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Abstract 
The routine and unique determination of minor 
phases in microstructures is critical to materials 
science. In metallurgy alone, applications include 
alloy and process development and the 
understanding of degradation in service. We develop 
a correlative method, exploring  superalloy 
microstructures which are examined in the scanning 
electron microscope (SEM) using simultaneous 
energy dispersive X-ray spectroscopy (EDS) and 
electron backscatter diffraction (EBSD). This is 
performed at an appropriate length scale for 
characterisation of carbide phases’ shape, size, 
location, and distribution. EDS and EBSD data are 
generated using two different physical processes, 
but each provide a signature of the material 
interacting with the incoming electron beam. Recent 
advances in post-processing, driven by ‘big data’ 
approaches, include use of principal component 
analysis (PCA). Components are subsequently 
characterised to assign labels to a mapped region. To 
provide physically meaningful signals, the principal 
components may be rotated to control the 
distribution of variance. In this work, we develop 
this method further through a weighted PCA 
approach. We use the EDS and EBSD signals 
concurrently, thereby labelling each region using 
both EDS (chemistry) and EBSD (crystal structure) 
information. This provides a new method of 
amplifying signal-to-noise for very small phases in 
mapped regions, especially where the EDS or EBSD 
signal is not unique enough alone for classification. 
 

1. Introduction 
Progress towards rapid, accurate and statistically 
robust characterisation of microstructures has been 
made in recent years with developments in both 
experimental techniques and data processing. There 
has been interest in ‘correlative’ microscopy, where 
multiple techniques are employed to access 
independent information channels sampled from the 
same area of interest (AOI) [1–3]. Successful use of 
correlative microscopy yields superior 

characterisation capability (as limitations of 
individual techniques may be mitigated) and 
provides better confidence in phase assignment if 
independent classifications are mutually inclusive. 
We develop correlative microscopy through 
combining electron backscatter diffraction (EBSD) 
and energy dispersive X-ray spectroscopy (EDS), 
with maps collected simultaneously in a scanning 
electron microscope (SEM). The concept and 
approach is applicable to other techniques in which 
a measurement (of a spectrum, diffraction pattern, 
etc) is made at one of many known scan locations, 
such as in scanning transmission microscopy or 4D-
STEM [4]. 
Confidently assessing microstructure is of 
significant concern in materials science and 
engineering, as well as in the earth and planetary 
sciences. In the present work, we develop a new 
approach using an example in Co/Ni-base 
superalloys. In these alloys, there are carbide 
precipitates that are known to strongly influence 
fatigue and tertiary creep performance [5–9]. The 
precipitates are thought to increase boundary 
cohesivity and to mitigate sliding. However, their 
high temperature oxidation reduces grain boundary 
strength and permits easier intergranular crack 
propagation. Some precipitate phases are thought to 
exhibit better oxidation properties than others, 
conferring superior enviro-mechanical stability 
across deformation regimes [10]. To assist in 
understanding these phases, we can use EBSD and 
EDS analysis for characterisation. With EDS alone, 
it can be difficult to distinguish two phases of similar 
chemistry but different structure, for example M23C6 
and M6C carbides. Similarly, using EBSD alone it 
can be difficult to distinguish two phases of similar 
structure but different chemistry, for example the 
pseudo-FCC matrix and MC carbide. Applying 
correlative EBSD and EDS offers a solution to this 
problem. 
Very briefly, the 2D EBSD pattern captured using 
conventional EBSD is created from near surface 
(<20 nm) scattering and diffraction events [11]. The 
raw signal within the EBSD pattern is semi-
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quantitative, due to the many transfer processes and 
image processing stages required to generate useful 
patterns for analysis. These patterns can be indexed 
to reveal the orientation and structure of the crystal, 
provided the signal-to-noise ratio is high enough and 
a series of input phases are used as input ‘classifiers’ 
which the indexing algorithm is tested against. 
EBSD analysis is challenging if two phases have 
similar crystal structures (e.g. only slight changes in 
lattice parameter or subtle differences between 
symmetrically-related structures, particularly if an 
orientation relationship is present) or the signal 
strength is poor (e.g. a small phase). Signal 
classification can be improved through the use of 
template matching [12–16] against simulated 
patterns using dynamical diffraction theory [11,17–
19].  
To amplify signal-to-noise for poor quality patterns, 
principal component analysis (PCA) can be used. 
PCA is a data processing approach used to reduce 
and project measured variables of a group of objects 
onto an orthogonal set of basis vectors: the principal 
components. The PCA method is described in detail 
elsewhere [20], [21]. This approach is useful, as it 
can amplify signal-to-noise in data, especially where 
the data at each point is oversampled and noisy (e.g. 
a diffraction pattern or a highly resolved energy 
dispersive X-ray spectrum) and these measurements 
can be used as the PCA ‘variables’. The dimensions 
of these variables are the diffraction vectors (the 
intensities of each pixel in a vectorised EBSD 
pattern) and the counts for each EDS spectrum 
energy bin. When a scan is performed on a sample 
in a scanning electron microscope one ‘object’ (a 
full set of measurements) is collected per 
measurement ‘point’. 
For the present work, we can apply PCA, but we 
note that the principal components of diffraction 
data may be difficult to interpret. This is because 
PCA extracts and ranks principal component vectors 
by the strength of each component signal, and many 
signals will contribute to each point in our map. 
From the physics of our problem, we know (broadly) 
that the variance of the signal between one phase and 
another should be similar, and that we would like 
(typically) only one signal type to label each point in 
the map. This motivates us to develop the work of 
Wilkinson et al [13] and Brewer et al [22] who have 
shown that a rotation of the set of principal 
component EBSD patterns that maximises the 
variance between each member of the set effectively 
reduces a full EBSD dataset down to a single 
representative, or ‘characteristic’ EBSD pattern for 
each commonly labelled domain. If the number of 

