see cons. and gaps) and valid
base-pairs (see canon. BPs) which is in line with their lower value of covariation.

RNA secondary structure with a large fraction of long sequences (average se-
quence length 776 nt, minimum length 110 nt, maximum length 3578 nt), see
table 8 for details. Based on our detailed examinations [33], we conclude that:

e Capturing one overall effect of co-transcriptional folding via the scaling
function ~(d) leads to a significantly improved prediction performance of
CoFoOLD w.r.t. the state-of-the-art MFE method RN AFOLD, especially for
sequences longer than 1000 nt, see table 7. Compared to RNAFoLD, Co-
FoLD predicts 7% more base-pairs with 6% higher specificity, correspond-
ing to an 6% increase in MCC. A further increase in PPV, TPR and MCC
of 4% can be achieved with COFOLD when switching from the default
energy parameters by Mathews [37] to those derived by Andronescu [38]
via a joint computational tweaking of 363 free energy parameters, com-
pare the respective performance figures of CoFoLD and COFOLD-A in
table 7. When zooming into the sub-set of 23S RNAs of the data set
(av. length 3069 nt, min. length 2882 nt, max. length 3578 nt), COFoLD
and CoFoLD-A increase the MCC of RNAFOLD on average by 8% and
12%, respectively, which is considerable. Figure 6 shows a comparative
illustration of the two RNA secondary structures predicted by RNAFOLD
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Figure 5: ROC curves showing the predictive performance of the three
folding pathway prediction methods: KINEFOLD (blue line), RNAKI-
NETICS (green line) and KINWALKER (red line), once for the known
transient and final RNA structure features (left figure) and once for
the new potential, transient helices identified by TRANSAT (right fig-
ure) [10]. The true positive rate (TPR) is shown on the vertical axis and the
false positive rate (FPR) on the horizontal axis. Note that the axes use differ-
ent scales. The new transient features in the right figure correspond to the six
statistically most significant helices predicted by TRANSAT for each of the six
multiple-sequence alignments. Each candidate helix has to have less than 50 %
overlap with any of the known structural features.

and COFOLD-A for the 23S RNA of gamma-proteobacteria Pseudomonas
aeruginosa of length 2893 nt.

e The free energy differences between the energies of the RNA secondary
structures predicted by CoFoLD and COFOLD-A and those predicted
by RNAFOLD do not correlate with an improved prediction accuracy.
Moreover, COFOLD improves the prediction accuracy without significantly
modifying the corresponding free energy of the respective RNA secondary
structure predicted by RNAFOLD for the same RNA. The improvements
in predictive power can thus be attributed to capturing effects of co-
transcriptional folding. This is a conceptually important insight as it
confirms the earlier hypothesis by Morgan and Higgs from 1996. They
conjectured that the observed discrepancies between the free energies of
evolutionarily conserved RNA secondary structure and those predicted by
MFE methods for longer sequences “cannot simply be put down to errors
in the free energy parameters used in the model”, but are likely due to
effects of kinetic structure formation [34].
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| TPR FPR PPV MCC
RNAFOLD | 0.4630 0.000176 0.3974 0.4281
RNAFOLD-A | 0.5202 0.000160 0.4476 0.4817
CoFoLD 0.5283  0.000159 0.4579  0.4910
CoFoLD-A | 0.5780 0.000145 0.5006 0.5370

Table 7: Prediction accuracy of CoFoLp, CoFoLpD-A, RNAFOLD and
RNAFoLD-A for base pairs in the sub-set of long sequences (length >
1000 nt) [33]. Performance specified in terms of true positive rate (TPR), false
positive rate (FPR), positive predictive value (PPV) and Matthews correlation
coefficient (MCC), see the caption of table 5 for definitions.

e The new algorithm underlying COFOLD effectively only depends on one
free parameter as the two free parameters a and 7 of the scaling function ~y
turn out to be strongly correlated. This is evident when investigating the
optimal prediction accuracy in terms of average MCC for different com-
binations of « and 7 values, see figure 1 in [33]. The observed correlation
between « and 7 can be well described by a linear function o = a-7+b with
slope a = 6.1-1074£2-107° and intercept b = 0.10540.016 (R? = 98.4%).
Cross-validation experiments validate the robustness of parameter training
and the overall approach. For optimal average MCC values, we determine
a = 0.50 and 7 = 640. These are the parameters we recommend for
general use with COFoLD and COFOLD-A.

3 Availability

TRANSAT, CoFoLD, COFOLD-A and the RNA structure visualisation program
R-CHIE are freely available for use via our web-server at www.e-rna.org. This
is also where you can download the respective software for local use.

