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Abstract
Many recent studies on ultrasonic particle image velocimetry (Echo PIV) showed that the
accuracy of two-dimensional (2-D) flow velocity measured depends largely on the concentration
of ultrasound contrast agents (UCAs) during imaging. This article presents a texture-based method
for identifying the optimum microbubble concentration for Echo PIV measurements in real-time.
The texture features, standard deviation of gray level, and contrast, energy and homogeneity of
gray level co-occurrence matrix were extracted from ultrasound contrast images of rotational and
pulsatile flow (10 MHz) in vitro and in vivo mouse common carotid arterial flow (40 MHz) with
UCAs at various concentrations. The results showed that, at concentration of 0.8~2 × 103 bubbles/
mL in vitro and 1~5 × 105 bubbles/mL in vivo, image texture features had a peak value or trough
value, and velocity vectors with high accuracy can be obtained. Otherwise, poor quality velocity
vectors were obtained. When the texture features were used as a feature set, the accuracy of K-
nearest neighbor classifier can reach 86.4% in vitro and 87.5% in vivo, respectively. The texture-
based method is shown to be able to quickly identify the optimum microbubble concentration and
improve the accuracy for Echo PIV imaging.
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INTRODUCTION
Accurate measurement of multidimensional velocity profiles in arteries is essential both as a
prognostic aid and a therapeutic procedure of many cardiovascular diseases as the
developments of many such diseases have been shown to have a close relationship with
arterial blood flow velocity profiles (Cheng et al. 2006, 2008; Jiang et al. 2000). Ultrasonic
particle image velocimetry (Echo PIV) technique is a synthesis of two existing techniques,
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particle image velocimetry and B-mode ultrasound contrast imaging (Kim et al. 2004b). It
consists of identifying and tracking ultrasound contrast agents (UCAs) within a flow field
and computing local velocity vectors using a cross-correlation algorithm. Previous studies
have shown that Echo PIV could be a promising technique for noninvasive measurement of
velocity profiles in arteries (Kim et al. 2004a; Niu et al. 2010; Qian et al. 2010; Zhang et al.
2011; Zheng et al. 2006). However, in Echo PIV technique, the concentration of UCAs
determines the characterization of the B-mode images of the seeded flows and thereby
affects the cross-correlation quality and the measurement accuracy (Kim et al. 2004b; Liu et
al. 2008). Small variations in microbubble concentration can cause large variations in
ultrasound image quality and subsequently the measured velocities. Thus, it is vital to
identify the optimum microbubble concentration for Echo PIV. Several methods have been
developed to identify the optimum concentration for UCAs or other scatters in dynamic
fluids. For instance, Kim et al. 2004b have used the raw B-mode data before scan
conversion and second-harmonic imaging to investigate the optimum concentration of
UCAs for Echo PIV. Liu et al. 2008 have proposed the particle imaging cross-correlation
index method to obtain the optimum concentration of UCAs. Tsui et al. 2004 have showed
that the Nakagami parameter can be used to detect the variation of the scatterers (glass
beads) concentration.

A real-time texture-based method appears as a complementary approach to identify the
optimum UCAs concentration for high quality Echo PIV measurements. Texture is a
fundamental feature for image analysis, classification and segmentation, and it has been
widely applied in images ranging from multispectral remote-sensed aerial and satellite
images to biomedical images. In medical image analysis, texture has successfully been
applied to digital x-ray images (Chappard et al. 2001; McNitt-Gray et al. 1995), ultrasound
images (Lefebvre et al. 2000; Sivaramakrishna et al. 2002; Tsui et al. 2010; Zhong et al.
2006), magnetic resonance images (de Alejo et al. 2003; Harrison et al. 2008; Herlidou et al.
1999; James et al. 2001; Kovalev et al. 2001) and computer tomography images (Al-Kadi et
al. 2008; Chabat et al. 2003; Wang et al. 2002).

