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ABSTRACT: 

Vinpocetine is a poorly water soluble weakly basic drug (pKa= 7.1) used for the treatment of 

several cerebrovascular and cognitive disorders. Since existing formulations exhibit poor 

bioavailability and scarce absorption, a dosage form with improved pharmacokinetic properties is 

highly desirable. Cocrystallization represents a promising approach to generate diverse novel 

crystal forms and to improve the aqueous solubility and in turn the oral bioavailability. In this 

paper, a novel ionic cocrystal of vinpocetine is described, using boric acid as a coformer, and 

fully characterized (by means of DSC, solid-state NMR, powder and single crystal XRD, and 

Powder Dissolution Test). Pharmacokinetic performance was also tested in a human pilot study. 

This pharmaceutical ionic cocrystal exhibits superior solubilization kinetics and modulates 



important pharmacokinetic values such as tmax, cmax and AUC of the poorly soluble vinpocetine 

and it therefore offers an innovative approach to improve its bioavailability. 
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INTRODUCTION 

 

Crystalline forms are the preferred dosage forms for active pharmaceutical ingredients (APIs) for 

use in drug products. Generally single and multicomponent crystals show superior stability to 

their amorphous counterparts and their synthesis (crystallization) tends to afford highly pure 

products that are reproducible and scalable.
1
 Moreover, different crystal forms can exhibit 

different physicochemical properties that will affect the pharmacokinetics of the drug. For these 

reasons, during the early stages of drug development, novel crystal forms of the API are searched 

for through screening processes
 
and their physicochemical properties are identified.

2-9
 These 

novel crystal forms might include polymorphs or multi-component crystal such as salts, solvates, 

hydrates and, more recently, cocrystals. Cocrystals are solids that are crystalline single phase 

materials composed of two or more different molecular and/or ionic compounds, generally in a 

stoichiometric ratio, which are neither solvates nor simple salts.10
 The current attraction to 

cocrystals as novel crystal forms is attributed to their ability to change key properties of APIs via 

inclusion of additional molecules through reliable, therefore designable, interactions (i.e. 

supramolecular synthons)
11

. A large library of  potential coformers can be built using databases 

containing pharmaceutically approved substances such as the GRAS (generally recognized as 

safe) list for example, which contains ingredients recognized by the United States Food and Drug 

Administration (FDA) to be safe under specified conditions. These substances can serve as 

coformers in order to obtain new crystal forms with improved solubility,
12,13

 compressibility,
14

 or 

stability
15

 that ultimately impact on bioavailability.
16

 

The main challenge during pharmaceutical cocrystal development is the rational selection of 

coformers for a particular drug molecule, since it is not realistic to screen the whole chemical 



catalogue. Following a proven crystal engineering
17

 approach, possible coformers can be chosen 

to form robust supramolecular interactions (synthons) with the desired drug molecule, taking into 

consideration supramolecular synthon hierarchy.
18

 This supramolecular synthesis strategy
11, 19 

primarily relies on crystallographic data found in the Cambridge Structural Database (CSD).
20

 

This approach, however, has yet to offer clear predictions about whether there will be desirable 

property improvement in the resulting cocrystals, even though efforts have been made to 

correlate the physicochemical properties of coformers to those of the resulting cocrystals.
21

 

In particular, amongst pharmaceutical cocrystals, ionic co-crystals have proven to be a viable 

route to enhance solubility/bioavailability of poorly soluble drugs.
22

 Recently, a pharmaceutical 

ionic cocrystal containing two active ingredients, Entresto™ used to treat chronic heart failure, 

gained approval from the FDA.
23

 

The target of this study, vinpocetine (Figure 1), is a semisynthetic derivative of the natural 

alkaloid vincamine, showing a series of pharmacological properties in relation to cerebral 

circulation and on vascular resistance, particularly in the area of blood vessels.
24

 Vinpocetine has 

been shown to impact the cerebral circulation and metabolism and improve various types of 

cerebrovascular circulatory disorders such as the cerebral infarction, cerebral hemorrhage, 

cerebral arteries cirrhosis
25

 and for the long term treatment of cognitive disorders and related 

symptoms.
26

 Due to its low aqueous solubility, and extensive first pass metabolism, vinpocetine 

presents low oral bioavailability (~6.7%)
27, 28

 and, as a consequence, its clinical use is limited. In 

this context the aim of this investigation is to improve the solubility and bioavailability of 

vinpocetine with an ionic cocrystal. 

