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Abstract 9 

Systemic administration of drugs is ineffective in the treatment of central nervous system disorders due 10 

to the blood-brain barrier (BBB). Nasal administration has been suggested as an alternative 11 

administration route as drugs absorbed in the olfactory epithelium bypass the BBB and reach the brain 12 

within minutes. However, the nasal mucosa properties (e.g. tonicity, pH) are inconstant due to 13 

physiological and environmental factors and this might limit the therapeutic outcome of nanocarrier-14 

based formulations. To shine light on the impact of environmental ionic strength on nanocarrier-based 15 

formulations, we have studied how liposomal formulations respond to the change of tonicity of the 16 

external environment. Large unilamellar vesicles (LUVs) loaded with six different drugs were exposed 17 

to different hypotonic environments, creating an osmotic gradient within the inner core and external 18 

environment of the liposomes up to 650 mOsm/kg. Both size and polydispersity of liposomes were 19 

significantly affected by tonicity changes. Moreover, the release kinetics of hydrophilic and lipophilic 20 

drugs were largely enhanced by hypotonic environments. These results clearly demonstrate that the 21 

environmental ionic strength has an impact on liposomal formulations stability and drug release kinetics 22 

and it should be considered when liposomal formulations for nose-to-brain targeted drug delivery are 23 

designed. 24 
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1. Introduction 1 

Standard therapies for the treatment of the majority of central nervous system (CNS) disorders (i.e. 2 

Alzheimer’s disease, multiple sclerosis, Parkinson’s disease etc.) are based on daily systemic 3 

administration of drugs. The most serious limitation of systemic administration of drugs is that the blood-4 

brain barrier (BBB) prevents drugs from reaching the CNS.1-3 The BBB consists of tightly packed 5 

endothelial cells separating the systemic circulation from the neuronal cells. It is estimated that the BBB 6 

limits the access to the brain for 98 % of small molecules and 100 % of large ones.4 To overcome these 7 

limitations, alternative routes of drug administration to the brain have lately emerged. One of the most 8 

promising routes of administration appears to be the nose-to-brain targeted drug administration.5,6 The 9 

nasal epithelium is divided into the olfactory and respiratory region.5-7 Drugs that are absorbed through 10 

the olfactory region have the potential to avoid systemic elimination (i.e. first-pass metabolism, renal 11 

clearance etc.), reach the cerebrospinal fluid (CSF) and accumulate in the brain bypassing the BBB.5-8 12 

This route of drug administration is unfortunately limited by low absorption through the olfactory 13 

epithelium because of the limited surface area, early enzymatic degradation and rapid ciliary clearance.9 14 

However, new research has shown that liposomes can optimize nose-to-brain targeted drug delivery.10 15 

Liposomes are spherical vesicles consisting of single or multiple phospholipid bilayers surrounding an 16 

aqueous core.11,12 Liposomes for nose-to-brain targeted delivery have shown to protect drugs from early 17 

degradation and elimination due to their ability to entrap both hydrophilic and lipophilic compounds.13,14 18 

Recent in vivo studies in rats have shown that liposomal formulations administered via the nose reduce 19 

systemic side effects, improve apparent neurological functions and enhance cognitive functions for the 20 

treatment of Alzheimer’s and Parkinson’s disease.10,15 Despite the promising results, liposome-based 21 

formulations intended for nose-to-brain targeted drug delivery seem to show inconsistent improvement 22 

in the therapeutic effects when compared to other nanoparticulate systems.16,17 It has been suggested 23 

that one of the reasons might be the slow drug release kinetics (for both hydrophilic and lipophilic 24 

compounds) from the liposomal carrier.18-20 Another important variable is related to physiological 25 

changes at nasal mucosal level. In fact, as the mucus is directly open to the external milieu, 26 

environmental factors such as air humidity or temperature can perturb the mucus properties such as 27 

viscosity, pH and most importantly, tonicity.21,22 These alterations might also occur during the 28 

inflammation state.23 It is well accepted that liposomal phospholipid bilayer allows small neutral 29 

molecules to pass through it to equalize the chemical activity gradient.24-26 For instance, when the ionic 30 

strength of the liposomal core is higher than the outside environment, water molecules will diffuse 31 

through the lipid bilayer from the outside to the inside of the liposomes (following the chemical activity 32 

gradient). As a result of solvent movement, an osmotic pressure is generated on the liposomal surfaces 33 

and liposomes swell (water influx).27-29 We have recently proved that the release of medium-sized 34 

hydrophilic marker (calcein) and lipophilic marker (rhodamine) from large unilamellar vesicles (LUVs) is 35 

influenced by osmotic stress.30 Specifically, we proved that the release of a hydrophilic marker from 36 

LUVs was significantly more affected by the tonicity perturbations in comparison to a lipophilic marker. 37 