components is well selected, prior to VARIMAX 
rotation, then these can correspond to a single 
pattern per grain, and for oversampled or deformed 
grains the domains may also correlate with sub-
grains. In this work, we refer to the VARIMAX 
rotated components as ‘rotated characteristic 
components’ (RCCs). Each RCC contains a 
characteristic electron backscatter diffraction 
pattern (RC-EBSP).  
In our work, we use the Wilkinson et al [13] method 
as our starting point, and now address the challenge 
of including EDS spectra. Each EDS spectrum 
contains chemical information related to the 
interaction volume associated with the generation 
and escape of X-rays, which are counted by a 
detector. The number of X-rays generated for each 
energy are a function of the electron transitions. 
Characteristic X-rays are generated from the 
primary beam promoting a core electron, and that 
core electron subsequently ‘falling down’ to a lower 
energy level to generate the radiation. These peaks 
are superposed on the Bremsstrahlung. The spectra 
contain digitised signals of the number of counts per 
energy level, as detected (in our case) using a silicon 
drift detector (SDD). The signal also contains a 
broadening function related to the detector and 
instrument noise [23]. 
In the first instance we can append the EDS spectra 
onto the end of the diffraction pattern vector. 
However, in practice the variance in the EDS and 
EBSD signals may be significantly different, and the 
number of channels in each can vary significantly. 
These properties are important for our statistical 
analysis. Finally, the interaction volume of the 
electron beam (and the scattering to generate the X-
ray signal) may be substantively different to the 
volume that generates the bands within the 
diffraction signal. For the same map point the 
information within each data type may represent 
different volumes of matter. To address these 
challenges, in the present work we explore a 
weighted PCA approach, prior to VARIMAX 
rotation, using appropriately prepared and standard 
deviation normalised EDS and EBSD data. 
In this new approach, we have three critical aspects 
to select in our weighted PCA and VARIMAX 
rotation method: (1) background correction and data 
normalisation prior to statistical treatment; (2) the 
number of RCCs to retain and rotate, corresponding 
to under- or oversampling of the data, and the 
variation in the signal for each phase and orientation; 
(3) the weighting of the signals, dependent on the 
variance of the EBSD and EDS information, as well 
as the number of channels in each data set. 
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In addition to amplification of signal-to-noise, our 
statistical approach has computational advantage. 
Instead of characterising each signal independently, 
we can use the weighted PCA with VARIMAX 
rotation to select a reduce set of characteristic 
signals to quantify. We have a few options; we can 
directly quantify each characteristic label, but this 
has to be performed with care as the normalisation 
and statistical reduction may induce uncertainty 
(especially where discrete peaks are being quantified 
in data associated with EDS spectra). We can also 
use the labelled regions to re-generate amplified 
means, using averaging, to group together physical 
data that represents similar phases. Here we explore 
these two approaches. 
Upon classification of scan points to an RC-EBSP 
and a RC-spectrum, computationally expensive 
analyses can be applied to a reduced dataset. A 
~40,000 point map can be reduced to a few hundred 
RC-EBSPs and RC-spectra each with a superior 
signal-to-noise ratio than a single EBSD pattern or 
EDS spectrum. In this work we analyse the EBSD 
patterns using the refined template matching 

approach developed by Foden et al [12] with a 
selection of possible candidate structures. Similar 
methods have been developed by Ram et al [15,16]. 
Adopting a template matching approach allows us to 
utilise the fine detail in RC-EBSPs (weakly 
reflecting bands, band widths, etc) that PCA is able 
to extract. A Hough/Radon-based method would not 
see significant benefit from this approach, as it is 
based on comparing angles between the most 
prominent Kikuchi bands to an interplanar angle 
lookup table for candidate phases. More structures 
may be template matched to the reduced set of RC-
EBSPs than would be viable for matching to the full 
experimental dataset, permitting greater confidence 
in the phase assignment. Characteristic spectra can 
then be used to quantitatively probe the chemistry of 
the classifications, and statistically robust 
comparisons between structure and chemistry can be 
made. The average and RCC EDS spectra are 
analysed with commercial EDS analysis software. 

 
 

Figure 1: The work flow for construction of the data matrix, D, used for the weighted PCA method. 
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2. Materials & Methods 
2.1 Experimental 

The alloy characterised in this work is part of a 
development series of Co/Ni-base superalloys, 
engineered for high temperature gas turbine 
applications. It is intraganularly dual-phase, with 
approximately 55% L12 gamma-prime volume 
fraction in a face-centred cubic (FCC) gamma 
matrix. These two phases have very similar 
chemistry at the SEM length scale. The EBSD 
patterns are also extremely similar and can both be 
indexed with the FCC phase. Refractory element 
precipitates, a priori believed to be carbides, 
decorate the grain boundaries. A variety of alloying 
elements are used: Al, Ta and W for gamma-prime 
stabilisation; Cr for oxidation resistance; Mo for 
solid solution strength; small additions of C, B, and 
Zr for grain boundary precipitation. Further details 
of alloy development have previously been provided 
elsewhere [24–26]. 
A Zeiss Gemini Sigma300 FEGSEM equipped with 
Bruker e-FlashHD EBSD detector and XFlash 6160 
EDS detector was used for this work.  A dataset was 
captured with 20 kV accelerating voltage at ~ 10 nA 
and 21.5 mm working distance, with the sample 
tilted to 70° with respect to the sample being 
perpendicular to the incident beam. A step size of 
100 nm was employed with a pixel time of 8.3 ms. 
200-by-150 px EBSD patterns were collected at 16 
bit depth, and EDS spectra were captured with 2048 
energy channels at 100 eV resolution. The captured 
data was extracted and stored in a HDF5 file for 
processing and analysis. 
EBSD patterns for each point were processed in 
MATLAB, with background correction, radial 
cropping, and hot-pixel/split-chip fixes performed 
using the AstroEBSD package developed and 
presented by Britton et al [27]. EBSD patterns were 
originally captured with an aspect ratio of 4:3, but 
these were cropped to squares to simplify the refined 
template matching indexing (as discussed by Foden 
et al [12]) prior to creation of the data matrix. EDS 
spectra were processed in MATLAB. The only pre-
processing performed on the spectra was 
background subtraction and standard deviation 
normalisation, which we discuss further.  

2.2 Data treatment and PCA operation 
At each map point the corrected EBSD patterns were 
vectorised and EDS spectra appended, presented in 
Figure 1. EBSD patterns were background corrected 
using the AstroEBSD MATLAB package, in which 
each pattern is divided by a 2D fitted gaussian. 
Patterns are then centered (mean set to zero and 