 

 

 



MATERIALS AND METHODS 

 

Materials 

Vinpocetine E.P. grade was a kind gift from Linnea SA (Riazzino-Locarno, CH) with a purity of 

99.8% and was used without further purification. Boric acid was supplied by Sigma-Aldrich (St 

Louis, MO, USA) and used without further purification. Acetonitrile with a purity of 99.9% was 

supplied by Sigma-Aldrich (St Louis, MO, USA) 

 

Synthesis of Vinpocetine – Boric acid Cocrystal (1) 

1 was prepared by slow evaporation using the following procedure: a mixture of vinpocetine 

(50.1 mg, 0.14 mmol) and boric acid (26.1 mg, 0.42 mmol) was transferred into a glass vial. 

Subsequently, 14 mL of acetonitrile was added to the solid mixture and stirred for 30 min at 45 

°C. The clear solution was then left for slow evaporation under ambient conditions. 

 

Crystal Form Characterization 

Single-Crystal X-Ray Diffraction 

Single-crystal analysis for 1 was performed on a Bruker-AXS D8 QUEST diffractometer 

(Bruker, Madison, WI, USA) using a micro focus generator of Mo K radiation (λ = = 0.71073 

Å) and CMOS PHOTON detector. Data for 1 were collected at 100 K‡. Lattice parameters were 

determined from least-squares analysis, and reflections were integrated using SAINT (Bruker, 

Madison, WI, USA).
29

The structure was solved by direct methods and refined by full matrix least 

squares based on F
2
 using X-Seed software.

30
 All non-hydrogen atoms were anisotropically 

refined. All hydrogen atoms bonded to carbon, nitrogen, and oxygen atoms were placed 



geometrically and refined with an isotropic displacement parameter fixed at 1.2 times Uq of the 

atoms to which they were attached. Hydrogen atoms bonded to methyl groups were placed 

geometrically and refined with an isotropic displacement parameter fixed at 1.5 times Uq of the 

carbon atoms.  

 

Powder X-ray Diffraction (PXRD) 

The cocrystal structure of 1 was characterized using a D8 Bruker X-ray Powder Diffractometer 

(Bruker, Madison, WI, USA) using Cu K radiation (λ = 1.54178 Å), 40 kV, 40 mA. Data were 

collected at room temperature on a sample manually ground in an agate mortar. The data were 

collected over an angular range of 5° to 40° 2θ value in continuous scan mode using a step size of 

0.05° 2θ value and a scan rate of 5°/min. 

Moreover, a calculated PXRD diffractogram was generated from the single-crystal structure of 1 

using Mercury 2.2 (Cambridge Crystallographic Data Centre, Cambridge, UK) and compared 

with the pattern obtained from the bulk sample. 

 

Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry was performed on a PerkinElmer Diamond differential 

scanning calorimeter (PerkinElmer, Waltham, MA, USA) with a scan range of 25 °C–250 °C, 

scan rate of 10 °C/min under nitrogen atmosphere. 

 

Solid-state NMR spectroscopy (SSNMR) 

Solid-state NMR spectra were recorded with a Bruker Advance II 400 instrument operating at 

400.23, 100.64 and 40.55 MHz for 
1
H, 

13
C and 

15
N nuclei, respectively. Cylindrical 4 mm o.d. 



zirconia rotors with a sample volume of 80 L were employed and spun at 12 (
13

C) or 9 (
15

N) 

kHz. All 
13

C and 
15

N experiments employed the RAMP-CP pulse sequence (
1
H 90° pulse of 3.05 

s) with TPPM 
1
H decoupling with an rf field of 75 kHz during the acquisition period.

 13
C 

spectral editing experiments were performed with the CPPISPI pulse sequence with polarization 

inversion times of 65 and 70 µs for pure vinpocetine and 1, respectively in order to obtain CH3 

and Cq positives, CH nulls and CH2 negatives. 
13

C and 
15

N chemical shifts were referenced with 

the resonance of hexamethylbenzene (
13

C methyl signal at 17.4 ppm) and (NH4)2SO4 (
15

N signal 

at -355.8 ppm with respect to CH3NO2). 