4 Summary and outlook

In summary, it quite remarkable that it is possible to detect conserved RNA sec-
ondary structure features of co-transcriptional folding pathways based on “naked”
RNA sequences alone. Much of it is due to the power of the comparative ap-
proach

As we showed for goal 1, computational methods for predicting actual co-
transcriptional folding pathways can be combined with a comparative analysis to
successfully identify transient and final RNA secondary structure features that
have been conserved during evolution. Our main result, namely that homologous
RNA transcripts not only assume similar final RNA secondary structures, but
also reach their respective target structure via similar co-transcriptional folding
pathways, opens the possibility to study these conserved transient structure
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short segs. long seqgs. | combined
clade (< 1000 nt) | (> 1000 nt) | data set
Bacteria 54 15 69
Eukaryotes 97 15 112
Virus 20 0 20
Archea 16 17 33
Chloroplast 0 14 14
sum 187 61 248
sequence length (nt)
average 247 2397 776
minimum 110 1245 110
maximum 628 3578 3578

Table 8: Key features of the data set used for evaluating COFOLD and
CoFoLD-A [33]. The set consists of 248 sequences with known RNA sec-
ondary structures. One special focus is the sub-set of 61 long sequences (length
> 1000 nt; average 2397 nt, min length 1245 nt, max length 3578 nt) which con-
sists of 16S and 23S rRNAs only (27 sequences of type 16S RNAs and 34 of type
23S RNAs). These sequences were extracted from multiple-sequence alignments
from the Comparative RNA Web site (CRW) [39]. The 187 sequences corre-
sponding to the sub-set of comparatively short sequences (length < 1000 nt)
were derived from 21 biologically diverse RFAM families [40]. When compiling
both sub-sets, great care was taken to ensure the resulting sequences are non-
redundant (maximum pairwise sequence identity of 85%), have an RNA sec-
ondary structure that is well supported in terms of evolutionary evidence and
are diverse in terms of represented clades.
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Figure 6: Comparison of the two RNA secondary structure pre-
dicted by RNAFoOLD (top) and COFoLD-A (bottom) for the 23S RNA
of the gamma-proteobacteria Pseudomonas aeruginosa of 2893 nt
length [33]. Black arcs indicate base-pairs that are part of the known reference
structure, but missing in the prediction (false negatives), red arcs correspond
to incorrectly predicted base-pairs (false positives) and blue arcs to correctly
predicted base-pairs (true positives). Neither RNAFOLD nor COFOLD-A can
handle pseudo-knotted RNA secondary structures. Base-pairs that render the
RNA secondary structure pseudo-knotted are indicated by orange arcs. The
multitude of red arcs on top of the horizontal line imply that RN AFOLD predicts
many incorrect base-pairs spanning 100 nt or more. These mostly disappear
with COFOLD-A, see arcs shown below the horizontal line. Using COFOLD-A
rather than RNAFOLD, the MCC rises significantly from 43% to 58% (+15%)
which can be attributed to a simultapgous increase of the true positive rate
(45% to 61%) and the positive predictive value (41% to 56%). The false posi-
tive rate of 0.01% is equally low for both prediction programs. Arc-plot made
with R-cHIE [31, 32].



features in more detail. This could, for example, by achieved in more fine-
grained computational studies that examine the time-wise ordering of transient
structure features to investigate:

e (1) how conserved transient structure features guide the co-transcriptional
formation of the final RNA secondary structure, in particular

— (1a) if and how they prevent mis-folded structure intermediates and/or

— (1b) whether or not they serve as anchors for potential trans-acting
interaction partners. The latter project will require a decent number
of experimentally confirmed test cases of known trans-interactions,
e.g. with proteins or other RNA transcripts, to compile a test set
and a potential training set for purely computational analyses, see
[41] for an example of how known trans-interactions can be captured
using folding pathway prediction methods.

As the existing folding pathway prediction methods can only be applied
to rather short transcripts (< 200 nt length, or < 1000 nt in case of KIN-
WALKER), there is also ample scope to improve the existing folding pathway
prediction methods or, alternatively, to invent a conceptually new:

e (2) The primary predictive power of the computational pipeline presented
above derives from employing a comparative approach. This power could,
for example, be better harnessed by devising the first comparative method
for folding pathway prediction. Rather than taking a single RNA as input,
it would take an (ideally, un-aligned) set of homologous RNAs as input and
predict/simulate the corresponding co-transcriptional folding pathways in
a comparative way. This approach is not only likely to result in a superior
prediction accuracy, but could also remove the conceptual limitation of
handling only rather short transcripts.