standard deviation set to one). EDS spectra were 
background corrected using eSprit 2.1 to remove the 
Bremsstrahlung, then divided by their standard 
deviation similarly to the EBSD patterns. In the Data 
Matrix, D, each column of data then contains the 
background corrected and variance normalised 
EBSD and EDS signals for each measurement point. 
Each row is the signal for a particular pixel in the 
binned EBSD pattern or a particular energy in the 
EDS signal. This Data Matrix follows the 
formulation of Wilkinson et al [13]. The (square 
cropped) EBSD vector consists of p2 pixels. The 
EDS signal consists of q bins. D therefore contains 
p2 + q rows. The Data Matrix contains 
measurements from a-by-b points now populating 
each row, and accordingly the matrix has ab 
columns. Each column is a PCA ‘object’: a full set 
of EBSD and EDS measurements (‘variables’).  
The action of PCA and the geometric interpretation 
of variance (or standard deviation) weighting are 
presented in Figure 2. A specified number (n) of 
orthogonal principal components are calculated via 
a least-squares singular value decomposition (SVD). 
These high-dimensionality vectors (in measured 
variable space) represent the directions in the dataset 
that explain the most variance. We calculate ‘scores’ 
of the components for each object. Scores are the 
orthogonal projections of the principal components 
onto the position vector of an object in high-
dimensional variable space. They represent how 
strongly a set of measurements is represented by a 
principal component. Each object (scan point) has a 
score for each principal component. In the case of 
Figure 2b, we scale up variables 2 and 3 to new 
variables 2a and 3a. This increases the variance in 
these directions. The dataset is extended in the 
direction of PC1a, and the object is proportionally 
linearly loaded more by PC1a than it is by the 
unscaled PC1. 
As previously described, each EBSD pattern and 
EDS spectrum is normalised with respect to its 
standard deviation before concatenation and 
insertion into the data matrix as a column. This is 
required in order to retain meaningful principal 
components, and is known to be an important aspect 
of data pre-treatment due to the variance seeking 
nature of the PCA parameter fitting process [20]. 
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 Variables with high variance across their  
observations will dominate the principal 
components, with large corresponding scores for 
many objects. This is depicted in Figure 2b. As we 
wish to control the weighting of the principal 
components with respect to EBSD or EDS, it is 

                                                        

1 Note that we do not normalise each row of the data matrix 
with respect to the variance of the row, as we do not want to 

essential to normalise the variance of the different 
variable types upon the data matrix’s construction. 
Without this normalisation of variance for the EBSD 
pattern and EDS spectrum separately, our weighting 
parameter would act non-uniformly on each column 
of D, leading to a confused scoring output1.  

treat each channel and pixel number as totally independent 
measurements. Normalising the variance of each individual 

Figure 2: Action of PCA for a schematic dataset with many objects and three variables. (a) shows how the PCA reduces 
the data set to show strong variation along one principal axis, which may not be an axis of the initial data set; (b) shows 
how varying the weighting of two combined data sets, which present as information along different axes, can change 
the variance and therefore the separation of the data sets. Note that this is a simplified schematic for the purposes of 
visualisation, as our datasets contain tens of thousands of variables. 
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The matrix of principal components, C, and that of 
their scores at each point, S are given by: 

𝑫"#$%&,()* = 𝑪"#$%&,-*	𝑺0[-,()] 

The parameter n is the number of principal 
components to be fitted, and takes a maximal value 
of p2+q. C and ST are calculated from the singular 
value decomposition of D, which is itself the 
eigendecomposition of the covariance matrix 
DDT/(r-1), where r is the data matrix’s rank. We 
contain the variance (singular values of the SVD) in 
S, leaving the principal components themselves with 
unit length. After Wilkinson et al [13] a VARIMAX 
rotation, R, is then employed, such that: 

𝑫"#$%&,()* = 𝑪"#$%&,-*	𝑹[-,-]	𝑹0[-,-]𝑺0[-,()]	  

The matrices C, S and R are numerically calculable 
in MATLAB using the statistics and machine 
learning toolbox. The VARIMAX rotated 
characteristic components (RCCs) are held in the 
rows of the matrix CR, with the corresponding 
scores for every point given by the rows of SR. RC-
EBSPs and RC-spectra may then be re-constructed 
from the first p2 and final q rows of CR respectively. 
An a-by-b assignment map can be constructed with 
the same spatial dimensions as the original scan grid. 
Each point is assigned a number, m, corresponding 
to the RCC with the highest score. For each scan 
point’s corresponding row in SR, m is the number of 
the column that takes the greatest value. Each point 
is thus classified to one of n labels to construct an 
assignment map. Each label is associated with a 
characteristic EBSP (RC-EBSP) and spectrum (RC-
spectrum). 
As we have constructed this algorithm, the 
weighting term we introduce acts to reduce the 
variance of the EBSD variables, magnifying the 
relative standard deviation observed for each EDS 
variable (across all points in the map, columns of the 
data matrix) by a factor w. This has the effect of 
increasing the influence of the EDS variables on the 
principal components through the action of Figure 
2b. In practice, this means that there is an observable 
transition from EBSD-dominated through to EDS-
dominated behaviour as w is decreased, this is 
presented and discussed in sections 3.2 and 3.3. 
Upon construction of the data matrix D, the PCA 
algorithm we employ has two parameters that 
require selection. These are: the number of 

                                                        
measurement across all scan points would reduce or 
completely eliminate the prominence of features such as EDS 
peaks and Kikuchi bands in the principal components. 

components that we choose to retain for the 
VARIMAX rotation, n, and the EBSD standard 
deviation weighting, w. Selection of these will be 
discussed subsequently. To make the processing 
tractable on a reasonable computer, there is a 
requirement to divide the full region of interest into 
smaller tiles so that there is sufficient memory 
available for the SVD algorithm (we need to hold in 
memory a rank r square matrix). 3-by-3 tiling was 
employed for the datasets presented in this work. 
The RAM requirement for processing each tile of 
this dataset is 58 gigabytes. Principal components 
and RCCs are calculated for each tile fully 
independently, with slight consequence discussed in 
section 3.3. 

2.3 Analysis of PCA output 
Reshaping the first p2 rows in all n columns of CR 
into p-by-p images reconstructs n RC-EBSPs. The 
final q rows for all n columns correspond to RC-
spectra. These are separately analysed and 
quantified. The reduced dataset of characteristic 
patterns and spectra has a superior signal-to-noise 
ratio to the experimental measurements. We can 
analyse the data in the form recovered from the 
weighted PCA and VARIMAX rotation, but we may 
have issues for instance where two carbides have the 
same chemistry and phase (i.e. similar EDS spectra) 
but different crystal orientations (varying EBSD 
data). Therefore it is useful for us to analyse the 
labels in more detail. 
We label our data first using EBSD pattern analysis. 
In this work we apply the Refined Template 
Indexing approach developed by Foden et al [12] to 
assign phase and orientation to each of the point 
labels. This method involves cross-correlation of 
test EBSPs (in this case the RC-EBSPs) with a 
database of library patterns, sampled with the 
fundamental zone of SO(3) space for each crystal 
structure with a specified angular frequency. The 
master patterns were dynamically simulated using 
Bruker DynamicS [11,17] and reprojected in 
MATLAB using the pattern centre calibrated from 
the Ni-rich matrix. Sampling of SO(3) was 
performed with a frequency of 7° and refinement 
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was used to upsample the orientations. Templates 
were generated using five input candidate crystal 
structures were considered for RTI template 
matching: FCC Co, M23C6, M2C, M6C and MC 
selected from the literature [5,28–30]. CIF files and 
unit cell visualisations are included in the 
supplementary information. The RC-EBSPs in these 
datasets were indexed as FCC Co, M6C or MC 
(selecting each phase based upon the highest ranked 
cross correlation value and scrutiny of pattern 
matching). 
For the EDS data, we export the data in a format that 
can be analysed directly in Bruker eSPRIT 2.1, and 
quantify RC-spectra using a ZAF correction 
algorithm that accommodates the 70˚ sample tilt 
required for EBSD. We additionally compute and 
compare the average measured EDS spectra from all 
points assigned to a given RCC label. 