This article describes a texture-based method to identify the optimum microbubble
concentration for Echo PIV imaging. First, the first-order statistics, the gray level co-
occurrence matrix (GLCM) and K-nearest neighbor (KNN) classifier are described. Second,
we describe the acquisition of B-mode images of both in vitro rotational and pulsatile flow
and in vivo mouse common carotid arterial flow seeded with UCAs at a series of
concentrations (in vitro: 1 × 102 to 1 × 104 bubbles/mL; in vivo: 1 × 104 to 1 × 106 bubbles/
mL). Then follows a description of the texture features extracted by the texture-based
method and velocity profiles obtained using Echo PIV. Finally, we discuss the effects of the
ultrasound system settings and characteristics as well as the selection of parameters in
calculation GLCM on the texture features.

METHODS
For identifying the optimum concentration of UCAs, texture features such as the standard
deviation, contrast, energy and homogeneity of the Echo PIV images are extracted from the
first-order statistics and GLCM and KNN classifier is used to classify the B-mode images of
flows seeded with contrast agents.

First-order statistics
The first-order statistics, also known as gray level histogram, has been proven to produce
significant results in the analysis of images (Bader et al. 2002; Christodoulou et al. 2003;
Zhong et al. 2006). The gray level histogram consists of the sum of frequencies of each gray
level. It allows calculation of mean, median and standard deviation of gray level as well as

Niu et al. Page 2

Ultrasound Med Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the skewness and kurtosis. Kodym et al. 1992 have emphasized the importance of gray level
histogram, especially mean and standard deviation of gray level. Standard deviation is
associated with the average gray level difference between pixels and their mean and it is
used as one of the texture features to identify optimum UCAs concentration for Echo PIV.

Gray level co-occurrence matrix
The GLCM is a bi-dimensional histogram L × L of elements P(i,j), defined as the number of
pixel-pairs (i,j) occurrence for which a gray level i is spaced out of a gray level j by a
distance d and along a direction φ (Haralick et al. 1973). The GLCM P can be expressed
over an M × N image, as:

(1)

Before calculating the texture features, the GLCM P is normalized by the sum of the
elements in GLCM.

Three texture features, contrast, energy and homogeneity, are extracted from the GLCM.

(2)

Contrast as a measure of the amount of local variations in an image increases as local
variation of gray values increase. Energy measures textural uniformity. Larger energy values
occur when the gray level distribution over the image has either a constant or a periodic
form (Shokr 1991). Homogeneity measures image homogeneity. It assumes larger values for
smaller gray level differences in pair elements. Contrast, energy and homogeneity of GLCM
are used as three other texture features to identify optimum microbubble concentration for
Echo PIV.

The statistical K-nearest neighbor (KNN) classifier
The KNN classifier, which is computationally much faster than other classifiers
(Christodoulou et al. 2003), is used for the classification of the UCAs concentration for
Echo PIV. The KNN classifier is a method for classifying the new input samples based on
closest training samples in the feature space. A new input sample is classified by choosing
the majority class among the K closest samples in the training data based on a measure that
is usually the Euclidean distance. The closest samples are taken from the training data for
which the correct classification is known. The general calculation procedure of the KNN
classifier has been described by Goldstein 1972.

MATERIALS AND EXPERIMENTAL METHODS
Echo PIV flow tracers and contrast agents

Flow tracers applicable for Echo PIV should have three basic requirements: first, the tracers
should be small enough to transverse the capillaries without causing blockage; second, the
velocity of the fluid is assumed to determine the motion of tracers, thus, its density should
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match the density of fluid well so as to faithfully follow the fluid; and third, the tracers
should be visible in the acoustically illuminated field and their locations can be recorded
with time. Based on the above-mentioned practical considerations, usually ultrasound
contrast microbubbles are used as flow tracers. The change in density at the surface of a
microbubble represents a major impedance mismatch and, thus, the echogenicity can be
enhanced by the use of microbubbles to improve Echo PIV studies.