 

Powder Dissolution Test (PDT)  

Prior to dissolution test, the equilibrium solubility was determined at 25°C adding an excess of 

powder to 20 ml of 0.2 M KH2PO4/0.2 M NaOH (pH 7.4) buffer. The equilibration time was 

found to be 24h. The dissolution experiments of pure vinpocetine and 1 were performed using 

100 ml of pH 7.4 buffer since in previous studies
31 

it was reported that vinpocetine solubility is 

highly pH dependent, and is particularly low at intestinal pH values. Each experiment was 

performed at 37 °C to mimic body temperature. Additionally, the dissolution tests were 

performed using non-sink conditions to build up the supersaturation, as commonly occurs under 

finite volume conditions in the gastrointestinal tract, and to allow for possible events such as 

nucleation, crystallization and precipitation to proceed
32

. Accordingly, at time zero, a suitable 

amount of sample (pure drug or cocrystal 1) to give 15 mg of active ingredient, was added to 100 

ml phosphate buffer at 37 °C. The crystalline materials were previously sieved and only the 

powder with a particle size between 50 and 70 µm was used during the dissolution experiments. 

Each test lasted 5 h, and the uniformity of conditions was constantly ensured by using an impeller 



at a stirring rate of 200 rpm. The equilibrium solubility and the amount of vinpocetine solubilized 

at each time point was quantified by the previously described method
33

. Each formulation was 

tested in triplicate. 

 

In Vivo absorption studies 

For the in vivo study six male volunteers aged between 28 and 55 years were chosen. The study 

was conducted at the University of Trieste, Italy, following the principles of the Declaration of 

Helsinki and the International Conference on Harmonization Guidelines. Before the study, a 

written informed consent was signed by each subject. All the volunteers were prohibited to take 

medicines, following a one week wash out period before the beginning of the present study.  

The dose of 10 mg of vinpocetine was administered in a hard gelatin capsule (type 0) with 200 

mL of water. After one week of washout period the same procedure was adopted for the test 

formulation, administering a hard gelatin capsule containing 14 mg cocrystal 1, corresponding to 

10 mg of vinpocetine. Blood samples (5 ml) were collected in heparinized tubes at interval times 

of 0, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 h following capsule administration. The collected samples 

were immediately separated by centrifugation at 2400 g for 10 min, subsequently frozen and 

stored at -40°C until assayed.  

In this study, apovincaminic acid plasma concentrations were monitored, as suggested in the 

literature
34

. This choice was made in consideration of the fast metabolic conversion from 

vinpocetine to apovincaminic acid.  

The determination of apovincaminic acid concentration was performed using a previously 

published HPLC method
34

. The preparation of the samples for HPLC analysis was performed 

according to the method reported by Hasa et al
33

. Briefly, 600 μl methanol were added to 200 μl 



plasma, and the resulting mixture was vortexed for 10 min. After centrifugation (2400 g for 6 

min), 5 μl of the organic solution was injected.  

 

Pharmacokinetic Analysis 

A compartmental pharmacokinetic analysis was performed using ADAPT 5 software
35

. One- and 

two-compartment models with and without absorption lag-time were evaluated and one-

compartment model with absorption lag-time was selected for the analysis based on favorable 

value of Akaike information criterion. The estimated parameters were absorption (t1/2Ka) and 

elimination (t1/2Ke) half-lives, absorption lag time (tlag) and apparent distribution volume (Vd/F). 

Bioavailability parameters, including maximum concentration in plasma (Cmax), time to 

maximum concentration (tmax), and area under the plasma concentration-time curve (AUC) were 

calculated as secondary parameters.  

The relative bioavailability after oral administration (Frel) was calculated in Eq. 1: 

Frel = AUC1 / AUC(vinpocetine)         (1) 

Descriptive statistics were calculated, and results are reported as means (standard errors). As this 

was a pilot study, the results were not subjected to any formal statistical test. 

 

RESULTS AND DISCUSSION 

The potential coformers to cocrystalize with vinpocetine were selected through a supramolecular 

synthon approach. Vinpocetine is characterized by a tertiary amine and an ester functions that 

could both act as H-bond acceptors. Hence molecules with H-bond donor groups, such as 

alcohols and mildly acidic carboxylic acids could be ideal coformer candidates. With this in mind 

we created a coformer library consisting of GRAS listed substances with hydroxyl functions, 



among which boric acid was included. Initial screening experiments in acetonitrile afforded a 

vinpocetine boric acid ionic cocrystal (1) in 85% yield. Conversely, grinding and slurry were not 

successful in cocrystal formation.  