 
3. Optimising weighting and VARIMAX rotation 
Here the effect of two important input parameters, n 
and w, will each be discussed. These correspond to 
the number of principal components we retain and 
the weighting factor for EBSD information that 
leverages PCA in favour of either EBSD of EDS. 

3.1 Retention of components 
While we can select the number of principal 
components worth retaining, n, by hand based upon 
a qualitative assessment of the appearance of our 
final micrographs, it is also useful to explore 
whether there are quantitative, or semi-quantitative 
assessment processes that can guide our selection. 
This is a problem that has been considered 
extensively in the data science literature [20,31–34].  
Here, we perform a VARIMAX rotation on the first 
n principal components and expect a single label to 
represent structural and chemical information 
contributed from one grain. If n is greater than the 
number of grains in the AOI, the additional labels 
will correspond to sub-grains (which may be 

advantageous but will reduce the signal to noise ratio 
of the RCCs). If n is too large, the calculated scores 
of nearby (and similar) points will be high for 
multiple labels and there will be noise in the 
assignment map. If n is too low, the grains will not 
be properly segmented and information will be lost 
as we have over-reduced the dataset. This work 
presents two approaches for selecting n. The first 
involves counting the number of grains in the 
measured EBSD-based Radon quality map. The 
second imposes a limit on the contribution of the 
first n principal components to the total variance of 
the dataset. 

3.1.1 Counting grains to select n. 
A reasonable value of n is an estimate of the number 
of grains in the EBSD-based Radon quality map, L. 
This was calculated with Bruker eSPRIT 2.1 and is 
an essentially ‘free’ microstructural image that is 
spatially consistent with the EBSD and EDS 
measurements. Several approaches have been 
reported for counting the number of grains in a 
microstructural image. These include the application 
of an ‘H-concave’ transformation to channelling 
contrast forescatter electron images (with 
subsequent refinement) developed by Tong et al 
[35]. This grain counting step is employed to select 
the locations of a dramatically reduced number of 
EBSD patterns for an orientation map. The 24-bit 
information depth of the RGB colour image 
constructed from the forescatter diode intensities 
allows segmentation of scan points into labels of 
similar colour and contrast. A subsequent 
refinement step where each point is compared to the 
labels of its neighbours leads to a very accurate 
image reconstruction. Campbell et al [36] utilise a 
‘Watershed’ transform to identify and distinguish 
phase fractions and morphology in grayscale SEM 
images of Ti-6Al-4V. This algorithm treats an image 
as a topographic region of intensity basins. A 
labelled source is placed at each local minimum and 
allowed to flood the image. Image segmentations are 
delineated where floods from different sources meet 

Figure 3: Filtering and watershed transform of Radon quality map to determine a value of L for VARIMAX rotation. 
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[36–38]. When applied to the local gradient of a 
microstructural image (in order to highlight 
boundaries and leave grain interiors with low 
intensity), reasonably accurate intensity 
classification can be achieved. However, the 
algorithm has a tendency to over-segregate and 
assign too many labels.  
For its speed and simplicity the Watershed algorithm 
was selected to quickly identify a value of L. The 
image processing steps are presented in Figure 3a. 
Starting from the EBSD-based Radon quality map 
(Figure 3a) a series of local averaging filters, ending 
with the image complement of a standard deviation 
filtered image and local minima flattening, are used 
to highlight boundaries (3b) A watershed transform 
then assigns labels to different regions (3c) 
following the topographical method of Meyer [37]. 
We then select n equal to L principal components, 
and then we perform the VARIMAX rotation.  
This approach is fast and provides a reasonable 
estimation of n for an area of interest. As will be 
shown subsequently the watershed algorithm 
significantly oversamples the subsets, especially 
where coherent intergranular precipitates with 
similar orientation and chemistry are counted 
separately by the watershed algorithm. This leads to 
too great a value of n being selected and the signal-
to-noise ratio of the characteristic patterns and 
spectra are not optimised. 

 Care should be taken, as the ability for the 
watershed algorithm to determine the number of 
components will depend on the types of features 
presented. In this example, we are exploring an 
annealed Co/Ni matrix and so there is minimal 
contrast in that region, but we want to focus on the 
number of signals from the carbides. In noisier 
Radon quality maps it seems likely that the 
watershed algorithm would perform significantly 
worse. This could potentially be somewhat 
mitigated for a wider variety of datasets by further 
ad hoc convolutions and image pre-processing. 

3.1.2 Limiting variance contribution of the nth 

principal component. 
Conventional PCA relies on the relatively subjective 
identification of an inflection in a Scree plot (for an 
example, see Figure 4) to estimate the number of 
components that significantly and sufficiently 
describe the variance of the dataset [20,33]. The 
Scree plot describes the explained variance 
contribution to the dataset as a function of principal 
component, derived from the corresponding 
eigenvalues of the covariance matrix. In this plot the 
principal components are ordered by their 
contribution to the variance, with the first being the 
highest contributor. The inflection point in a Scree 
plot may indicate where the principal components 
cease to add new substantive value to a description 
of the data, but often the inflection is unclear. 