The microbubbles were fabricated and suspended in deionised water in house using the
mechanical agitation method. The morphology of microbubbles was observed by an inverted
fluorescence microscope (Leica DMI 3000B; Leica Microsystems, Wetzlar, Germany). As
shown in Figure 1a, the microbubble had a hollow inner structure, which was similar to the
available UCAs in clinic use. Quantification of microbubbles concentration using an
AccuSizer (780A; Particle Sizing Systems, Santa Barbara, CA, USA) indicated 9.4 × 108

microbubbles formed per milliliter of solution. A major peak was observed in the diameter
distribution of microbubbles at 0.67 µm with mean and median of 1.90 µm and 0.93 µm,
respectively (Fig. 1b). At low acoustic power (mechanical index < 0.1), the microbubbles
were stable enough to last for about 20 min in vitro and 12 min in vivo and were eventually
destroyed by dissolution of the gas core and exposure to ultrasound.

In vitro rotational and pulsatile flow imaging
The Echo PIV technique appears an effective means of characterizing the complex
hemodynamics in the cardiovascular system. Many prior studies have utilized in vitro
studies to optimize the method (Liu et al. 2008; Zheng et al. 2006). Therefore, it is
significant to obtain the optimum UCAs concentration in vitro experiment. In this study,
rotational and pulsatile flows are used to identify optimum UCAs concentration for the in
vitro experiment because rotational flow is an interesting approach in terms of establishing a
predictable flow pattern and pulsatile flow more closely simulates in vivo blood flow
conditions.

The in vitro experiments were performed on an ultrasound system (Sonix RP; Ultrasonix
Medical Corporation, Richmond, BC, Canada) using a linear array transducer (L14–5W/60).
The manufacturers stated transmitted frequency was 10.0 MHz. The axial and lateral
resolution was measured by pulse-echo technique based on phantom and found to be 135 µm
and 500 µm, respectively. The system gain was 52% and the dynamic range was 80 dB.

A magnetic stirring device with a rate of rotation of 125 rpm was used to create rotational
flow inside a thin cylindrical polyethylene beaker (volume: 250 mL; diameter: 58 mm;
height: 12 cm; thickness: 0.96 mm). The insonation plane was at the height of 6.2 cm and
the standoff distance between the transducer and the beaker was about 2.6 cm as shown in
Figure 2a. B-mode images were obtained at a frame rate of 63 Hz using 128 ultrasound
beams with focal depth of 55 mm (in line with the centre of rotation) and field of view
(FOV) of 90 mm (depth) by 46 mm (width). Pulsatile flow, which simulates the ventricular
action of the heart, was generated by Harvard Apparatus® pulsatile pump (Model 55-3305;
Harvard Apparatus, Holliston, MA, USA) in a thermoplastic tube (diameter: 10 mm; wall
thickness: 1 mm). The pulse cycle was 2.0 s (30 beats/min) with peak and mean flow rates
of 1.32 L/min and 0.45 L/min. The transducer was placed perpendicular to the flow direction
as shown in Figure 2b. B-mode images were acquired at a frame rate of 168 Hz using 128
ultrasound beams with focal depth of 17 mm and FOV of 30 mm (depth) by 30 mm (width).
The in vitro experiments were performed at nine different concentrations, from 1 × 102 to 1
× 104 bubbles/mL. At each concentration, 10 frames of B-mode images were recorded. Four
experiments of each concentration were made to obtain the mean value under the same
settings and characteristics of the system.
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In vivo mouse common carotid arterial flow imaging
The in vivo animal studies were performed on a Vevo 770 high-frequency ultrasound
imaging system (VisualSonics Inc., Toronto, Ontario, Canada). This experimental protocol
was approved by the institutional animal care and use committee of our institution. Eight
mice were under research and randomly divided into two groups. The mean body weight for
each group of mice was 40 g and 38.4 g with standard deviations of 6.4 g and 4.5 g,
respectively. The total blood volume was assumed to be 8% of body weight. Each group of
mice was injected UCAs with five different concentrations via caudal vein as shown in
Table 1. Each concentration was repeated four times to obtain more accurate results. Mice
were anesthetized with isoflurane gas at a dose of 1% in pure oxygen at a flow rate of 1 L/
min and laid on a platform in the supine position with all legs taped to electrocardiographic
electrodes for heart rate monitoring (approximately 380 beats per min). Body temperature
was monitored and maintained at 36~38°C by a heating platform. The neck hair of each
mouse was gently removed with a depilatory cream and pre-warmed ultrasound gel was
used as an acoustic coupling medium. Figure 3a shows a schematic representation of a
mouse positioned with the neck facing the ultrasound transducer poised for imaging. The
mouse common carotid arterial flow imaging were performed on the Vevo 770 system
(VisualSonics Inc.) using a single-element crystal mechanical transducer (RMV-704;
VisualSonics Inc., Toronto, Ontario, Canada) as shown in Figure 3b. The manufacturer’s
stated transmitted frequency was 40.0 MHz. B-mode images were obtained at a frame rate
of 80 Hz with focal depth of 6 mm and FOV of 10 mm (depth) by 5 mm (width) as shown in
Figure 3c. The manufacturers stated that the axial and lateral resolution for this
configuration is 40 µm and 80 µm, respectively. The optimization of the system gain and the
time gain compensation setting were kept constant throughout the whole experiment. Each
mouse was allowed to fully regain consciousness between each experiment and UCAs were
injected into the mouse and imaged after the former UCAs were completely destroyed to
make sure that each experiment was independent. Time between repeated experiments in the
same mouse was about an hour.

