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Abstract  

In drug-resistant epilepsy, periods of seizure stability may alternate with abrupt worsening, with 

frequent seizures limiting the individual’s independence and physical, social and psychological 

well-being. Here we review the literature focusing on different clinical scenarios related to seizure 

aggravation in people with drug-resistant epilepsy. The role of anti-seizure medication changes is 

examined, especially focusing on paradoxical seizure aggravation after increased treatment. The 

external provocative factors which unbalance the brittle equilibrium of seizure control are reviewed, 

distinguishing between unspecific triggering factors, specific precipitants and ‘reflex’ mechanisms. 

The chance of intervening surgical or medical conditions, including somatic comorbidities and 

epilepsy surgery failure, causing increased seizures is discussed. Spontaneous exacerbation is also 

explored, emphasizing recent findings on subject-specific circadian and ultradian rhythms.  

Awareness of external precipitants and understanding the subject-specific spontaneous epilepsy 

course may allow individuals to modify their lifestyles. It also allows clinicians to counsel 

appropriately and to institute suitable medical treatment to avoid sudden loss of seizure control.    

 

 

Keywords: Drugs; Precipitants; Comorbidities; Surgery; Circadian and Ultradian cycles. 

 

 



1. Introduction 

The prevalence of active epilepsy is between 4 and 10 per 1,000 people [1]. In most cases adequate 

anti-seizure treatment leads to sustained seizure freedom [2]. In about one third of people with 

epilepsy, however, seizures are drug-resistant, enduring despite optimal treatment. Most people 

with pharmaco-resistant epilepsy encounter periods of stability, with rare seizures or none at all, as 

well as periods with loss of seizure control. To disentangle seizure worsening due to specific 

provocative factors from a spontaneously fluctuating epilepsy course may be challenging. Loss of 

seizure control constantly hinders the ability to work or attend social events and often requires 

emergency treatment or hospitalization with additional health costs. We focus on different scenarios 

leading to seizure precipitation and discuss the possible predictable and unpredictable factors 

triggering seizure exacerbation in people with chronic epilepsy.  

 

2. Methods  

We performed a PubMed / Medline search with the following terms: ‘seizure precipitants’, ‘seizure 

aggravation’, ‘seizure worsening’, ‘seizure prediction’, ‘epilep* aggravation’, ‘epilep* worsening’ 

up to February 2019. No language restrictions were applied. All items identified were assessed for 

relevance to the topic of the review, excluding those exclusively focused on people with new onset 

seizures.  

Due to the heterogeneous definition of seizure worsening in the published studies, we evaluated all 

those reporting an abrupt change in seizure frequency/types, independent of the underlying etiology. 

In addition to the automated Medline query we also added selected references retrieved on PubMed, 

Google and Google scholar search engines as well as articles in the authors’ personal files.  

We categorized the available data into four main clinical scenarios: Treatment changes; External 

provocative factors; Intervening surgical or medical conditions; Spontaneous exacerbation. 

 

3.1 Scenario 1: Treatment changes 

 Drug-resistant epilepsy is a continuous challenge. It is essential that attending physicians enter a 

therapeutic alliance with the individual to define shared treatment goals. Seizure freedom is the 

main target, as a substantial improvement in quality of life is obtained only after seizures stop 

completely [3–5]. Individuals may, however, opt for merely reduced seizure frequency to avoid 

medication side effects related to treatment required for seizure freedom [5] or may wish to target 

particular disabling seizure types, such as convulsions.  

Anti-seizure treatment should thus be tailored to the wishes and needs of the individual, considering 

the unique clinical characteristics of that individual. Achieving the optimal balance between 



efficacy and tolerability often requires adjustments to the dosage of anti-seizure medication (ASM). 

A dose reduction may trigger sudden loss of seizure control in an individual but paradoxically a 

dose increase may also occasionally lead to seizure aggravation. One of the following conditions 

must be fulfilled to attribute seizure aggravation to a specific ASM: an increase in seizure frequency 

above that previously observed, temporally associated with the culprit drug and which reverses on 

withdrawal or dose reduction; demonstration of a consistent effect of a given drug in a specific 

seizure type or syndrome  identification of any other factor (e.g., EEG features) which is predictive 

of drug-induced seizure deterioration; appearance of new seizure types in temporal association with 

a drug change[6].  