Figure 4: Selection of n based on applying a cut-off tolerance, t, for percentage contribution to total dataset variance of 
the nth principal component. The third PC contributes < 1% of the total dataset variance. The 18th PC contributes < 0.02%. 
The watershed algorithm discussed in section 3.1 selected seven components for this AOI.  
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Alternatively, the total explained variance for a 
certain number of retained principal components 
itself provides a metric for the utility of the retained 
components. This idea can aid in selection of n, the 
number of principal components to retain for 
VARIMAX rotation and generation of characteristic 
patterns (RC-EBSPs) and spectra (RC-spectra). We 
can set n as the integer for which explained variance 
of the (n+1)th principal component falls below a 
certain threshold, t, for example 0.2%. All n 
principal components then contribute a variance 
proportion greater than t to the dataset. Information 
contained in the remaining principal components is 
discarded (i.e. this is considered as noise). The short 
circuit caveat around this selection rule is that n must 
be greater than or equal to 2 for VARIMAX rotation, 
so in some cases (with high initial t) we are forced 
to select n with variance contributions greater than t. 
We can therefore choose n: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛{	(𝑛 + 1)EF	𝑃𝐶	} < 𝑡 

𝐼𝑓	𝑛 < 2, 𝑠𝑒𝑡	𝑛 = 2. 
This is a relatively crude selection algorithm, but we 
demonstrate that it works. More sophisticated 
methods  discussed by Raîche et al [33] using non-
graphical metrics such as the Scree test optimal co-
ordinate or Scree test acceleration factor could be 
employed. These values of n correspond to analyses 
of the gradient of the explained variance 
(equivalently the eigenvalues of the covariance 
matrix) as a function of n. We did not find these 
latter criteria suitable for our datasets, and they 
would systematically select the maximum 
statistically allowable number of components as 
described by Kaiser’s rule, which stipulates that the 
eigenvalue of the nth retained component must not 
be less than one [39]. 
Considering the first tile of the full AOI, Figure 4 
shows the Scree plot for a PCA with EBSD 
weighting 
parameter (discussed further in section 3.1), w, equal 
to one, and the resulting assignment maps after 
VARIMAX rotation for values of n selected with 
varying variance tolerance criteria, as well as the 
Watershed algorithm. The variance tolerance limit, 
t, is selected to vary between 1% (leaving two 
principal components) and 0.02% (leaving 17 
principal components).  
The quality of the label assignment to each point can 
be quantified by normalised cross-correlation of 
measured EBSD patterns and EDS spectra with a 
point’s corresponding characteristic RC-EBSP and 
RC-spectrum. Maps of these correlation values are 
helpful to visualise how this varies across the AOI, 

and how well different precipitates and grains match 
to their corresponding RC-EBSPs and RC-spectra.  
Maps of these correlation qualities (normalised 
correlogram peak heights at zero lag, χEDS and χEBSD) 
are presented in Figure 5a. In the presented case for 
w = 1 there is little variation in χEDS as dataset 
variance is dominated by EBSD information. We 
also consider a quadrature combination of EBSD 
and EDS correlogram peak heights, χcomb:  

𝜒PQR) = 	S𝜒TUVWX +	𝜒TWVX  

Four possible metrics for the classification quality of 
an analysis are suggested. These are each plotted as 
a function of the variance of the final, nth, component 
in Figure 5. 

• Metric 1: The proportion of points that satisfy χ 
> 0.95 χmax (for χEBSD and χEDS) - to be 
maximised, Figure 5b. 

• Metric 2: The proportion of points that satisfy 
χEBSD < 0.7 χEBSD,max or χEDS < 0.9 χEDS,max - to be 
minimised, Figure 5c. 

• Metric 3: Mean value of χEBSD, χEDS or χcomb – to 
be maximised, Figure 5d. 

• Metric 4: Standard deviation in χEBSD, χEDS or 
χcomb – to be minimised, Figure 5e. 

Selecting the ‘best’ value of n for an AOI can be 
made less subjective by choosing a variance 
tolerance limit that maximises or minimises one of 
these metrics. When the tolerance limit is relaxed 
(low t, high n, with nth component contributing only 
a small amount of variance) the AOI is oversampled 
with principal components. This leads to a noisy 
assignment map (observed for the assignment map 
in Figure 5a with n = 17), as nearby (and similar) 
points have similar scores for several RCCs. As the 
tolerance limit is tightened (moving to the right in 
the graphs of Figure 5b-e), the assignment initially 
improves across most of the metrics. Percentage of 
correlogram peak heights close to the maximal 
values increases (Figure 5b), and percentage much 
less than the maximal decreases (Figure 5c). The 
mean increases (Figure 5d) and standard deviation 
falls (Figure 5e). This initial improvement is 
attributed to improving the signal to noise ratio of 
the RCCs, as we reject superfluous principal 
components. As the tolerance limit is tightened 
further and n is reduced, the assignment moves past 
an optimal position. Beyond this point insufficient 
principal components are included in the 
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Figure 5: (a) Effect of varying variance rejection percentage on measured EBSD pattern and spectrum cross-correlation 
peak height with corresponding RC-EBSPs and RC-spectra. Colour is cross-correlation peak height. (b) and (c) show 
percentage of these EBSD and EDS cross-correlation peak heights greater or less than cut-off proportions of maximal 
correlation in that analysis. (d) and (e) show mean and standard deviation of the cross-correlation peak heights for EBSD, 
EDS and the quadrature combination of the two. 
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VARIMAX rotation. This leads to insufficient (and 
inaccurate) RC-EBSPs and RC-spectra. 
Accordingly the cross-correlation peak heights for 
this dataset fall – the mean decreases and standard-
deviation rises. We also observe that the Watershed 
algorithm oversamples the dataset. 
For the analysis presented in Figure 5 we determine 
that a choice of t = 0.2% provides a good 
assignment. This was selected as the minimum in the 
standard deviation based metric 4. This t also 
performs best in metric 2 (Figure 5c) and second 
best in metric 3 (Figure 5d). Metric 4 appears to be 
a good choice for deciding the optimal value of t 
(and therefore selecting n in independent datasets). 
A choice of t = 0.5 % (n = 3) leads to superior 
metrics 1 and 3 than t = 0.2% (n = 5). However, the 
assignment map in Figure 5a shows better 
correlation (both EBSD and EDS) for t = 0.2% (n = 
5). Evidently the matrix regions correlate slightly 
better for t = 0.5% than for t = 0.2%, raising the 
mean peak height despite an observed poorer 
correlation for the precipitate regions. An approach 
of minimising poor correlation, by either of metrics 
2 and 4, is less sensitive to this effect, and t = 0.2% 
(n = 5) exhibits obvious minima. Furthermore, the 
percentage difference between measurements of 
mean χcomb is far smaller than that for standard 
deviation of χcomb, providing a more justifiable 
minimum.  
It was found (and is shown in the supplementary 
data) that metrics 1 and 2 are sensitive to the choice 
of proximity parameters (here 95% maximal for 

EBSD and EDS, 70% minimal for EBSD and 90% 
minimal for EDS). In contrast, we observe that 
trends in standard deviation of χcomb as a function of 
nth component variance are stable between datasets, 
choice of w, and the specific values of n that the 
tolerance limits correspond to, shown in Figure 6. 
Based on the stability of the standard deviations in 
χcomb, a variance tolerance t = 0.2% was selected for 
selection of n in subsequent analysis of the effect of 
the EBSD weighting parameter w.  