RESULTS
In vitro rotational flow and pulsatile flow imaging

Figure 4 shows the scatter-plot of the texture features (standard deviation of gray level, and
contrast, energy and homogeneity of GLCM) vs. the natural logarithm of the microbubble
concentration, as well as the respective quadratic polynomial fitting curves, for the rotational
flow described above. When plotted against concentration, each texture feature has a peak
value or trough value corresponding to the same concentration (0.8~2 × 103 bubbles/mL).
The B-mode images of UCAs concentration around 0.8~2 × 103 bubbles/mL have large
standard deviation of gray level, high contrast, low energy and low homogeneity.

Evaluation of the optimum UCAs concentration for Echo PIV should be validated by
agreeable velocity vector quality derived. Figure 5 shows B-mode images of the whole
rotational flow field acquired at the insonation plane and Echo PIV velocity vectors near the
center of rotation with different UCA concentrations. The B-mode image in Figure 5a was
obtained with UCAs concentration of 0.2 × 103 bubbles/mL. Two sequential B-mode images
were subjected to Echo PIV analysis and the quality of resulting velocity vectors were poor.
When UCAs concentration was increased to 0.8 × 103 bubbles/mL, the velocity vectors
produced by Echo PIV had good quality as shown in Figure 5b. Lastly, the UCAs
concentration was further increased to 5 × 103 bubbles/mL and the quality of resulting
velocity vectors were poor (Fig. 5c). Similarly, the processing was done for B-mode images
acquired at other UCA concentrations. The results of experiments indicated that the B-mode
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images acquired with the concentration of UCAs around the peak value or trough value
(0.8~2 × 103 bubbles/mL) can obtain accurate velocity profiles.

Figure 6 shows the scatter-plot of the texture features versus the natural logarithm of the
microbubble concentration, as well as the respective quadratic polynomial fitting curves in
vitro pulsatile flow imaging. When plotted against concentration, each texture feature has a
peak value or trough value corresponding to the same concentration (0.8~2 × 103 bubbles/
mL). The B-mode images of UCAs concentration around 0.8~2 × 103 bubbles/mL have
large standard deviation of gray level, high contrast, low energy and low homogeneity.