Solid-state characterizations including X-ray diffraction, SSNMR and DSC were performed on 1. 

 

X-Ray Diffraction 

Single crystal X-ray diffraction (Figure 2) showed that 1 crystallizes in the monoclinic P21 space 

group with two independent vinpocetine molecules per asymmetric unit. The bond distance and 

residual electron density analysis suggests that the amine function on the two molecules (N11c 

and N11d) are different, one being neutral and the other being protonated. Indeed the neutral 

amine acts as an H-bond acceptor for a boronic acid (N···O distance ca. 2.72 Å) while the 

protonated one is the H-bond donor for a charged assisted interaction with a B5H4O10 anion 

(N···O distance ca. 2.81 Å). The anion and boronic acid interact further via an OHˑˑˑOH H-bond 

dimer (𝑅2
2(8) in graph set notation). These supramolecular units containing inorganic and organic 

components form alternating layers that align parallel to the ab plane, as shown in Figure 2. The 

experimental PXRD pattern of 1 is reported in Figure 3 and showed a series of sharp diffraction 

peaks in the 2 theta range 5-40°, suggesting the high crystalline nature of the powdered sample. 

From Figure 3 it can be also noticed that the experimental PXRD and the calculated patterns of 1 

are very similar, indicating absence of significant amounts of impurities.  

It must be noted that although the B5H4O10 anion is a rather common species reported in over  

150 structures in the CSD, only in 8 entries the anion co-crystallizes with B(OH)3. 

  

Differential Scanning Calorimetry  



The solid-state thermal behavior of pure vinpocetine, pure boric acid and 1 was investigated by 

means of DSC analysis. The DSC curve of pure boric acid shows two endothermal events (Figure 

4), the first being the melt occurring at 148 °C followed by a second slightly sharper endothermal 

event at 159 °C, possibly due to the loss of water molecules and crystal lattice transformations of 

the initial boric acid into other forms more stable at higher temperatures.
36

 Pure vinpocetine 

shows a single sharp melting peak at 152 °C, indicating the highly crystalline nature of the 

sample. Vinpocetine starts to decompose after ca. 200 °C (Figure 4). 1 showed a large melting 

event with a peak at 191°C, which is higher than both pure vinpocetine and boric acid. The broad 

melting event in the cocrystal, in accordance to some peak broadening showed in experimental 

PXRD pattern, is possibly due to the different interactions of vinpocetine molecules within the 

cocrystal lattice (hydrogen-bonded and protonated vinpocetine molecules), a large range of 

particle size or a less crystalline sample. 

  

Solid-state NMR spectroscopy  

The SSNMR characterization can facilitate the determination of the moieties present in the 

crystal structure, in particular in addressing the question of whether the compound discussed 

herein should be regarded as a molecular cocrystal or as an ionic cocrystal. The difference is 

subtle since it depends on the hydrogen position along the O···H···N interaction, i.e. whether it is 

close to oxygen or to nitrogen. This depends on several factors including the relative values of 

pKa (but pKa can be misleading as it is evaluated with respect to the solvent, usually water, and 

does not necessarily correlate in the solid-state)
37,38

 the crystal packing and the temperature. It has 

been reported that NMR spectroscopic methods, such as the measurement of 
13

C chemical shifts 

of carboxylic carbon atoms, are good indicators of the protonated state of COOH groups
39-41

. On 

the other hand, the 
15

N chemical shift is remarkably sensitive to the protonation degree of H-



bonded nitrogen atom with shifts at higher or lower frequencies accordingly with the type of 

nitrogen atom, i.e. whether aromatic or aliphatic
42-47

. Similar effects are observed upon halogen 

bond formation or metal coordination
48-53

 which is in agreement with the minor contribution of 

the lone pair to 
p

loc removed by quaternization
54-56

. The 
13

C and 
15

N chemical shifts with 

assignment are reported in Tables 1 and 2, respectively. The 
13

C and 
15

N CPMAS spectra are 

reported in Figures 5 and 6, respectively. 
13

C spectral editing experiments (Spectra reported in the 

Supporting information Figure S1) were fundamental for the correct assignment of the 

resonances. For atom numbers we refer to Figure 1: suffix “d” to the number indicates the 

charged molecule while suffix “a” the neutral one. 