Paradoxical seizure worsening may occur either as a result of a non-specific manifestation of drug 

intoxication or as a specific side effect in some syndromes [6]. In drug intoxication, seizure 

aggravation is sometimes dramatic and often accompanied by other signs of central nervous system 

toxicity (e.g. confusion, dizziness, brainstem and cerebellar signs). This has been reported 

particularly with phenytoin, which has zero-order kinetics and is prone to abrupt rises in drug levels 

after dosage increase, but it has also been described with other ASMs (e.g. phenobarbital, 

carbamazepine, tiagabine, vigabatrin, lamotrigine, gabapentin) independently from the underlying 

mechanism of action (reviewed in [6,7]). This is usually completely reversible after drug dosage 

reduction [6].  

Conversely, drugs with particular mechanisms of action have been reported to induce or aggravate 

specific seizure types despite normal serum drug levels (table 1). Sodium channel blockers, 

especially carbamazepine, may trigger absences, tonic, atonic/negative myoclonus and myoclonic 

seizures [6,8–12], even in people who had previously experienced only tonic-clonic seizures [9,10]. 

Such effects may be particularly dramatic in children, who may develop status epilepticus [8,13,14]. 

Specific syndromes (e.g. absence epilepsy, juvenile myoclonic epilepsy, atypical benign Rolandic 

epilepsy, Landau-Kleffner, Dravet and Angelman syndromes) and EEG traits (e.g. generalized 

synchronous spike-and-wave activity, continuous spike-and-wave during sleep, multifocal 

abnormalities) are known to be particularly affected by sodium channel blocker-induced seizure 

precipitation [6,8,15]. 

Vigabatrin and gabapentin can aggravate absences in idiopathic generalized epilepsies, sometimes 

leading to non-convulsive status epilepticus. Vigabatrin can also worsen tonic and myoclonic 

seizures, whilst gabapentin is especially detrimental to those with myoclonic seizures [16–18].  

Valproate can aggravate seizures in the setting of a drug-specific idiosyncratic hyper-ammonemic 

encephalopathy. This is characterized by a progressive confusional state, seizure aggravation, non-



epileptic myoclonus, vomiting and focal neurological deficits, especially in people with carnitine 

deficiency or congenital urea cycle enzymatic defects [19]. 

Benzodiazepines may also precipitate seizures, which seems counterintuitive as benzodiazepines 

are first-line drugs in status epilepticus. Abruptly increasing tonic seizures have, however, been 

reported in people with Lennox-Gastaut syndrome treated by intravenous benzodiazepines; this 

paradoxical effect has no clear explanation, is rare and has been reported exclusively during 

absence status epilepticus in individuals who had formerly experienced numerous other episodes of 

tonic status, sometimes provoked by other medications [20–22]. 

 

3.2 Scenario 2: External provocative factors 

External seizure precipitants are mostly patient-reported and are highly subjective. Individuals may 

associate familiar and common triggers with the feeling of impending seizures rather than with 

seizures themselves, raising the possibility of false positives [23]. Overt seizures are the final 

expression of a waxing preictal phase while prodromes and auras are the initial symptoms perceived 

by the individual [24]. Auras are considered part of the ictal event, whilst prodromes (e.g. 

behavioral changes, cognitive disturbances, anxiety, fatigue) are believed to be preictal events not 

associated with EEG changes, appearing from a few minutes to two days before the seizure and 

lasting up to several hours, with obscure physiological background [25,26]. Therefore, seizure 

precipitants associated with prodromes/auras are not strictly false positives since they may 

correspond to states of high seizure susceptibility, which may not be followed by overt seizures due 

to the intervention of the brain homeostatic mechanisms [23].  

Most people with epilepsy report at least one seizure precipitant, with emotional stress, sleep 

deprivation, and tiredness as the most frequent culprits, irrespective of the underlying syndrome 

[27,28].  