There already exists a Markov-chain Monte-Carlo-based method SIMUL-
FoLD [42] for co-estimating homologous RNA secondary structures, multiple-
sequence alignments and evolutionary trees. This method works without
considering co-transcriptional structure formation. This alignment-free
method could inspire a similar, comparative method that could also cap-
ture some aspects of co-transcriptional RNA structure formation.

We described how TRANSAT can be used to successfully identify conserved
helices in given multiple-sequence alignments of homologous transcripts that
most methods for RNA secondary structure prediction miss due to technical
constraints. Examples include mutually exclusive helices such as those in ri-
boswitches, transient helices that are not part of the final reference structure
or helices involved in pseudo-knotted configurations. Moreover, TRANSAT does
not force helices into a single, global RNA secondary structure which almost all
methods for RNA secondary structure implicitly do. One conceptual bottle-neck
of TRANSAT (as well as most comparative RNA secondary structure prediction
methods) is that it requires a high-quality input alignment in order to perform
well.
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e (3) One idea to further improve TRANSAT is thus to convert it into an
alignment-free method while keeping (A) the probabilistic nature of the
underlying algorithm and its predictions and (B) the time-and-memory
efficiency of the algorithm. As TRANSAT internally operates on helices
(rather than individual nucleotides or base-pairs) once the candidate he-
lices for individual sequences have been predicted, see step 1 of its de-
scription in 2.3, this can be viewed as a realistic goal. CARNAC [43] was
the first to apply the alignment-free idea in the context of RNA secondary
structure prediction, albeit outside a probabilistic framework and without
knowing the theoretical time-and-memory requirements of the underlying,
heuristic algorithm.

CoFoLD was started as a conceptual idea to see if the state-of-the-art
method RNAFOLD could be improved by capturing a single, basic overall effect
that co-transcriptional folding has on structure formation, namely the reacha-
bility of potential pairing partners along the RNA sequence. This works sur-
prisingly well. There is thus ample scope for further improvements:

e (4) One obvious effect of co-transcriptional folding that is not yet cap-
tured is the 5’-to-3’ directionality. This is one of the key features of
co-transcriptional folding. Many state-of-the-art methods for RNA sec-
ondary structure use a dynamic programming algorithm to generate their
predictions and COFOLD is no exception. These dynamic programming
algorithms, however, have inherent no notion of left and right, 5’ and 3’,
but are symmetric w.r.t. both sequence ends. This makes it conceptually
challenging to incorporate 5-to-3’ biases into them.

Recent technological advances allow us to investigate RNA structures in vivo
with unprecedented detail and on a transcriptome-wide scale [44, 45, 46, 47].
Acknowledgements

I thank past and present group members and collaborators for the privilege of
working with them.

Funding

This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

References
[1] A. Mironov, L. Dyakonova, A. Kister, A kinetic approach to the predic-

tion of RNA secondary structures, Journal of Biomolecular Structure &
Dynamics 2 (5) (1985) 953-962.

25



2]

[3]

A. Mironov, V. Lebedev, A kinetic model of RNA folding, Biosystems
30 (1-3) (1993) 49-56.

L. Danilova, D. Pervouchine, A. Favorov, A. Mironov, RNAkinetics: a
web server that models secondary structure kinetics of an elongating RNA|
Journal of Bioinformatics and Computational Biology 4 (2) (2006) 589-596.

C. Flamm, W. Fontana, I. L. Hofacker, P. Schuster, RNA folding at ele-
mentary step resolution, RNA 6 (3) (2000) 325-38.

H. Isambert, E. D. Siggia, Modeling RNA folding paths with pseudoknots:
application to hepatitis delta virus ribozyme, Proceedings of the National
Academy of Science of the USA 97 (12) (2000) 6515-20.

A. Xayaphoummine, T. Bucher, F. Thalmann, H. Isambert, Prediction
and statistics of pseudoknots in RNA structures using exactly clustered
stochastic simulations, Proceedings of the National Academy of Science of
the USA 100 (26) (2003) 15310-5.

A. Xayaphoummine, T. Bucher, H. Isambert, Kinefold web server for
RNA/DNA folding path and structure prediction including pseudoknots
and knots., Nucleic Acids Res 33 (Web Server issue) (2005) W605-10.

A. Gultyaev, F. von Batenburg, C. Pleij, The computer-simulation of RNA
folding pathways using a genetic algorithm, Journal of Molecular Biology
250 (1) (1995) 37-51.