This suggests that the magnitude of these changes could be related to the interplay between the 38 

changes in liposomal size and the direction of water flux through the liposomal membrane (water influx 39 

or efflux). The aim of this study was therefore to verify how the changes in environmental ionic strength 40 
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might influence liposomal formulations designed for nasal administration. Specifically, we investigated 1 

how the exposure of LUVs to hypotonic environment affects the drug release kinetics of six active 2 

pharmaceutical ingredients (caffeine, hydrocortisone, ibuprofen, ketoprofen, methylprednisolone and 3 

theophylline). The drugs were chosen to cover a range of relevant physiochemical properties (different 4 

partition coefficients and ionization constants, see Table 1) within potential candidates in the treatment 5 

or prevention of the Alzheimer’s disease.31,32 The liposomal dispersions were characterized in terms of 6 

size, ζ-potential and entrapment efficiency, whereas drug release kinetics in uneven tonicities were 7 

studied by the classic Franz cell diffusion system equipped with regenerated cellulose barriers. 8 

2. Materials and methods 9 

2.1 Materials 10 

Caffeine, hydrocortisone, ibuprofen, ketoprofen, methylprednisolone, theophylline, disodium hydrogen 11 

phosphate dihydrate (Na2HPO4·2H2O), sodium chloride (NaCl), sodium hydroxide (NaOH), sodium 12 

dihydrogen phosphate monohydrate (NaH2PO4·H2O), chloroform and methanol were purchased from 13 

Sigma-Aldrich Chemie GmbH (Steinheim, Nordrhein-Westfalen, Germany). Lipoid S100 (SPC, soy-14 

phosphatidylcholine >94 %) was kindly provided by Lipoid GmbH (Ludwigshafen, Rheinland-Pfalz, 15 

Germany). 16 

2.2 Preparation of phosphate buffered saline (PBS) 17 

PBS solutions were prepared following a method previously described.30 In brief, a 300 mOsm/kg neutral 18 

(pH 7.4) buffer (PBS300) was obtained by dissolving NaH2PO4·H2O, Na2HPO4·2H2O, NaOH and NaCl 19 

(4.5 g/L, 7.4 g/L, 0.8 g/L and 4.4 g/L, respectively) in distilled water. PBS300 was diluted 3:5 or 1:5 (v/v) 20 

with distilled water to achieve buffer solutions with reduced ionic strength (approx. 190 and 65 mOsm/kg, 21 

see Table 2). The ionic strength of PBS300 was increased by adding droplets of a 200 g/L NaCl solution 22 

(dissolved in PBS300) until a tonicity of 700 mOsm/kg tonicity was reached (PBS700). The measured 23 

osmolality (Semi-Micro Osmometer K-7400, Knauer, Berlin, Germany) and pH (SensION™ +PH31 pH 24 

meter, Hach, Barcelona, Spain) of the different PBS solutions used in this study are represented in 25 

Table 2. 26 

2.3 Preparation of LUVs 27 

LUV dispersions were prepared following a method previously described.30 A buffer solution (10 mL, 28 

PBS300 or PBS65) was gently added on top of an organic phase containing methanol (0.2 mL) and 29 

SPC/chloroform solution (200 mg/mL, 1 mL) in a 50 mL round bottom flask. LUV formulations containing 30 

caffeine, ibuprofen, ketoprofen or theophylline were prepared by dissolving the drug (2 mM 31 

concentration) in the aqueous phase (PBS300 or PBS65, respectively), whereas LUVs with 32 

hydrocortisone or methylprednisolone were prepared by dissolving the drug in the SPC/chloroform 33 

solution (drug-lipid ratio approx. 0.035 w/w). Unilamellar vesicles (containing 20 mg/ml lipid and 2 mM 34 

drug) were spontaneously formed after the removal of the organic phase by rotary evaporation (40 °C, 35 

40 rpm, 0.1 bar, 90 min, Büchi R-124 rotavapor equipped with Büchi vacuum pump V-700 and Büchi B-36 

480 water bath, Büchi Labortechnik AG, Flawil, Switzerland). Liposomal dispersions were subsequently 37 

extruded through polycarbonate membrane filters (5x800 nm and 10x400 nm, Nuclepore Track-Etched 38 
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Membranes, Whatman International Ltd., Maidstone, Kent, UK) at room temperature (23–25 °C) to 1 

obtain vesicles of homogeneous sizes. 2 

2.4 Size characterization 3 

LUVs’ size distribution was measured by photon correlation spectroscopy (angle of 173°, 25 °C, 4 

Zetasizer Nano Zen 2600, Malvern, Worcestershire, UK). Prior analysis, each LUV dispersion was 5 

diluted 1:100 (v/v) with the same buffer used to prepare LUVs and filtered through polyether sulfone 6 

membrane filters (0.2 µm pore size, VWR International, Radnor, Pennsylvania, USA). Analysis were 7 

performed in four replicates (n=4), where each sample were measured thrice. For the investigation of 8 