Emotional stress is reported as a seizure precipitant by over 80% of people with epilepsy [23]. This 

association declines with epilepsy duration, but is still reported by half of those with epilepsy for 

over 30 years [25]. Seizures may be precipitated by acute stress [26,27] and some people report 

being able to foresee seizures after minor or major stressors [28], especially when experiencing pre-

ictal mood changes [29,30]. Chronic stress may also affect epilepsy control [26,31,32]. People with 

stress-sensitive epilepsy exhibit a distinct brain response to stress hormones. There seems to be a 

positive correlation between cortisol levels and interictal discharges [33] and a negative correlation 

between cortisol levels and global functional connectivity on EEG [34]. Anxiety and depression are 

especially common in people whose epilepsy is worsened by emotional stress; half of these 



individuals pursue stress-reduction therapies (e.g. yoga, exercise and meditation) which appear to 

be beneficial in terms of seizure frequency [26,32]. 

Sleep deprivation is reported as a seizure precipitant by about two thirds of people with epilepsy 

[23]. Sleeping for just one hour less than usual is an independent risk factor for seizure occurrence 

in unselected people acutely hospitalized for epileptic seizures [35]. People with generalized 

epilepsies, particularly juvenile myoclonic epilepsy, are especially prone to this [36–40]. Sleep 

deprivation seems less important in people with drug-resistant epilepsy who suffer daytime 

sleepiness and are therefore less likely to be exposed to sleep deprivation [41].  

More than half of people with drug-resistant epilepsy report fatigue as a seizure precipitant [23], 

either as a non-specific preceding condition or as specific premonitory symptoms corresponding to 

a prodromal high-risk seizure state [29,42–45].  

Alcohol intake as either chronic abuse or binge drinking is another common provoking factor. 

Intoxication by alcohol may trigger seizures due to a direct neurotoxic effect, or to the increased 

risk of head trauma and medical complications. Anti-seizure medication levels can also be 

substantially lowered in chronic users [49]. Excessive acute alcohol intake acts as a direct pro-

convulsant agent with a dose-dependent effect, whilst the effect of alcohol withdrawal on seizure 

occurrence is less clear and possibly confounded by the detrimental effect of chronic alcohol 

exposure [50]. Social drinking is rarely associated with seizure precipitation in focal epilepsy, but 

may affect seizure control in generalized syndromes, especially when associated with sleep 

deprivation [51]. People with epilepsy should therefore be counselled to use alcohol in only 

moderate amounts (less than two units /day). Those with higher intake should be warned of an 

increased risk of seizures, especially from 7 to 48 h after the last drink [49,52]. 

Illicit drug abuse may also negatively affect seizure control [23]. Cocaine, heroineheroin and 

opiates, amphetamines and substituted amphetamines including MDMA, are known to cause 

seizures in the general population and to exacerbate seizures in people with epilepsy [53–55]. The 

effect of cannabis abuse is less clear as there are reports of seizure worsening [56] and of 

improvements [57,58]. Overall, most do not report a substantial effect on seizures [49]. A 

particularly detrimental effect has been reported anecdotally in people with juvenile myoclonic 

epilepsy [49]. Such observations may be biased by the concomitant occurrence of sleep deprivation 

and missing medication in a syndrome which is sensitive to these two factors [49]. A distinction 

should be made between recreational cannabis use and the possible therapeutic advantages of 

selected compounds in epilepsy treatment [59]. Studies (reviewed in [59,60]) have demonstrated an 

anticonvulsant effect of CBD, the main non-psychoactive cannabis compound, leading the Food and 

Drug Administration to license its therapeutic use in Dravet and Lennox-Gastaut syndromes [61]. 



Conversely, the main psychoactive compound (THC) has mixed effects on the seizure threshold and 

is associated with detrimental cognitive and behavioral effects [62–65]. 

Seizure exacerbation may also result from exposure to very specific provocative stimuli with a 

‘reflex’ mechanism. Such ‘reflex seizures’ are consistently and objectively induced by identifiable 

and specific triggers [66–68].    

Seizures induced by photic stimulation are the most common ‘reflex seizures’ and occur mainly in 

idiopathic generalized epilepsies, but also in progressive myoclonic epilepsies, in epileptic 

encephalopathies and, more rarely, in temporal lobe epilepsy [69–72]. People with photosensitive 

seizures exhibit a characteristic EEG trait, the photoparoxysmal response. This is a highly heritable 

endophenotype which may also occur in healthy subjects, especially in relatives of people with 

photosensitive epilepsies [73–76].  