M. Geis, C. Flamm, M. T. Wolfinger, A. Tanzer, 1. L. Hofacker, M. Midden-
dorf, C. Mandl, P. F. Stadler, C. Thurner, Folding kinetics of large RNAs.,
Journal of Molecular Biology 379 (1) (2008) 160-173.

J. Y. A. Zhu, A. Steif, J. R. Proctor, I. M. Meyer, Transient RNA structure
features are evolutionarily conserved and can be computationally predicted,
Nucleic Acids Research 41 (12) (2013) 6273-6285.

P. Seibel, T. Miiller, T. Dandekar, J. Schultz, M. Wolf, 4SALE: A tool for
synchronous RNA sequence and secondary structure alignment and editing,
BMC Bioinformatics 7 (2006) 498.

R. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and
high throughput, Nucleic Acids Research 32 (5) (2004) 1792-1797.

H. M. Al-Hashimi, N. G. Walter, RNA dynamics: it is about time, Current
Opinion in Structural Biology 18 (2008) 321-329.

B. Lewicki, T. Margus, J. Remme, K. Nierhaus, Coupling of rRNA tran-
scription and ribosomal assembly in vivo — formation of active ribosomal-
subunits in Escherichia coli requires transcription of RNA genes by host
RNA polymerase which cannot be replaced by T7 RNA polymerase, Jour-
nal of Molecular Biology 231 (1993) 581-593.

26



[15]

M. Y. Chao, M. Kan, S. Lin-Chao, RNAII transcribed by IPTG-induced T7
RNA polymerase is non-functional as a replication primer for ColE1l-type
plasmids in Escherichia coli, Nucleic Acids Research 23 (1995) 1691-1695.

T. Pan, X. Fang, T. Sosnick, Pathway modulation, circular permutation
and rapid RNA folding under kinetic control, Journal of Molecular Biology
286 (13) (1999) 721-731.

S. Heilman-Miller, S. Woodson, Effect of transcription on folding of the
Tetrahymena ribozyme, RNA 9 (6) (2003) 722-733.

S. Heilman-Miller, S. Woodson, Perturbed folding kinetics of circularly per-
muted RNAs with altered topology, Journal of Molecular Biology 328 (2)
(2003) 385-394.

F. Toulme, C. Mosrin-Huaman, I. Artsimovitch, A. Rahmouni, Transcrip-
tional pausing in vivo: A nascent RNA hairpin restricts lateral movements
of RNA polymerase in both forward and reverse directions, Journal of
Molecular Biology 351 (1) (2005) 39-51.

J. Wickiser, W. Winkler, R. Breaker, D. Crothers, The speed of RNA
transcription and metabolite binding kinetics operate an FMN riboswitch,
Molecular Cell 18 (1) (2005) 49-60.

T. Wong, T. Sosnick, T. Pan, Folding of noncoding RNAs during transcrip-
tion facilitated by pausing-induced nonnative structures, Proceedings of the
National Academy of Science of the USA 104 (46) (2007) 17995-18000.

T. Pan, T. Sosnick, RNA folding during transcription, Annual Review of
Biophysics and Biomolecular Structure 35 (2006) 161-175.

N. J. P. Wiebe, I. M. Meyer, TRANSAT — method for detecting the con-
served helices of functional RNA structures, including transient, pseudo-
knotted and alternative structures, PLoS Computational Biology 6 (6)
(2010) €1000823.

A. Mazloomian, I. M. Meyer, Genome-wide identification and characteri-
zation of tissue-specific RNA editing events in D. melanogaster and their
potential role in regulating alternative splicing, RNA Biology 12 (12) (2015)
1391-1401.

D. Lai, J. R. Proctor, I. M. Meyer, On the importance of co-transcriptional
RNA structure formation, RNA 19 (2013) 1461-1473.

J. Felsenstein, Evolutionary trees from DNA sequences: a maximum likeli-
hood approach, Journal of Molecular Evolution 17 (6) (1981) 368-376.

C. Notredame, D. Higgins, J. Heringa, T-Coffee: A novel method for fast
and accurate multiple sequence alignment, Journal of Molecular Biology
302 (1) (2000) 205-217.

27



[28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

[37]

[38]

[39]

S. Washietl, I. Hofacker, Consensus folding of aligned sequences as a new
measure for the detection of functional RNAs by comparative genomics,
Journal of Molecular Biology 342 (1) (2004) 19-30.

C. Haslinger, P. F. S. PF, RNA structures with pseudo-knots: graph-
theoretical, combinatorial, and statistical properties, Bulletin of Mathe-
matical Biology 61 (3) (1999) 437-467.