LUV sizes in non-isotonic conditions, LUV dispersions (prepared from PBS300 with measured tonicity 9 

of approx. 710 mOsm/kg) were diluted 1:100 (v/v) with hypotonic buffers (PBS300 or PBS65, Table 2) 10 

and sizes were detected at intervals (approx. every 15 min) over a period of 90 min. Each experiment 11 

was repeated twice (n=2) and each sample was measured three times. 12 

2.5 ζ-potential characterization 13 

The electrokinetic potential (ζ-potential) of LUVs was measured by a Zetasizer Nano Zen 2600 (Malvern, 14 

Worcestershire, UK) following a procedure previously described.30 LUV dispersions were diluted 15 

1:20 (v/v) with filtrated deionized water (0.2 µm pore size, VWR International, Radnor, Pennsylvania, 16 

USA) prior measurements and analysis were conducted at room temperature (23-25 °C). 17 

Measurements were performed in four replicates (n=4), where each sample were measured thrice. 18 

2.6 Entrapment efficiency of drugs 19 

LUVs were separated from the supernatant (containing freely unentrapped drug) by ultracentrifugation 20 

(200 000 g, 10 °C, 30 min, Beckman model L8-70M with SW 60 Ti rotor, Beckman Instruments, Brea, 21 

California, USA). The pellet obtained after ultracentrifugation was dissolved in 1 mL methanol and drug 22 

concentration was quantified in the supernatant, as well as in the pellet solutions by UV-visible 23 

spectroscopy employing a Micro-titre plate reader (Spectra Max 190 Microplate, Spectrophotometer 24 

Molecular devices, Sunnyvale, California, USA) (see Table 1 for the specific detection wavelengths of 25 

each drug). Entrapment efficiency (EE) was calculated employing Eq. (1); 26 

𝐸𝐸 (%) =
𝑀௅௎௏௦

𝑀௅௎௏௦ + 𝑀௙௥௘௘  
· 100 

(1) 

where MLUVs represents the amount of liposomal entrapped drug (i.e. recovered in the pellet) and Mfree 27 

represents the amount of freely unentrapped drug (i.e. detected in the supernatant). The drug recovery 28 

was determined from the total amount of drug (entrapped and unentrapped drug in LUVs) after 29 

centrifugation in comparison to the nominal amount of drug in the LUVs (i.e. initial total drug content 30 

before centrifugation). Analysis were performed in minimum duplicates (n≥2), whereas three samples 31 

of each batch were measured four times. 32 

2.7 In vitro drug transport study 33 

Drug transport studies were conducted employing Franz diffusion cell system (0.64 cm2 diffusional area 34 

jacketed flat ground joint, PermeGear, Hellertown, Pennsylvania, USA) following a method previously 35 

employed.30 In brief, the acceptor chamber was filled with 5 mL PBS (see Table 2). Regenerated 36 
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cellulose barriers (Visking dialysis tubing MWCO 12–14 kDa, Medicell Membranes Ltd., London, UK) 1 

were placed between acceptor and donor chamber. The experiment started by adding 0.8 mL of a 2 

liposomal dispersion (containing 20 mg/ml lipid, 2 mM total drug concentration) or, alternatively, drug 3 

solution (a.k.a. reference) to the donor chamber. In the case of soluble or poorly soluble compounds 4 

(caffeine, ibuprofen, ketoprofen, theophylline), 2 mM reference aqueous solution was employed, 5 

whereas for very poorly soluble drug (hydrocortisone and methylprednisolone) saturated suspension 6 

(1 mg/mL) was employed to maintain a consistent concentration gradient between donor and acceptor 7 

compartment. The thermodynamic solubility was predetermined to be 1 mM and 0.3 mM for 8 

hydrocortisone and methylprednisolone in PBS (both PBS65 and PBS300), respectively. Samplings 9 

(0.5 mL) from the acceptor chamber were carried out at intervals of 30 min over a period of 4 h. After 10 

withdrawal of samples, equal volumes of the respective PBS (with same tonicity) was reintroduced into 11 

the acceptor chamber in order to maintain sink condition. At the end of the experiment, drug 12 

concentrations in the acceptor and donor chambers were quantified by UV-visible spectroscopy (see 13 

section 2.6). The cumulative amount of diffused drug over time was calculated, and the linear part of the 14 

slope (representing steady state condition) was used to determine the apparent permeability coefficient 15 

(P, cm/sec) as shown in Eq. (2) rearranged from Brodin et al.;33 16 

𝑃 =
𝑑𝑚 

𝑑𝑡
·  

1 

𝐴
·  

1 

𝑐ௗ

 
(2) 

where dm/dt represents the rate of mass transfer of free drug molecules over time, A the diffusional area 17 

and cd represents the initial total drug concentration in the formulation. 18 

2.8 Resistance to drug transport through phospholipid bilayer calculation (RL) 19 

The resistance to drug transport of a compound through a barrier can be defined as the reciprocal 20 

function of P as shown in Eq. (3).34,35 21 

𝑅 =
1

𝑃
 

(3) 