3.2 Leveraging relative EDS variance 
The dataset variance contribution of the EDS energy 
bins, the final q rows of D, is altered via a scaling 
factor in order to bias the PCA in favour of EBSD or 
EDS information. Without any weighting, the far 
greater number pixels in an EBSD pattern compared 
to energy bins in an EDS spectrum (65,536 for a 
256-by-256 pixel EBSD pattern, and 2048 channels 
for our energy-binned spectra) dominate the 
variance of the dataset unless the former is 
dramatically scaled down. This is  achieved by 
multiplying the EBSD and EDS rows of D by w and 
one respectively [21]. The variance normalisation 
step employed during the construction of D 
separately reduces the standard deviation of the 
input EBSPs and EDS spectra to one. The weighting 
multiplication therefore reduces the standard 
deviations of the input EBSPs to w, while that of the 
input spectra remains equal to one. 
The tile AOI presented in Figure 5 was processed 
with weighting parameter, w, varied between 0.001 

Figure 6: Standard deviation of normalised cross-correlation between measured EBSPs and spectra with their associated 
characteristic EBSPs and spectra, combined in quadrature. Shown for three alloys and three EBSD weighting parameters. 
As more principal components are retained, correlation initially improves as AOIs are better matched. After reaching 
the optimal level correlation degrades as principal components corresponding to noise are included in the VARIMAX 
rotation. The trend is stable (the minimum occurs in approximately the same place) across independent datasets and 
weighting parameters. n corresponding to t = 0.2% is circled in each case.  

 



12 of 24 

   
and 1. A variance tolerance limit, t, was used to 
select the number of components to retain, n, varied 
between 0.02% and 1%. Maps of standard deviation 
and mean of χcomb as a function of t and w are 
presented in Figure 7. A local minimum in standard 
deviation is identified. The corresponding 
assignment map is included (Figure 7c), along with 
maps of χEBSD (Figure 7d) and χEDS (Figure 7e).  
The same trends in variance tolerance limit are 
observed as in Figures 5 and 6, which present χcomb 
as a function of the variance contribution of the nth 
component for a single w. As the tolerance limit is 
tightened and the nth component has to contribute 
more variance (left to right in 7a, 7b), the standard 
deviation in χcomb falls and the mean rises. As in 
Figure 5, a local minimum in standard deviation is 
observed as t is varied. Beyond this limit insufficient 
principal components are retained. As w is increased 
(tending towards EBSD weighting, upwards in 7a, 
7b), standard deviation in χcomb generally decreases. 
The mean value of χcomb increases as w increases for 
loose variance tolerance limits (AOI oversampling), 

but at higher t (smaller n) there appears to be less of 
a correlation between mean χcomb and w. Considering 
the standard deviation in χcomb (metric 4 of section 
3.1.2) as a measure of assignment quality identifies 
a seemingly  optimal combination of w and t. 
Associated label assignment, χEBSD and χEDS maps 
are presented (7c-e).  

3.3 Full dataset processing and assignment 
artefacts 

The PCA approach achieves the desired signal-to-
noise improvement for poorly diffracting particles 
such as M6C carbides. Example measured, label 
(RCC), and matched simulation patterns for the 
pseudo-FCC matrix and M6C carbide are presented 
in Figure 8.  
Considering the full AOI of nine tiles, Figure 9 
presents the dataset processed with w = 1 (EBSD 
weighting) and w = 0.1 (EDS weighting, identified 
as the local minimum in standard deviation of χcomb 
in section 3.2). RC-EBSPs were indexed using the 
Refined Template Matching procedure [12], and 
RC-spectra were quantified with Bruker eSprit 2.1. 

Figure 7: Standard deviation (a) and mean (b) of combined EBSD and EDS RCC/measurement cross-correlation peak 
heights, χcomb, defined in section 3.1.2. The ‘best’ assignment map is presented (c), along with correlation peak height 
maps for EBSD, χEBSD (d) and EDS, χEDS (e). 36 data points are included in the t / w parameter space maps. 
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When the EDS weighting is high (Figure 9b,d,f,h), 
label assignment is dominated by the magnified 
variance of the EDS spectrum energy bins. To 
qualify this, we explore the interaction volume using 
Monte Carlo simulations and the continuous 
slowing down approximation, this provides an 
indication of the interaction volume of the electron 
beam and X-ray generation. We note that the 
generation of the background signal for EBSD is 
likely to be smaller than predicted from the CSDA-
approximation as the energy of the electrons that 
form the Kikuchi bands is constrained to be closer to 
the primary beam than the CSDA predicts [40]. The 
interaction volume of backscattered electrons in this 
system, simulated with CASINO at 70˚ sample tilt 
and detailed further in the supplementary 
information, is at most 100 nm. That for secondary 
(X-ray generating) electrons is significantly larger. 
The Monte-Carlo simulation suggests that 
secondary electrons from the FCC matrix are 
generated up to perpendicular depths of 1 µm. 
Carbides exhibit even larger volumes, with Cr6C and 
ZrC carbides interacting up to 1.4 µm and 1.7 µm 
respectively.  
The consequence of large EDS interaction volumes 
is that at high magnification (where scan step is 
much less than the coarser technique resolution) two 
adjacent scan positions with measurably different 
crystal structure may exhibit very similar EDS 
spectra. The position vectors of these observation 

sets in variable space are very similar, despite 
differences in the measured EBSD pattern, due to 
the demagnification of EBSD pattern variance in 
this analysis. Effectively this leads to a loss of spatial 
resolution in label assignment, and as highlighted at 
position A, the possibility of missing fine 
precipitates from the classification. It can be seen in 
the EDS weighted assignment map Figure 9d, that  
an elongated characteristic region of C enrichment 
and different chemistry, starting at point A, follows 
the grain boundary. The greater number of matrix 
points in this region dominate the principal 
component-EBSP, and the RC-EBSP for this region 
indexes as FCC Co. 
Another artefact we observe in the assignment is 
highlighted at position B. In the EDS-weighted PCA 
we observe the upper region of a precipitate (MC 
carbide) grain is assigned a different orientation to 
the remainder below. This artefact is the confluence 
of two method limitations. The need to tile the 
dataset due to the significant memory requirement 
of the SVD algorithm means the upper and lower 
regions have to be assigned labels independently. 
This is not an issue for matrix regions, as there is a 
sufficient population (and therefore dataset variance 
contribution) to assign noise free and appropriate 
RC-EBSPs and RC-spectra.  However, when the 
PCA is EDS-weighted there is insufficient EBSD 
variance (due to a small population of points in the  