J. Pedersen, 1. Meyer, R. Forsberg, P. Simmonds, J. Hein, A comparative
method for finding and folding RNA secondary structures within protein-
coding regions, Nucleic Acids Res. 32 (16) (2004) 4925 — 4936.

D. Lai, J. R. Proctor, J. Y. Zhu, I. M. Meyer, R-CHIE: a web server and R
package for visualizing RNA secondary structures, Nucleic Acids Research
40 (12) (2012) e95.

D. Lai, I. M. Meyer, e-RNA: a collection of web servers for compara-
tive RNA structure prediction and visualisation, Nucleic Acids Research
42 (Web Server Issue) (2014) W373-W376.

J. R. Proctor, I. M. Meyer, COFOLD: an RNA secondary structure pre-
diction method that takes co-transcriptional folding into account, Nucleic
Acids Research 41 (9) (2013) e102.

S. Morgan, P. Higgs, Evidence for kinetic effects in the folding of large RNA
molecules, Journal of Chemical Physics 105 (16) (1996) 7152-7157.

M. Zuker, Mfold web server for nucleic acid folding and hybridization pre-
diction, Nucleic Acids Research 31 (13) (2003) 3406-3415.

M. Zuker, P. Stiegler, Optimal computer folding of large RNA sequences
using thermodynamic and auxiliary information, Nucleic Acids Research 9
(1981) 133-148.

D. H. Mathews, J. Sabina, M. Zuker, D. H. Turner, Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA sec-
ondary structure, J Mol Biol 288 (5) (1999) 911-940.

M. Andronescu, A. Condon, H. H. Hoos, D. H. Mathews, , K. P. Murphy,
Efficient parameter estimation for RNA secondary structure prediction,
Bioinformatics 23 (13) (2007) 119-128.

J. Cannone, S. Subramanian, M. Schnare, J. Collett, L. D’Souza, Y. Du,
B. Feng, N. Lin, L. Madabusi, K. Muller, N. Pande, Z. Shang, N. Yu,
R. Gutell, The Comparative RNA Web (CRW) Site: an online database of
comparative sequence and structure information for ribosomal, intron, and
other RNAs, BMC Bioinformatics 3 (2002) 2.

S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, A. Bate-
man, Rfam: annotating non-coding RNAs in complete genomes, Nucleic
Acids Research 33 (2005) D121-D124.

28



[41]

[42]

[45]

[46]

R. J. W. Schoemaker, A. P. Gultyaev, Computer simulation of chaperone
effects of Archael C/D box sRNA binding on rRNA folding, Nucleic Acids
Research 34 (7) (2006) 2015-2026.

I. M. Meyer, I. Miklés, Simulfold: Simultaneously Inferring an RNA Struc-
ture Including Pseudo-Knots, a Multiple Sequence Alignment and an Evo-
lutionary Tree Using a Bayesian Markov Chain Monte Carlo Framework,
PLoS Computational Biology 3 (8) (2007) e149.

H. Touzet, O. Perriquet, CARNAC: folding families of related RNAs., Nu-
cleic Acids Research 32 (2004) W142-145.

M. Zubradt, P. Gupta, S. Persad, A. M. Lambowitz, J. S. Weissman,
S. Rouskin, DMS-MaPseq for genome-wide or targeted RNA structure
probing in vivo, Nature 14 (1) (2016) 75-82.

J. G. Aw, Y. Shen, A. Wilm, M. Sun, X. N. Lim, K. L. Boon, S. Tapsin,
Y. S. Chan, C. P. Tan, A. Y. Sim, T. Zhang, T. T. Susanto, Z. F. Z2,
N. Nagaraj, Y. Wan, In Vivo Mapping of Eukaryotic RNA Interactomes
Reveals Principles of Higher-Order Organization and Regulation, Molecular
Cell 62 (4) (2016) 603-617.

Z. Lu, Q. C. Zhang, B. Lee, R. A. Flynn, M. A. Smith, J. T. Robinson,
C. Davidovich, A. R. Gooding, K. J. Goodrich, J. S. Mattick, J. P. Mesirov,
T. R. Cech, H. Y. Chang, RNA Duplex Map in Living Cells Reveals Higher-
Order Transcriptome Structure, Cell 165 (5) (2016) 1267-1279.

E. Sharma, T. Sterne-Weiler, D. O’Hanlon, B. J. Blencowe, Global Mapping
of Human RNA-RNA Interactions, Molecular Cell 62 (4) (2016) 618-626.

29



	16486_cover
	In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression
	Abstract
	1 Introduction
	2 Computational strategies for investigating co-transcriptional RNA structure formation invivo
	3 Availability
	4 Summary and outlook
	Acknowledgements
	Funding
	References