In a permeation process where different layers need to be crossed, the total resistance to drug transport 22 

(RT) can be calculated from the sum of the single resistances (of each of the barriers involved) to 23 

transport. In the case of LUV dispersion studies, drug molecules need to firstly cross the liposomal 24 

bilayer, representing the first resistance to drug transport (RL, Figure 1). Secondly, drug molecules need 25 

to cross the regenerated cellulose (dialysis) barrier encountering a second resistance to drug transport, 26 

namely RB (Figure 1). Based on this assumption, measuring the total resistance to drug transport (RT,) 27 

and RB (measured in the reference experiment with drug solutions) RL can be calculated by Eq. (4) as; 28 

𝑅௅ = 𝑅் − 𝑅஻ (4) 

2.9 Statistical data evaluation 29 

Two-sample Student’s t-test assuming unequal variances was used to determine the significant 30 

differences between the mean of two data sets. A value of p below or equal to 0.050 was considered as 31 

statistically significant. 32 
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3. Results 1 

3.1 LUVs characterization 2 

The most relevant physical characteristics of the different liposomal dispersions studied are summarized 3 

in Table 3. 4 

LUV dispersions prepared in PBS300 exhibited a tonicity of approx. 710 mOsm/kg, whereas in PBS65 5 

the tonicity of LUV dispersions was found to be between 425 and 455 mOsm/kg. In all dispersions, the 6 

liposome average sizes and PI were higher when prepared in PBS with lower ionic strength 7 

(65 mOsm/kg in respect to 300 mOsm/kg). The size differences were found significant for ketoprofen- 8 

(p=0.001) and methylprednisolone-LUVs (p=0.000). The same trend could be found for PI in addition to 9 

significant difference for caffeine- (p=0.042) and ibuprofen-LUVs (p=0.020). The ZP of all LUV 10 

dispersions prepared was close to neutral and significantly more negative (p≤0.026) for the dispersion 11 

prepared in PBS65 in comparison to PBS300. Entrapment efficiency was rather low for caffeine and 12 

theophylline (18-30 %) with significant enhanced entrapment for the LUVs prepared in PBS65 in 13 

comparison to PBS300 (p=0.040 and 0.014, respectively). We determined medium-high entrapment for 14 

ketoprofen and ibuprofen (41-56 %) and considerably higher entrapment for hydrocortisone and 15 

methylprednisolone (above 74 %). 16 

3.2 Effect of the ionic strength on LUVs sizes 17 

The changes in LUVs size distributions after the exposure to isotonic (A) and hypotonic environments 18 

(B-C) are reported in Figure 2 and 3. As it can be seen, LUVs were quite homogeneous in isotonic and 19 

low-hypotonic conditions (up to approx. 410 mOsm/kg differences, Figure 2A-B). When exposed to a 20 

higher tonicity gradient (approx. 650 mOsm/kg difference between initial LUV dispersion and external 21 

environment tonicity), the liposomal dispersions clearly indicated enlargement of the size. Similarly, the 22 

PI was relatively constant over time for LUVs in the isotonic and low-hypotonic conditions (Figure 3A-23 

B). When the tonicity gradient between initial LUV dispersion and external environment of LUVs 24 

increased to approx. 650 mOsm/kg (Figure 3C), an increase in PI (as well as SD) was observed over 25 

time for all formulations tested. 26 

3.3 In vitro transport study 27 

3.3.1 Drug solutions 28 

The initial drug concentration, tonicity and the resistance to drug transport through regenerated cellulose 29 

barrier (RB) are presented in Table 4. As shown in Table 4, RB was not significantly affected by the 30 

tonicity of the PBS employed to prepare the solutions. The lowest RB were found for caffeine and 31 

theophylline (around 1.6 · 104 sec/cm), whereas for all other drugs (hydrocortisone, ibuprofen, 32 

ketoprofen, methylprednisolone), RB were slightly higher and between 1.9 · 104 and 2.3 · 104 sec/cm 33 

(Table 4). 34 

3.3.2 LUV dispersions 35 

The phospholipid bilayer’s resistance to drug transport (RL) over the tonicity gradient is reported in 36 

Figure 4. As the tonicity gradient between initial LUV dispersion and external environment of liposomes 37 

increases (∆mOsm/kg), a decrease in the RL was observed for all drugs to a different extent (Figure 4). 38 
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For caffeine and theophylline, a drastic shift in resistance was detected at a tonicity gradient of approx. 1 