Figure 8: Comparisons of example raw, rotated characteristic component (RCC), and template matched dynamically-
simulated EBSPs for the pseudo-FCC Ni/Co matrix and the M6C carbide phase. This demonstrates how the method 
amplifies the quality of the minor phase substantially, which assists in unambiguous classification. 
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Figure 9: Comparison between phase assignment (a-b), label assignment, with arbitrary colouring (c-d), IPF-Z – out of 
plane (e-f), and C at.% from the RC-spectra quantified with Bruker eSprit 2.1 (g-h), after processing with w = 1 (EBSD 
weighted) and w = 0.1 (EDS weighted). Both analyses were performed with a variance tolerance limit t = 0.2 %. 
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upper half of the mis-assigned precipitate) to 
provide a label that contains sufficient orientation 
data for this region to be separated from the nearby 
second grain of chemically similar MC carbide. This 
results in the upper region of the split precipitate 
being assigned the correct chemistry and phase, but 
an incorrect orientation. This could be compensated 
for by relaxing the variance tolerance limit imposed 
on this analysis or an alternative sampling strategy 
to retile for small segments towards the tile edge. 
A third artefact is highlighted at position C. In the 
EBSD weighted Figure 9f, one MC carbide 
precipitate is identified and labelled. Two are 
assigned in EDS weighted Figure 9e. In this case the 
applied variance tolerance limit of 0.2% is 
insufficient to separate this region from the 
surrounding matrix. The region is highlighted in 
Figure 10, and score maps for the first six calculated 
principal components and the VARIMAX rotated 

RCCs are presented. The precipitate is mis-indexed 
in this analysis due to insufficient sampling of 
principal components. No PC strongly contributes to 
the precipitate grain (Figure 10, highlighted in 1-6), 
and little signal from this region is included in the 
VARIMAX rotation and calculation of the six 
RCCs. This results in the precipitate being labelled 
with an FCC Co matrix dominated RC-EBSP, and 
eventually indexed as such.  

 
4. Discussion 

Easy access to advanced statistical treatments enable 
us to treat microscopy data as a ‘big data’ problem 
and we are likely to see increased use of these 
approaches. We have illustrated that consideration 
of the data modality (e.g. physical processes to 
generate the signal, combined with the statistical 
variance of each data type) provides improved 

Figure 10: Second tile AOI (with arbitrary label colouring) of Figure 9 with EBSD weighting, w = 1. The mis-labelled 
precipitate grain (point C in Figure 9) is highlighted. PC scores and VARIMAX rotated RCC scores are presented. Principal 
components are ordered by their contribution to dataset variance, but RCCs are calculated to contribute equal variance. 
Score colour map is unnormalised between maps to show contrast1. No principal component strongly contributes to the 
highlighted grain (1-6), and the VARIMAX rotated component with the highest score (f) includes significant signal from 
several other precipitates and matrix. This results in the corresponding RC-EBSP being dominated by FCC Co signal, and 
indexing accordingly (point C in Figure 7). 

 



16 of 24 

confidence in their use to reasonably, and usefully, 
segment large data sets. 
The present work presents a limited size of region 
with only a few domains, but testing using a number 
of other (lower magnification) maps indicates that 
our variance tolerance limit is a good indicator of the 
number of domains - grains, sub-grains, and 
precipitates - within Ni-based maps containing many 
more of these features. We hope to explore this in 
future work, where we will use the method to 
explore substantially larger combined EBSD and 
EDS maps.  
Our combination of EDS and EBSD signals together 
using a weighted PCA approach, with subsequent 
label identification and characterisation, improves 
phase characterisation within the scanning electron 
microscope. To combine these modalities, we have 
to select an appropriate data processing pipeline to 
provide robust data mixing, with subsequent 
selection of an appropriate number of components 
for retention prior to VARIMAX rotation. This is 
required to inform correct identification of the 
labelled regions. We achieve this through selection 
of suitable values for the two independent 
hyperparameters w and n (the latter varied through t, 
the variance tolerance limit). Here we review our 
approach and discuss applications and potential 
utility of the technique. 

4.1 Parameter choice and data-type leverage 
We have shown that a PCA algorithm may be biased 
towards obtaining RCCs through identifying the 
strongest signals in either EBSD or EDS 
information. An EBSD-weighted PCA exhibits a 
finer effective spatial resolution in label assignment, 
due to the smaller interaction volume for electron 
backscattering than for X-ray generation. From this 
we obtain RC-EBSPs and RC-spectra identified 
from structurally contrasting points in an AOI. We 
can also leverage PCA in favour of EDS spectrum 
dissimilarity and identify RC-EBSPs and RC-
spectra accordingly. In this case we observe a 
coarser assignment resolution, but by slightly 
weighting towards their EDS signal we are able to 
improve the label assignment on several metrics. 
Two approaches have been presented for selection 
of the number of principal components to retain for 
an AOI. Counting the number of grains in an EBSD 
quality map, for example with a Watershed 
algorithm, may be susceptible to oversampling. This 
can be due to the fact that coherent and chemically 
similar boundary precipitates will be counted 
separately but really should share a label. Slight 
oversampling is not a problem, but significant 

oversampling may make the components recovered 
after the VARIMAX rotation difficult to interpret. 
Furthermore it may reduce the ability of the method 
to amplify weak signals. A more systematic 
approach for selecting n is to consider the 
contributions of retained principal components to 
total dataset variance and impose a limit beyond 
which we discard residual information as noise. A 
small t (eg. 0.02%) corresponds to retaining many 
principal components as even those contributing 
relatively little signal are permitted to participate in 
the analysis. Increasing t restricts the number of 
principal components, as we impose a low pass filter 
on the proportional variance contribution to the 
dataset required. This improves the signal-to-noise 
ratio in the RC-EBSPs and RC-spectra. We observe 
an increase in the mean and reduction in standard 
deviation of correlogram peak heights for cross 
correlation of measured and characteristic EBSD 
patterns and EDS spectra. When t gets too high, the 
mean and standard deviation of correlation peak 
heights falls as we undersample the number 
principal components required to segment an AOI.  
Optimal choice of parameters will depend on what 
dataset insight is required from an analysis. If we 
wish to reduce a dataset to as few RCCs as possible 
then a fairly tight tolerance limit provides a 
mechanism for quantitatively limiting the 
significance requirement of features in an AOI. If 
precipitates/grains of interest are small, reducing the 
tolerance limit permits weaker dataset signals to be 
assigned their own component. This may lead to 
oversampling of the dataset, reducing signal to 
noise.  
Weighting PCA in favour of EBSD yields a finer 
effective spatial resolution in assignment than EDS 
weighting. This is advantageous if spatial precision 
is required, and especially when analysing phase 
presence in an AOI. Leveraging towards EDS can 
improve RCC assignment by several metrics. In 
some cases assigning chemically similar but 
structurally different regions (due to overlap in EDS 
interaction volume) to the same label may be 
compensated for by relaxing the variance tolerance 
limit and encouraging dataset oversampling. It may 
be the case that an EDS-weighted PCA would prove 
useful in situations where crystal pseudosymmetry 
or other similarity in Kikuchi bands reduces EBSD 
pattern contrast between two regions. 
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Figure 11: Chemical maps (at.%) of quantified RC-spectra. Only Ni, Al, Mo and C are shown for brevity. This analysis was 
performed with variance tolerance, t, of 0.2% and EBSD weighting, w, of 1. Maps are shown for directly quantified RC-
spectra (a) and average spectra assigned to the same given label (b). 
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 4.2 Chemical analysis of labelled phases 