Figure 7 shows B-mode images of pulsatile flow seeded with various UCA concentrations
and the corresponding velocity profiles obtained by high-speed Echo PIV technique in real
time. The lumen diameter and the peak flow velocities during systole are about 10 mm and
140 mm/s, respectively. The Reynolds number is about 1400, thus, the flow during systole
may be regarded as a laminar flow. Both low UCAs concentration of 0.2 × 103 bubbles/mL
(Fig. 7a) and high UCAs concentration of 5 × 103 bubbles/mL (Fig. 7c) yielded incorrect
results, while the B-mode images corresponding to the concentration of 0.8 × 103 bubbles/
mL obtained accurate velocity profiles as shown in Figure 7b. Similarly, the Echo PIV
technique was used to analyse B-mode images acquired at other UCA concentrations. The
results demonstrated that the B-mode images corresponding to the concentration around the
peak value or trough value (0.8~2 × 103 bubbles/mL) obtained high quality velocity profiles.
Therefore, we can conclude that the optimum UCAs concentration for in vitro experimental
conditions is around 0.8~2 × 103 bubbles/mL.

The KNN classifier was evaluated using texture features as a feature set and nine various
concentration images were selected at random for training and 22 various concentration
images for evaluation. The accuracy of classification can reach 86.4%. The in vitro
experiment showed that the accuracy and feasibility for the texture-based method were very
good and truly useful for in vivo study.

In vivo mouse common carotid arterial flow imaging
Figure 8 shows the scatter-plot of the standard deviation of gray level, contrast, energy and
homogeneity vs. the natural logarithm of the UCAs concentration, as well as the respective
quadratic polynomial fitting curves for in vivo mouse common carotid arterial flow. When
plotted against concentration, each texture feature has a peak value or trough value
corresponding to the same concentration (1~5 × 105 bubbles/mL). The B-mode images of
the concentration around 1~5 × 105 bubbles/mL have large standard deviation of gray level,
high contrast, low energy and low homogeneity.

Figure 9 shows B-mode images of mouse common carotid arterial flow seeded with
different UCA concentrations and the corresponding velocity profiles obtained by the Echo
PIV technique. The lumen diameter and the peak flow velocities during systole is about 0.49
mm and 50 cm/s, respectively. The Reynolds number is only 70, thus, the mouse common
carotid arterial flow can be considered as a laminar flow. Incorrect results at high UCAs
concentration of 2 × 106 bubbles/mL (Fig. 9c) were mainly because of overlapping particle
images, while the increased errors with low UCAs concentration of 2 × 104 bubbles/mL
(Fig. 9a) indicated the loss of matching particle pairs. The B-mode images corresponding to
the concentration of 2 × 105 bubbles/mL around the peak value or trough value obtained
accurate velocity profiles as shown in Figure 9b. Similarly, the Echo PIV technique was
used to analyse B-mode images obtained at other UCA concentrations. The results showed
that the B-mode images corresponding to the concentration around the peak value or trough
value (1~5 × 105 bubbles/mL) obtained accurate velocity profiles. Consequently, we
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concluded that the optimum UCAs concentration for in vivo experiment is around 1~5 × 105

bubbles/mL.

The KNN classifier was evaluated using texture features as a feature set and 10 different
concentration images were selected at random for training and 40 various concentration
images for evaluation. The accuracy of the KNN classifier can reach 87.5%.

DISCUSSION
In this article, the texture features, standard deviation, contrast, energy and homogeneity,
were used to identify the optimum concentration of UCAs for Echo PIV imaging. B-mode
images acquired by the optimum UCAs concentration have large local variation of gray
level and dominant gray level transitions and, hence, have large standard deviation of gray
level, high contrast, low energy and low homogeneity. The experimental results show that
high accuracy velocity vectors can be obtained at concentration of 0.8~2 × 103 bubbles/mL
in vitro and 1~5 × 105 bubbles/mL in vivo. The result of in vitro experiment is consistent
with earlier reports (Kim et al. 2004b; Liu et al. 2008). The reason for the difference
between in vitro and in vivo studies is that the scattering to attenuation ratio, for
quantification of the effectiveness of the UCAs, decreases as the frequency increases
(Bouakaz et al. 1998) and the resonant frequency of phospholipid-coated microbubbles is
less than 10 MHz as estimated by Sun et al. 2005.

Theoretical and experimental analysis show that the texture-based method is
computationally inexpensive and could be easily realized together with the real time Echo
PIV imaging and, hence, can effectively identify the optimum concentration of UCAs in
Echo PIV imaging. However, the major limitation of the texture-based method is the
dependence of the calculation of GLCM on different settings and characteristics of the
ultrasound system as well as the selection of analysis parameters.