400 mOsm/kg, whereas for the other drugs the decrement in RL seemed to be more gradual. A 2 

significant decrease in RL (p≤0.026) could be found for all the LUV dispersions prepared at tonicity 3 

differences around 300 and 400 mOsm/kg with the exceptions of caffeine and methylprednisolone. Only 4 

in the case of caffeine, liposomal bilayer produced significantly higher resistance (p≤0.009) at low-5 

hypotonic conditions (Figure 4, upper-left) but not in isotonic conditions. For methylprednisolone, a 6 

significant decrease in RL (p=0.026) was already apparent at tonicity differences around 100 mOsm/kg. 7 

For all LUV dispersions prepared, the reduction in RL at the highest concentration gradient (approx. 8 

650 mOsm/kg) was found significantly different (p-value between 0.000 and 0.037) compared to the 9 

lowest concentration gradient (0 mOsm/kg, isotonic condition). The overall reduction in RL was found to 10 

be between 75 and 114 % for the hydrophilic drugs (caffeine, theophylline), between 49 and 65 % for 11 

the lipophilic drugs (ibuprofen, ketoprofen) and approx. 27 % for the hydrophobic drugs 12 

(methylprednisolone, hydrocortisone). 13 

4. Discussion 14 

4.1 LUVs characterization 15 

The LUVs were prepared using natural lipid (SPC) and PBS (adjusted to physiological pH and tonicities) 16 

to achieve LUV dispersions suitable for nasal administration.21,22 In relation to liposomal sizes, PI and 17 

ZP, the prepared LUV formulations exhibited suitable profiles when compared with other liposomal 18 

formulations intended for nasal administration.13,14,36,37 In agreement with our previous findings,30 the ZP 19 

was found to be slightly more negative for the LUVs prepared in PBS65 compared to PBS300 (Table 3). 20 

Although the neutral ZP at higher ionic strength can be expected due to the formation of a thicker ion 21 

shell surrounding the liposomes,38 the larger sizes of LUVs prepared in PBS65 in comparison to PBS300 22 

are difficult to explain. It could be argued that this discrepancy is related to small changes in elasticity 23 

of the phospholipid bilayers in environments of different ionic strengths. The prepared LUVs were also 24 

found to be suitable carriers to entrap all the drugs with different magnitude of loading. In accordance 25 

with their distribution coefficients at pH 7.4 (logD7.4, Table 1) and the literature, hydrophobic drugs 26 

(hydrocortisone and methylprednisolone) reached the highest entrapment efficiency into liposomes 27 

(between 74 and 85 %, respectively), whereas the entrapment was much lower for hydrophilic drugs 28 

(close to 25 % for caffeine and theophylline).39 The lipophilic drugs (ibuprofen and ketoprofen) showed 29 

a medium-high entrapment efficiency ranging between 41 and 56 % (similarly to what has been reported 30 

previously by Nii and Ishii.40 The entrapment was significantly enhanced for LUVs with hydrophilic drugs 31 

prepared in PBS65 when compared to PBS300 (caffeine p=0.040, theophylline p=0.014, respectively). 32 

This might be related to the increased size of liposomal carriers when prepared in different PBS 33 

(Table 3). In our previous study we assumed, due to the lack of available literature on the topic, that the 34 

total tonicity of the liposomal formulation should have been primarily influenced by the ionic strength of 35 

the solution.30 In the present work, we measured the tonicity of each of the LUV dispersions (Table 3), 36 

and surprisingly, a significant discrepancy in tonicity for LUV dispersions in comparison to plain buffer 37 

(Table 2) was found for all formulation tested. As the drug alone did not affect the buffer’s tonicity at the 38 

experimental condition (Table 4), assuming that at the equilibrium, the tonicity of the inner core of 39 

liposomes is equal to the measured tonicity of the LUV dispersion (i.e. external environment), it appears 40 
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that liposomes themselves acted as strong tonicity agents (the influence on total tonicity accounts for 1 

more than 300 mOsm/kg. A very similar trend was observed for empty liposomes (measured tonicity of 2 

718 ± 34 mOsm/kg and 448 ± 22 mOsm/kg when prepared in PBS300 or PBS65, respectively). To the 3 

best of our knowledge, this phenomenon has not been described earlier and it might be of extreme 4 

importance in liposomal drug research. 5 

4.2 Effect of the ionic strength on LUVs sizes 6 

It has been reported previously that LUVs sizes can be affected by changes in tonicity of the surrounding 7 

environment.30,41 If the environment surrounding liposomes is hypotonic in comparison to the liposomal 8 

core, liposomes have a tendency to increase in size as a result of water influx into the liposomes.27-29 9 