The 
13

C CPMAS spectra of pure vinpocetine and 1 (Figure 5) can be divided in three main 

regions: CH2, CH and Cq aliphatic carbons (6-63 ppm), sp
2
 CH and Cq carbons (107-134 ppm) 

and CO carbons (161-164 ppm). The spectrum of 1 is characterized by sharp peaks (FWHM 

around 50-70 Hz) highlighting the high crystallinity of the sample. Furthermore, the splitting of 

almost all resonances in the spectrum of 1 is in agreement with the presence of two independent 

molecules in the unit cell (Z’=2). The 
15

N CPMAS spectrum of pure vinpocetine (Figure 6a) 

presents two resonances at 4.1 and 113.6 ppm for N11 and N1, respectively both attributed to 

nitrogen atoms not involved in any interaction. On the other hand, the 
15

N CPMAS spectrum of 1 

(Figure 6b) shows two signals for the N11 atom at higher frequencies (10.1 and 18.7 ppm) with 

respect to the pure vinpocetine signal. The former, attributed to N11c, is typical of a nitrogen 

involved in N···H-O H-bond while the latter, assigned to N11d, is characteristic of a N
+
-H···O

-
 

interaction. This is a clear indication that a proton transfer took place from the B5H4O10 anion to 

vinpocetine and that there is concomitant presence of both a neutral molecule and a salt in the 



unit cell. No significant shifts were observed for the N1 atom on passing from pure vinpocetine 

to the cocrystal in agreement with the small rearrangement experienced. 

 

Powder Dissolution Test   

Powder dissolution tests (PDTs) were performed for pure vinpocetine and 1. Pure vinpocetine 

showed a dissolution profile typical of a poorly soluble drug where concentration of 0.8 mg/L 

was reached after 5 h (Figure 7). Conversely, in 1 a significant improvement of vinpocetine 

dissolution rate was achieved. Compared to the orginal drug, the dissolution behavior of 

vinpocetine in 1 appears to be superior both in terms of rate and extent of total drug dissolved 

during the first 5 hours. 1 reaches a concentration of 1.4 mg/L; near to the value for pure 

vinpocetine Cs, 1.6 mg/L (Figure 7). It is worth noting that the Cs value for pure vinpocetine was 

reached after 24 hours of dissolution analysis (using the same experimental conditions as the 

powder dissolution analyses), and is consistent with other values previously reported in 

literature.
31

 The fact that 1 dissolves at a much faster rate than vinpocetine is promising and a 

faster in vivo absorption is expected. In this case the innovative approach of an ionic 

cocrystallization permits a great improvement of solubilization kinetics with respect to pure 

crystalline vinpocetine, which can be attributed to different lattice and solvation energies.  

 

In Vivo absorption studies 

Inspired by these promising in vitro dissolution profiles, an in vivo pilot study in humans was 

carried out. A single oral dose of pure vinpocetine was administered to six male volunteers. 

Following a one week wash out period, the volunteers were then dosed with 1. The plasma 

profiles are presented in Figure 8 whilst the pharmacokinetic parameters are listed in Table 3. 



Our results demonstrate an increase in apovincaminic acid concentration corresponding to 

improved vinpocetine absorption. In fact, it appears that 1 is more rapidly absorbed, showing a 

shorter t1/2Ka and tmax, and higher Cmax. In addition to the increased absorption rate, we observed 

approximately 2-fold improvement in the extent of vinpocetine absorption (Frel).  Collectively, 

these results demonstrate that the improved solubilization kinetics is reflected in an enhanced 

bioavailability.
57

 

 

 

 

CONCLUSIONS 

 

In summary, we report herein the first ionic cocrystal of vinpocetine, an active ingredient 

indicated for the improvement of cerebral circulation. As an ionic cocrystal, vinpocetine showed 

significantly improved dissolution performance with respect to pure vinpocetine. Additionally, 

the results obtained from the pilot human pharmacokinetic study reveal that the oral 

bioavailability of vinpocetine is doubled when administered as 1. This study suggests that 

cocrystallization can be a potential solution to the solubility and bioavailability problems that 

have thwarted the development of vinpocetine as an effective treatment option for its numerous 

potential clinical indications. Moreover, these results further verify that cocrystallization is a 

promising methodology for achieving the desired physicochemical properties of a compound in 

humans and that these improvements can lead to enhanced bioavailability when applied to 

compounds that are limited by their solubility.  
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NOTES: 

‡Crystallographic Information File for 1 is available from CCDC: ref. number 1498771.  