The EEG photic stimulation clinical protocol is performed with stroboscopic intermittent stimuli at 

1-60 Hz [77]. Studies performed after major seizure incidents in children and adults watching 

television and playing videogames [78–81] found low luminance deep-red flickers to be more 

provocative than conventional black‐and‐white stroboscopic stimulation, activating complex 

cortical and subcortical networks [82,83]. Specific broadcasting guidelines have been developed to 

limit the exposure to such activating stimuli, greatly enhancing the safety of people with epilepsy 

watching television and playing videogames. The introduction of Liquid Cristal Display monitors, 

rather than cathode ray tubes, may also have helped [84,85]. Nevertheless, potentially provocative 

stimuli may still be encountered in everyday life. In people with photosensitive epilepsies, 

preventive strategies include avoiding flashing lights, occluding one eye in front of provocative 

stimuli (e.g. stepping outdoors on a sunny day, objects with luminance variance), watching 

television from a distance of at least 2 m in a well-illuminated room and using color filtering or 

specific lenses [81,86,87].  

More rarely, reflex seizures result from music, eating, swallowing, somatic sensory or 

proprioceptive stimuli, reading or hot water. In all these cases, preventive strategies consist of 

avoiding the specific stimulus, whenever possible [68] 

Seizures induced by fever are not classed as reflex seizures, but there are specific epilepsy 

syndromes in which elevation of body temperature consistently precipitates seizures. Body heating 

whether caused by fever, warm water, ambient warmth, or physical exercise is a very specific and 

powerful seizure trigger in Dravet syndrome. This is caused by loss-of-function mutations affecting 

the temperature-sensitive SCN1A sodium channel [88]. Fever-sensitivity is also common in milder 

phenotypes associated with SCN1A mutations, such as generalized epilepsy with febrile seizures 

plus [89] and in girls with protocadherin 19 (PCDH19) mutations [90].  



 

 

 

3.3 Scenario 3: Intervening surgical or medical conditions 

In neurosurgical practice seizures are not rare. Individuals who have surgery for acquired brain 

lesions (e.g. brain tumors, vascular malformations, traumatic brain injuries) may experience 

seizures similar to those who undergo surgical treatment for drug-resistant epilepsy (i.e. epilepsy 

surgery). People with brain tumors are especially prone to pre-operative symptomatic seizures; 

drug-resistance is common in cortical-located tumors with low growth potential, defined as Long-

Term Epilepsy Associated Tumors (LEATs; e.g. DNETs, gangliogliomas) [91–93] [94]. After 

surgery, 60-90% of people with brain tumors become seizure free; this is particularly associated 

with LEATs, gross total resections, earlier surgical therapy, improved overall functional status and 

lack of pre-operative generalized seizures [92,95]. Nevertheless, seizures may also arise as a 

surgical complication. ‘Early seizures’ occur in the first week after craniotomy in up to one third of 

cases. This is irrespective of the occurrence of pre-operative seizures and of the underlying 

neuropathology, due to an immediate post-traumatic effect (cerebral edema, local inflammation, 

excitotoxic damage, oxidative stress, impairment of neuron metabolism). This may also sometimes 

lead to convulsive or non-convulsive status epilepticus [96–98]. The course of epilepsy can also be 

affected for the worse in individuals with tumor recurrence or incomplete resection [93,95,99].  

Epilepsy surgery aims to control medical-resistant epilepsy by resecting or disconnecting the 

epileptogenic zone [100–102]. The epileptogenic zone is defined during presurgical work-up by 

merging clinical, neurophysiological and neuroimaging data in people with an overt epileptogenic 

lesion (e.g. hippocampal sclerosis, malformations of cortical development) and in those with normal 

brain imaging [102].  

Early pre-operative seizures may complicate the outcome [103], but the prognosis of epilepsy 

surgery is largely favorable in the long-term with 70% of people experiencing greater than 50% 

seizure reduction at 10 years [104]. Nevertheless, post-operative epilepsy worsening in terms of 

increased seizure frequency may occur in up to 10% of cases. Rarely, individuals can develop 

seizure types they had not had previously, such as convulsions or status epilepticus [105]. Risk 

factors for seizure worsening following epilepsy surgery include extratemporal resections, 

incomplete resections, variable seizure semiologies and multiple recorded ictal patterns [105–107]. 

These individuals should be carefully followed-up, may require drug adjustments and may be 

offered surgical re-intervention after a comprehensive reassessment [108]. 