Photon correlation spectroscopy is a powerful technique applied to quantify liposomal sizes and PI in a 10 

dispersion. However, in these experiments, it was difficult to determine an accurate size of the LUVs 11 

under the influence of tonicity perturbations. In order to have a better and clear picture of the effect that 12 

hypotonic surrounding environments had on the formulations, LUV dispersions (approx. 710 mOsm/kg) 13 

were exposed to two buffers of different ionic strengths (300 mOsm/kg and 65 mOsm/kg) and sizes of 14 

the liposomes were measured at approx. 15 min intervals for a total period of 90 min. The size 15 

distribution of all formulations was rather homogenous (Figure 2). Interestingly, the dispersions were 16 

more homogeneous in the low-hypotonic conditions rather than isotonic conditions (Figure 2A-B). Since 17 

ions are capable of neutralizing liposomal surface charges due to ion-shell formation,38,42-45 it is 18 

reasonable to assume that liposomal aggregation is more significant in isotonic conditions than in low-19 

hypotonic conditions due to the surface charge neutralization of liposomes (see also Table 3). When the 20 

surrounding liposomal environment was highly hypotonic (∆mOsm/kg of 648 ± 19 mOsm/kg, Figure 2C) 21 

the size distribution became very heterogeneous. The same trend could be observed for the PI that was 22 

significantly increased over time just at high tonicity gradient (Figure 3C). The combination of these 23 

results clearly indicates that LUVs grew in sizes when exposed to hypotonic environments at differences 24 

of approx. 648 mOsm/kg, whereas smaller differences were not apparent due to the disturbances on 25 

the liposomal surfaces which might have affected the LUVs behaviour and the size measurements. 26 

4.3 Resistance to drug transport through regenerated cellulose barrier (RB) 27 

In this work, the kinetics of transport for the investigated drugs through barrier(s) were described by 28 

calculating the resistance of each single barrier involved. This was done to better differentiate the role 29 

of each barrier involved in the total net transport of drug (Eq. (3)) and is essential for a correct 30 

interpretation of transport studies that involves liposomes. The RB was determined by measuring the 31 

drug’s permeability (Eq. (2)) from drug solutions, or in the case of very poorly soluble drugs 32 

(hydrocortisone and methylprednisolone), employing aqueous drug suspensions (no liposomes 33 

present). As can be seen in Table 4, the lowest RB were found for caffeine and theophylline, whereas 34 

the highest were found for hydrocortisone and methylprednisolone. The reason for the significant 35 

discrepancy could to be attributed to the different size (i.e. molecular weight, Table 1) of the molecules. 36 

In fact, Eq. (5) (adaptation of Fick’s first law) can describe the permeability of a drug through a 37 

regenerated cellulose barrier as; 38 
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𝑃 =
𝐷

𝐶ௗ

 ·  
𝑑𝑐

𝑑𝑥
 

(5) 

 1 

where D represents the diffusion coefficient and dc/dx the gradient of concentration between donor and 2 

acceptor compartment. From this equation it is evident that, normalizing the concentration and assuming 3 

same thickness of the barrier in all experiments, the differences in permeability (and therefore in 4 

resistance to transport) within different drugs through cellulose barriers are solely given by the different 5 

diffusion coefficients of each drug. Indeed, D is higher for small compound such as caffeine (measured 6 

diffusivity in similar conditions, 9 · 10-6 cm2/sec46) and lower for larger compounds such as ketoprofen 7 

(measured diffusivity in similar conditions, 6 · 10-6 cm2/sec46). 8 

4.4 Resistance to passive transport through liposomal barrier (RL) 9 

The liposomal bilayer of LUVs represents an additive barrier that drug molecules need to cross to reach 10 

the acceptor compartment (Figure 1). In order to calculate the resistance to drug transport through the 11 

phospholipid bilayer (RL), the permeability of drugs through regenerated cellulose barrier of LUVs loaded 12 

with drug (RT) needed to be measured and subtracted from RB (Eq. (4)). In isotonic conditions (Figure 4, 13 

∆mOsm/kg of approx. 0 mOsm/kg), hydrophilic compounds (caffeine and theophylline) exhibit a RL of 14 

approx. 0.4 to 0.7 · 104 sec/cm and this resistance rises with the lipophilicity of the compounds (Table 1) 15 

up to 14.6 · 104 sec/cm for very hydrophobic compound, methylprednisolone. The higher resistance to 16 

transport through the lipid bilayer expressed by hydrophobic compounds in comparison to hydrophilic is 17 

not surprising and is due to the fact that the lipophilic compounds are tightly embedded in the lipid 18 

bilayers and cannot escape (be released) easily. These results are in agreement with previous 19 

findings.18 Interestingly, for the hydrophilic compounds (caffeine and theophylline) and to a minor but 20 

substantial extent, lipophilic acidic drugs (ketoprofen and ibuprofen), a strong reduction in RL was 21 

measured with reduced external ionic strength (increased ∆mOsm/kg, Figure 4). This is a clear evidence 22 

that exposure of drug-loaded LUVs to hypotonic environment is a powerful trigger of drug release. This 23 

can be attributed to the stretching of the phospholipid bilayers induced by LUVs size enlargements that 24 

makes the barrier leakier and drugs can permeate more easily.29,47 This phenomenon is in agreement 25 