Brightness and contrast of the B-mode image strongly depend on the system gain, time gain
compensation (TGC) and dynamic range (Lefebvre et al. 2000). For the same phantom
examined, the B-mode images recorded by different ultrasound systems at different settings
may be different. Performance of the texture-based method was tested by B-mode images of
in vitro rotational flow at different system settings. B-mode images at 10 different UCA
concentrations were recorded at different system settings using the experimental set-up
shown in Figure 2a. Figure 10 shows texture features of various UCA concentrations under
different system gains (40%, 46%, 52%, 58% and 64%) when the dynamic range was 80 dB.
The variations of the system gain yield a significant difference for each texture feature (p <
0.01 for all comparisons, by student’s t-test). Moreover, the texture features do not show a
linear variation. TGC and dynamic range changes produced similar effects to those produced
by the adjustment of the system gain. Thus, the settings of the ultrasound system were
initially optimized and maintained throughout each experiment. Meanwhile, to decrease
speckle variance, both the ultrasound transducer and phantom were fixed and remained at
the same position throughout the study.

From the definition of the GLCM, the gray level L, the window size M×N, the displacement
d and the orientation φ determine the matrix that determines the values of contrast, energy
and homogeneity. Thus, identification of the concentration of UCAs for Echo PIV using
GLCM is valid only if proper parameters are selected.

Experiment data obtained for in vitro rotational flow imaging were used to investigate the
effect of gray level on the texture features that affect the classification accuracy of KNN.
With higher gray level L, it is expected that more information would be provided and
improved classification accuracy would be achieved for each texture feature. Similarly, it is
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expected that a lower L would have less information and poorer classification accuracy.
However, this is not always the case. For L approximately greater than 48 gray level, the
classification accuracy of KNN were quite consistent with minimal variability for each
texture feature (contrast, energy and homogeneity). Thus, above a certain threshold,
classification using contrast, energy and homogeneity is independent of the gray level L.
The threshold value of L=48 is smaller than the L=64 suggested by Soh et al. 1999 and
larger than L=24 indicated by Clausi 2002; however, they agree that large L values (L = 128
or 256) are unnecessary. Thus, L=64 was used in this study.

The size of the image window is important in the computation of GLCM. If the image is too
big, it may consume too much computational time. Whereas, if it is too small, it may not
sufficiently extract the texture feature. Lv et al. 2009 suggested that contrast, energy and
homogeneity change less when an image window was over 75 pixels. Therefore, a window
size of 100 × 100 was used.

The displacement d is a key parameter for accurate feature extraction. In this work, the
experiment data obtained in vitro rotational flow imaging were also used to investigate the
effect of displacement on the texture features that affect the classification accuracy of KNN.
The displacement d produced much more dramatic fluctuations relative to the gray level L.
As pionted out by Chen et al. 1989, single-displacement features might not be sufficient to
represent textures. Thus, a variety of distances from one to 40 in vitro and from one to 20 in
vivo were used.

The orientation φ is relatively less important compared with other parameters in GLCM.
Some authors used the average and range (Conners et al. 1984), some used certain series of
orientations (Nystuen et al. 1992). Because the texture orientation of B-mode images was
random in practice, the four orientations (φ=0°; 45°; 90°; 135°) were averaged out in this
study.