Comorbid medical conditions may also affect seizure control. About half of people with active 

epilepsy suffer at least one comorbid disease [109], some of which have a negative influence on 

epilepsy prognosis [110,111]. Migraine is associated with a reduced probability of seizure freedom 

[112], and psychiatric disorders to a higher risk of pharmaco-resistance [113] and to an unfavorable 

outcome after anterior temporal lobectomy [114]. Type 1 diabetes affects about 1% of people with 

drug-resistant epilepsy [115]. A shared genetic/autoimmune background has been postulated [115–

119]. In those with epilepsy - diabetes comorbidity, acute seizures provoked by hyperglycemia and 

hypoglycemia may occur, complicating the interpretation of the epilepsy course and drug 

management. Chronic glycemiaglycaemia fluctuations may also induce neuronal damage [120–

123], possibly facilitating seizures in the long-term. 

We may also expect seizures to be precipitated by the same factors which cause abrupt 

seizures/status epilepticus in the general population, including acute metabolic disorders, stroke and 

infectious disorders [124]. 

Women with epilepsy may be especially exposed to fluctuations in seizure control during 

pregnancy and the menopause. Ideally, in those with drug-resistant epilepsy conception should be 

planned in order to minimize the exposure to ASMs during the first trimester. Drug management is 

particularly delicate, as a planned reduction of dosage/number of ASMs is sought to lower the risk 

of congenital malformation but this increases the likelihood of seizure worsening in the first 

trimester [125–127]. Early seizure deterioration may especially occur after withdrawal of valproate, 

which is burdened by the highest teratogenic potential [127,128]. Seizures may also worsen from 

the first to second or third trimesters (about 15% of all pregnancies), requiring a reinforcement of 

the ASM regimen [126,129]. Women taking lamotrigine may be especially prone to seizure 

aggravation [126,129] because the drug levels of this ASM decrease steeply over pregnancy, 

requiring careful monitoring and drug adjustments [130]. 

Menopause may also affect epilepsy, but the effect on seizure control is largely unpredictable. 

About 40% of women with chronic epilepsy report post-menopausal seizure worsening and 27% 

describe seizure improvement [131]. A direct effect of hormonal variations is likely as women with 

catamenial epilepsy tend to improve both during pregnancy [132] and after the menopause [133]. 

Intake of hormonal replacement therapy, however, negatively affects seizure control [134].  

Therapeutic drugs taken for several medical conditions may also precipitate seizures in people with 

epilepsy. A systematic review classified therapeutic agents according to their intrinsic epileptogenic 

potential: meperidine, sevoflurane, clozapine and cyclosporine (high); propofol, maprotiline, 

tryciclic antidepressants, chlorambucil (intermediate); fluoroquinolones, carbapenems, bupropion 

and iodinated contrast media (low) [135]. Several other drugs have been reported as having a 



negative effect on seizures, either directly or by inducing the metabolism of ASMs. For example, 

ephedra dietary supplements have been associated with seizures due to the direct toxic effect of 

ephedrine [136], whilst exogenous estrogens administered for assisted reproduction might lead to 

seizure precipitation by lowering the seizure threshold and inducing glucuronidation in women 

taking lamotrigine [137].  

 

3.4 Scenario 4: Spontaneous exacerbation 

People with epilepsy may experience sudden spontaneous deterioration in seizure control. This is a 

difficult clinical scenario, as usually neither the clinician nor the individual concerned foresees the 

abrupt change in seizure frequency which may require emergency treatment.  

The periodic exacerbation of seizures was reported in the first descriptions of epilepsy in 2000 B.C., 

in Mesopotamia, and interpreted in relation to moon cycles. In pre-Hippocratic Ancient Greece the 

‘sacred disease’ was considered to wax and wane and be influenced by Selene, the Moon god [138]. 

Until the Middle Ages the term ‘lunaticism’ referred to epilepsy [139,140] (Table 2). The scientific 

approach has disentangled epilepsy from superstitious beliefs, while still acknowledging the 

existence of cyclical loss of epilepsy control [141,142]. More recent studies focusing on the long-

term prognosis of epilepsy showed that up to one third of people with drug-resistant epilepsy show 

a relapsing-remitting course [2,106,107,143–148].  