with previous findings.48-50 An alternative hypothesis to explain the increased drug release in hypotonic 26 

conditions is the pore formation during liposomes swelling which can cause a pulsating release of 27 

entrapped content.41,51-53 For caffeine and theophylline, the RL become practically zero (i.e. no 28 

resistance to drug transport caused by phospholipid bilayer) when the tonicity differences between the 29 

inner core and external environment of LUVs reached around 350 mOsm/kg. Interestingly, RL increases 30 

at the lowest tonicity gradients for caffeine (below 300 mOsm/kg, Figure 4 upper-left). It can be argued 31 

that at low tonicity gradients, the stretching of phospholipid bilayers might be compensated (if not 32 

overdriven in the case of caffeine) by the water flux directed inwards (i.e. against drug flux), causing 33 

therefore an increasing in RL. For ibuprofen and ketoprofen, the reduction in RL seemed to be more 34 

proportional and reaching a minimum of approx. half of the initial RL at the highest tonicity gradient 35 

(∆mOsm/kg above 600 mOsm/kg). Interestingly, the release of hydrophobic compounds (hydrocortisone 36 

and methylprednisolone) was also positively affected by the hypotonic surrounding environment, 37 

however to a minor extent in comparison to the other compounds tested. At a tonicity gradient above 38 
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600 mOsm/kg, the RL for hydrophobic hydrocortisone and methylprednisolone is reduced by approx. 1 

27% in comparison to isotonic condition. These results are in agreement with our previous findings 2 

where we demonstrated that the kinetic of calcein release (hydrophilic marker) from LUVs was more 3 

affected by tonicity perturbation in comparison to the lipophilic marker (rhodamine).30 It is clear that the 4 

effect of the environmental tonicity on the release of liposomal drugs needs to be studied to assist in 5 

optimization of liposomal formulations destined for nasal administration. 6 

5. Conclusions 7 

In this work, we have proven that the tonicity of the environment surrounding liposomes plays a crucial 8 

role in LUVs’ physical characteristics (i.e. size, polydispersity and surface charge) as well as drug 9 

release profiles. Firstly, we have showed that liposomes themselves significantly affect the total tonicity 10 

of the dispersions. Secondly, we have demonstrated that LUVs size as well as polydispersity increase 11 

after exposing liposomes to hypotonic environment proven them osmotically active. Finally, we have 12 

proven that the exposure of drug-loaded LUVs to hypotonic environments reduces RL and therefore 13 

enhances drug release kinetics of both hydrophilic and lipophilic/hydrophobic drugs. The findings have 14 

clear implications in the development and optimization of liposomal formulations targeting nasal 15 

administration. Moreover, the observed effects can be utilized to tailor the release of liposomal drugs 16 

within nasal environment. 17 
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 1 

Figure 1. Schematic representation of the passive diffusion setup. RB represents the resistance to drug 2 

transport through regenerated cellulose barrier (measured for drug in solution), whereas RT represents 3 

the total resistance to drug transport (measured for liposome dispersion) and RL represents the 4 

resistance to drug transport through liposomal bilayer (calculated with Eq. (4)). 5 

 6 
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 1 

Figure 2: Size distributional changes for drug-loaded LUVs in a) isotonic condition (∆mOsm/kg of 2 

3 ± 2 mOsm/kg), b) low-hypotonic condition (∆mOsm/kg of 414 ± 19 mOsm/kg) and c) hypotonic 3 

condition (∆mOsm/kg of 648 ± 19 mOsm/kg). Each line represents the mean size distribution (n=2) 4 

measured at five different time points within 90 min. 5 

  6 
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 1 

Figure 3. Polydispersity index (PI) changes for drug-loaded LUVs in a) isotonic condition (∆mOsm/kg 2 

of 3 ± 2 mOsm/kg), b) low-hypotonic condition (∆mOsm/kg of 414 ± 19 mOsm/kg) and c) hypotonic 3 

condition (∆mOsm/kg of  648 ± 19 mOsm/kg). Results represents mean ± SD (n=2). 4 
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 1 

Figure 4: Liposomal bilayer resistance (RL) to drug transport under the influence of hypotonic 2 

environmental changes. The tonicity differences between the inner core and external environment of 3 

liposomes are shown as ∆mOsm/kg. Results represents mean ± SD (n=4) and significant difference 4 

(*p≤0.050, **p≤0.010, ***p≤0.001) in RL is determined between the hypotonic compared to isotonic 5 

condition.1000 6 
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Table 1. Molecular weight (MW), dissociation constant (pKa), distribution coefficient at pH 7.4 (logD7.4) 1 

and wavelength of maximum absorbance (λmax) of the investigated drugs. 2 

Drug MW (g/mole) pKa logD7.4 λmax (nm) 