CONCLUSION
The texture features (standard deviation of gray level, and contrast, energy and homogeneity
of GLCM), derived from the first-order statistics and GLCM, were extracted from B-mode
images of in vitro rotational flow and pulsatile flow as well as in vivo mouse common
carotid arterial flow. Combined with the texture features vs. the microbubble concentration
curves and the velocity profiles obtained by Echo PIV technique, it was found that the
optimum concentration of UCAs used for Echo PIV imaging was 0.8~2 × 103 bubbles/mL in
vitro and 1~5 × 105 bubbles/mL in vivo. When texture features were used as a feature set,
the accuracy of KNN classifier can reach 86.4% in vitro and 87.5% in vivo, respectively.
The texture-based method is found to be a useful tool for identifying the optimum
concentration of flow tracering microbubbles and improving its measurement accuracy in
real time Echo PIV imaging.
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Fig. 1.
(a) The morphology of microbubbles was observed by a Leica DMI 3000B (Leica
Microsystems, Wetzlar, Germany) inverted fluorescence microscope (amplified × 400); and
(b) size distribution of microbubbles was measured by AccuSizer 780A (Particle Sizing
Systems, Santa Barbara, CA, USA).
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Fig. 2.
The experimental set-up that was used to identify the optimum concentration of ultrasound
contrast agents (UCAs) for ultrasonic particle image velocimetry (Echo PIV) imaging in
vitro experiment: (a) rotational flow model and the B-mode image of the whole rotational
flow field acquired at the insonation plane (height: 6.2 cm); and (b) pulsatile flow in a tube
model and the B-mode image acquired at the insonation plane.
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Fig. 3.
The experimental set-up that was used to identify the optimum concentration of ultrasound
contrast agents (UCAs) for ultrasonic particle image velocimetry (Echo PIV) imaging in
vivo mouse common carotid artery (CCA): (a) a schematic representation of a mouse
positioned with the neck facing the 40MHz (RMV-704; VisualSonics Inc., Toronto, Ontario,
Canada) ultrasound transducer poised for imaging; (b) the anesthetized mouse was imaged
by the ultrasound transducer; and (c) the B-mode image acquired at the insonation plane (the
dotted line box marks the region-of-interest [ROI]).
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Fig. 4.
The scatter-plot of (a) the standard deviation of gray level, (b) contrast, (c) energy and (d)
homogeneity vs. the natural logarithm of the microbubble concentration and the respective
quadratic polynomial fitting curves in vitro rotational flow imaging.
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Fig. 5.
B-mode images of the whole rotational flow field acquired at the insonation plane and
ultrasonic particle image velocimetry (Echo PIV) velocity profiles near the center of rotation
(dotted-line boxes) for microbubble concentration of (a) 0.2 × 103 bubbles/mL; (b) 0.8 × 103

bubbles/mL; and (c) 5 × 103 bubbles/mL.
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Fig. 6.
The scatter-plot of (a) the standard deviation of gray level, (b) contrast, (c) energy and (d)
homogeneity vs. the natural logarithm of the microbubble concentration and the respective
quadratic polynomial fitting curves in vitro pulsatile flow imaging.
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Fig. 7.
B-mode images and ultrasonic particle image velocimetry (Echo PIV) velocity profiles for
microbubble concentration of (a) 0.2 × 103 bubbles/mL; (b) 0.8 × 103 bubbles/mL; and (c) 5
× 103 bubbles/mL in vitro pulsatile flow imaging.
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Fig. 8.
The scatter-plot of (a) the standard deviation of gray level, (b) contrast, (c) energy and (d)
homogeneity vs. the natural logarithm of the microbubble concentration, and the respective
quadratic polynomial fitting curves in vivo mouse common carotid arterial flow imaging.
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Fig. 9.
B-mode images and ultrasonic particle image velocimetry (Echo PIV) velocity profiles for
microbubble concentration of (a) 2 × 104 bubbles/mL; (b) 2 × 105 bubbles/mL; and (c) 2 ×
106 bubbles/mL in vivo mouse common carotid arterial flow imaging.
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Fig. 10.
Texture features of various concentrations of ultrasound contrast agents (UCAs) under
different system gains (40%, 46%, 52%, 58% and 64%) when the dynamic range was 80 dB
using Sonix RP system (Ultrasonix Medical Corporation, Richmond, BC, Canada) obtained
rotational flow B-mode images.
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Table 1

Microbubble concentrations injected into the two groups of four mice

Group 1 concentration
(bubbles/mL)

Group 2 concentration
(bubbles/mL)

1 × 104 2 × 104

5 × 104 8 × 104

1 × 105 2 × 105

5 × 105 8 × 105

1 × 106 2 × 106
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