Prompted by such observations, several groups have attempted to develop machine learning 

algorithms based on various combinations of EEG, ECG, accelerometry, movement and audio and 

video parameters to predict seizure occurrence, with inconclusive results (reviewed in [149]). 

Recently, the relationship between EEG discharges and seizure occurrence at population and 

individual level has been investigated. Each individual with epilepsy seems to display a highly 

specific endogenous circadian rhythm of seizures and interictal spikes. About one third also exhibit 

subject-specific ultradian rhythmicity, with periodic breakthrough of seizure clusters [135]. Seizures 

are facilitated by the sleep-wake transition, but the effect of sleep on spike and seizure generation 

cannot completely explain circadian cyclicity as individuals may develop seizures at fixed hours, 

even though fully alert [150]. Clock (Circadian Locomotor Output Cycles Kaput) genes (e.g. 

CLOCK and BMAL1) and circadian transcription factors (e.g. CLOCK–BMAL1) are likely to play a 

role, influencing cortical excitability and seizure threshold [151–154]. 

Monthly cyclicity may be partly related to the menstrual cycles in females [155], but males can also 

have monthly periodicity [156–158] and both may have non-monthly ultradian cycles, over multiple 

days, weeks or months [154,159]. 



The consistency of cortical-recorded spikes and seizure rhythmicity has been demonstrated long-

term (up to 10 years) with a complex clinical/neurophysiological relationship. Interictal discharges 

may increase, decrease or remain unchanged before a single seizure [150,160], yet seizures 

preferentially occur during the rising phase of a multi-day spike cycle [160]. 

The knowledge of individual-specific circadian and ultradian cycles may help to foresee seizure 

occurrence. Implantation of long-term EEG monitoring devices has recently been suggested to 

gauge and forecast seizure risk, but technical challenges remain [161].  

 

4. Conclusions 

People with drug-resistant epilepsy have frequent challenges with seizures, whose onset and course 

are often unpredictable. Days of recurrent seizures may be extremely discouraging, greatly limiting 

self-confidence and independence. Identification of precipitating events allows individuals to 

anticipate abrupt worsening and to modify their lifestyles accordingly. From the clinician’s 

viewpoint, comprehensive knowledge of the endogenous and exogenous provocative factors may 

allow appropriate counselling of the individual and institution of appropriate medical treatment. A 

deepened understanding of the cyclical course of epilepsy in each individual would allow further 

tailored care and prediction.  
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Table 1. Seizure worsening induced by Antiseizure medication  

 

Seizure type Worsened or de novo induced by 

Typical and atypical absences CBZ, GBP, LCM, LTG, OXC, PGB, PHT, TGB, VGB   

Myoclonic CBZ, GBP, LTG, OXC, PGB, PHT, TGB, VGB  

Negative myoclonus and atonic seizures CBZ, LTG 

Tonic seizures  BDZ, CBZ, OXC 

 

BDZ, benzodiazepines; CBZ, carbamazepine; GBP, gabapentin; LCM, lacosamide; LTG, lamotrigine; OXC, 

oxcarbazepine; PGB, pregabalin; PHT, phenytoin; TGB, tiagabine; VGB, vigabatrin 

 

 

Table 2. Timeline of historical descriptions on the fluctuating course of epilepsy 

 

Historical period Description 

2000 BC, Mesopotamia 

 

Ancient Akkadian texts describe epilepsy as ‘antasubbû’ (the hand 

of sin) brought about by the god of the moon [162] 

718-612 BC, Babylonia Babylonians distinguish epilepsy with diurnal and nocturnal 

seizure clusters [163]  

Pre-Hippocratic Greece People who offend Selene, the goddess of the moon, are afflicted 

by periodic seizures [138] 

400 BC, Hippocrates Precipitating factors of seizures: changes of the winds and 

temperature, exposure of the head to the sun, crying, fear [138] 

Medieval times Epilepsy as a vengeance of the goddess of the moon. The waxing 

moon supposedly heated the atmosphere surrounding the earth, 

which in turn melted the human brain and provoked the attack 

[164,165] 

Eighteenth Century (1739) Sir Hans Sloane wrote on the relationship between moon cycles 

and seizure occurrence [166] 

Nineteenth Century (1857) 

 

First description of catamenial epilepsy by Sir Charles Locock at 

the Queen Victoria Hospital, London [167] 
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