Caffeine 194.2 10.454 0.058 273 

Theophylline 180.2 8.855 -0.158 272 

Ketoprofen 254.3 4.556 0.259 261 

Ibuprofen 206.3 4.957 1.059 222 

Hydrocortisone 362.5 Not relevant 1.558 247 

Methylprednisolone 374.5 Not relevant 2.158 248 

 3 
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Table 2. Experimentally determined osmolality, pH and calculated phosphate concentration for each of 1 

the PBS solutions employed. Results represents mean ± SD (n=5). 2 

Buffer solution Osmolality (mOsm/kg) pH Phosphate (mM) 

PBS700 707 ± 6 7.21 ± 0.01 74 ± 0 

PBS300 298 ± 12 7.39 ± 0.03 74 ± 0 

PBS190 183 ± 2 7.49 ± 0.04 44 ± 0 

PBS65 64 ± 3 7.60 ± 0.04 15 ± 0 

 3 
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Table 3. Measured tonicity, size, polydispersity index (PI), ζ-potential (ZP), entrapment efficiency (EE) 1 

and drug recovery for all formulations investigated. Results represents mean ± SD (n≥2). 2 

Drug 
Buffer 

solution 

Tonicity 

(mOsm/kg) 

Size 

(nm) 
PI 

ZP 

(mV) 

EE 

(%) 

Drug 

recovery 

(%) 

Caffeine 
PBS65 430 ± 17 288 ± 53 0.34 ± 0.03 -2.99 ± 0.85 22 ± 4 97 ± 3 

PBS300 719 ± 18 262 ± 42 0.27 ± 0.03* -0.87 ± 0.95*** 18 ± 3* 99 ± 1 

Theophylline 
PBS65 455 ± 6 341 ± 72 0.37 ± 0.04 -1.99 ± 0.93 30 ± 0 100 ± 3 

PBS300 719 ± 22 327 ± 62 0.31 ± 0.04 -0.08 ± 1.28*** 23 ± 6* 103± 3 

Ketoprofen 
PBS65 429 ± 4 368 ± 68 0.34 ± 0.03 -5.40 ± 0.98 42 ± 1 97 ± 2 

PBS300 718 ± 28 249 ± 36*** 0.22 ± 0.02** -3.97 ± 0.98 41 ± 4 98 ± 1 

Ibuprofen 
PBS65 429 ± 1 252 ± 36 0.22 ± 0.02 -8.68 ± 1.05 56 ± 4 99 ± 3 

PBS300 686 ± 23 246 ± 33 0.20 ± 0.02* -6.26 ± 1.01** 46 ± 9* 101 ± 1 

Hydro-

cortisone 

PBS65 437 ± 6 332 ± 60 0.31 ± 0.03 -5.86 ± 1.10 77 ± 3 94 ± 5 

PBS300 718 ± 14 314 ± 58 0.32 ± 0.03 -2.49 ± 0.95* 74 ± 7 97 ± 4 

Methyl-

prednisolone 

PBS65 425 ± 7 285 ± 46 0.29 ± 0.03 -3.12 ± 0.91 85 ± 3 97 ± 3 

PBS300 701 ± 9 256 ± 35*** 0.20 ± 0.02*** -0.75 ± 0.94*** 84 ± 5 97 ± 3 

Significant difference (*p≤0.050, **p≤0.010, ***p≤0.001) between the LUVs prepared in PBS300 in 3 

comparison to PBS65. 4 
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Table 4. Regenerated cellulose barrier’s resistance to drug transport (RB) of drug solutions in phosphate 1 

buffered saline. Results represents mean ± SD (n=4). 2 

Drugs 
Buffer 

solution 

Drug concentration 

(mM) 

Tonicity 

(mOsm/kg) 

RB 

(104 sec/cm) 

Caffeine 
PBS65 2.04 ± 0.03 65 ± 1 1.64 ± 0.03 

PBS300 2.00 ± 0.00 300 ± 2 1.64 ± 0.05 

Theophylline 
PBS65 1.92 ± 0.03 65 ± 1 1.58 ± 0.05 

PBS300 1.99 ± 0.02 297 ± 1 1.60 ± 0.07 

Ketoprofen 
PBS65 2.00 ± 0.04 66 ± 2 2.26 ± 0.08 

PBS300 2.00 ± 0.00 298 ± 0 2.08 ± 0.11 

Ibuprofen 
PBS65 2.03 ± 0.00 68 ± 4 2.14 ± 0.14 

PBS300 2.01 ± 0.00 308 ± 10 2.18 ± 0.15 

Hydrocortisone 
PBS65 1.02 ± 0.01 66 ± 1 1.92 ± 0.23 

PBS300 1.03 ± 0.02 298 ± 0 2.22 ± 0.17 

Methylprednisolone 
PBS65 0.26 ± 0.00 64 ± 0 2.03 ± 0.18 

PBS300 0.25 ± 0.00 301 ± 5 2.27 ± 0.34 

 3 

 4 