Crystal data 1: colourless plate, 0.200  0.100  0.100 mm
3
. Sum Formula C44H60B6N4O17, M = 

981.82, crystal system monoclinic, P21 space group (No. 4), V = 2428.2(3) Å
3
, Z = 2, Dc = 1.343 

g/cm
3
, F000 = 1036, Bruker Quest, MoK radiation, = 0.71073 Å,  T = 100(2) K, 2max = 55.3º, 

29882 reflections collected, 11136 unique (Rint = 0.0494).  Final GooF = 1.021, R1 = 0.0502, wR2 

= 0.0821, R indices based on 8152 reflections with I  > 2(I) (refinement on F
2
), 652 parameters, 1 

restraint. Lp and absorption corrections applied, = 0.100 mm
-1

.  Absolute structure parameter = 

0.2(4). 
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Table 1. 
13

C chemical shifts with assignment of pure vinpocetine and 1. 

 
 

 

 

 

 

Atom Type Vinpocetine 1 

20 Cq 164.1 161.9 

161.2 

2 Cq 133.7 135.7 

133.9 

17 Cq 132.4 129.0 

7/18 Cq/CH 128.8 129.0 

19 Cq 127.7 129.0 

5 CH 123.1 124.6 

122.4 

6 CH 120.6 121.6 

4 CH 118.9 120.2 

117.9 

3 CH 112.8 113.7 

112.1 

8 Cq 107.9 110.2 

109.2 

22 CH2 63.5 62.5 

61.3 

16 CH 58.6 55.6 

51.9 

10 CH2 51.0 51.9 

49.8 

12 CH2 44.7 44.9 

43.6 

15 Cq 37.9 39.1 

37.9 

14 CH2 27.3 32.1 

28.6 

25 CH2 25.9 28.6 

25.6 

9 CH2 20.8 20.4 

17.5 

13 CH2 16.4 16.6 

16.0 

23 CH3 14.0 15.0 

11.9 

26 CH3 6.7 11.3 

7.0 



Table 2. 
15

N chemical shifts with assignment of pure vinpocetine and 1. 

 

Atom Vinpocetine note 1 note 

N1 113.6 Free N   

N11 4.1 Free N   

N1c/d   110.9/112.7 Free N 

N11c   10.1 N···H-O 

N11d   18.7 N
+
-H···O

-
 

 

  



 

 

FIGURE LEGENDS 

 

Figure 1. Structure of vinpocetine with atom numbering scheme. 

 

Figure 2. Crystal structure of 1 obtained from Single crystal X-ray diffraction. 

 

Figure 1. Structure of vinpocetine with atom numbering scheme. 

 

Figure 2. Crystal structure of 1 obtained from Single crystal X-ray diffraction 

 

Figure 3. Profiles of experimental powder X-ray diffractogram of 1 and the calculated 

diffractogram of 1 based on the single crystal X-ray diffraction data. 
 
 

Figure 4. DCS curves of 1, boric acid and vinpocetine. 

 

 

Figure 5. 
13

C (100.64 MHz) CPMAS spectra with assignment of (a) pure vinpocetine and (b) 1, 

recorded with a spinning speed of 12 kHz. 

 

 

Figure 6. 
15

N (40.56 MHz) CPMAS spectra with relevant assignments of (a) pure vinpocetine 

and (b) 1, recorded with a spinning speed of 9 kHz. Suffix “c” or “d” in the atom number 

indicates the neutral and charged independent vinpocetine molecule, respectively. 

 

 

Figure 7. Dissolution profile (in pH 7.4 phosphate buffer) of 1 and vinpocetine compared to 

vinpocetine’s solubility at equilibrium (Cs, equilibration time=24 h) 

 

 

Figure 8. Plasma concentrations of Apovincaminic acid following the oral administration of 

cocrystal 1 (  ) and pure vinpocetine (  ). 

 

 

Figure S1. 
13

C (100.64 MHz) CPPISPI spectral editing experiment with chemical shifts of (a) 

pure vinpocetine and (b) 1 recorded with a spinning speed of 12 kHz. 

 

 

 



 

 

 









 
  



 
  

Figure S1. 
13

C (100.64 MHz) CPPISPI spectral editing experiment with chemical shifts of (a) 

pure vinpocetine and (b) 1 recorded with a spinning speed of 12 kHz. 

 

 