Label chemistry can be quantified from RC-spectra 
independently of structure-ID from RC-EBSPs. 
Comparisons between chemistry and 
crystallography may then be made, with the benefit 
of a reduced signal to noise ratio of RC-spectra and 
RC-EBSPs than the raw measurements. RC-EBSPs 
and RC-spectra are simultaneously calculated and 
assigned to regions of an AOI. They are not 
independent, and reflect the most significant 
structural and chemical signals of points that they 
strongly load. 
Figure 11 presents chemical maps (quantified RC-
spectra) of a dataset for both directly quantified RC-
spectra (a) and average spectra for a given RCC 
label (b). The same PCA parameters were employed 
as the results shown in Figure 9(a,c,e,g). They are 
almost identical. We observe that all precipitates 
exhibit Ni and Al depletion. The intergranular M6C 
carbides (Figure 9a) show Mo enrichment, while the 
intragranular MC carbides exhibit Mo depletion.  
In Figure 12 we show elemental quantification of 
chemistry for each phase, along with standard 
deviations. This is performed for both directly 
quantified RC-spectra (11a) and quantified average 
spectra for a given label (11b). We note the trend in 
refractory element segregation between the 

carbides. In this system the MC carbide is strongly 
Ta and Zr enriched. Mo, Cr and W segregate to the 
M6C phase. 
 Similar observations of Ta and Zr enrichment in 
superalloy MC carbides has been reported by atom 
probe tomography studies [7,10]. We believe that 
the technique presented in this work provides a 
means of confirming trends in precipitate 
composition between alloys, as well as where 
elements tend to segregate upon nominal enrichment 
of the bulk composition.  

4.3 Qualitative comparison to state-of-the art 
post-processing approaches 

Our PCA approach is a method to amplify signal to 
noise, where we remove any knowledge of the co-
location of measurement points and sum similar 
signals. In the limit, the EBSD pattern based 
neighbour pattern average method (NPAR) [41] 
improves signal to noise via a summation patterns 
within a local neighbourhood. This ignores 
extraction of the similarity of the signal obtained 
from each neighbouring pattern and could lead to 
adding of signals from two phases or grains which 
can affect interpretation of the average signal. The 
non-local pattern averaging reindexing (NLPAR) 
approach [42] provides delocalised smoothing, 
using a weighting function based upon the similarity 

Figure 12: Average chemistry of the three identified phases in the dataset presented through this work. As with Figure 
9a,c,e,g; Figure 10 and Figure 11, this analysis was performed with a variance tolerance, t, of 0.2% and an EBSD 
weighting, w, of 1. Filled regions plot average composition, dotted lines show +/- a standard deviation from the mean 
(tabulated data for this is provided in the supplementary information). This is shown for directly quantified RC-spectra 
(a) and average spectra assigned to the same given label (b). 
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of the pattern information in a moving window 
centred around a candidate point. Similar 
approaches have been adopted in the TEM 
community, particularly using the Hyperspy Python 
package, to obtain characteristic spot diffraction 
patterns for example with a cluster analysis 
approach [43]. So-called ‘cluster-centre’ diffraction 
patterns are calculated by grouping and calculating 
the average of DPs transformed into variable space. 
Both cluster-centre analysis and PCA can be 
considered extreme cases of NLPAR, where the 
spatial location is discarded and instead only applied 
statistics are relied on to denoise, label, and index 
data. Einsle et al [43] note that raw PCA is not 
suitable for spot diffraction analysis due to strong 
similarity in many reflections observed across the 
area of interest. 
Generally, the challenge with a PCA approach is that 
the components returned represent the statistical 
dominance of each characteristic signal within the 
data set, and they are not physical. A VARIMAX 
rotation for the combined EBSD pattern and EDS 
spectra results in an easier to interpret label, where 
each label can be uniquely applied to each point 
within the map. This works for an EBSD pattern, as 
the variance between two Kikuchi-based diffraction 
patterns for different phases is relatively small. For 
a TEM spot-based diffraction pattern, rotating the 
data according to a variance model may not be 
reasonable, because the spot patterns for different 
phases may have a stronger variation in variance 
(e.g. due to a different number of reflectors that 
create spots within the pattern). In practice, this may 
impact how the diffraction data is pre-processed 
before putting into the data matrix, as well as a 
selection of an appropriate weighting scheme when 
joining the diffraction-based structure data with the 
EDS-based chemical data.  
Keenan and Kotula [44,45] have explored scaling 
for multivariate statistical analysis for time of flight 
secondary ion mass spectrometry (TOF-SIMS) data. 
They focussed on how count-dependent pre-scaling 
impacts the distribution of variance and show that 
many scaling methods hinder multivariate statistical 
analysis. Their work highlights that variance scaling 
can be improved   when the Poisson probability 
distribution of the   raw data is accounted for, 
especially with regard to chemically significant 
minor features in the TOF-SIMS spectra. In contrast, 
our work combines two data types with different 
noise and scaling methods, and we use the output 
signals in separate characterisation processes.  
When we consider the EDS signal, the 
heteroscedasticity of noise/error in the 

measurements is not just a function of the magnitude 
of the peak (which could be rectified by dividing by 
a Poisson correction factor for each energy bin, 
independent of the bin’s energy) but also uncertainty 
in beam energy, sample elemental fluorescence and 
absorption, etc. Accounting for this could lead to 
formal normalisation of expected variance for a 
given energy bin, and would be a function of 
spectrum bin energy, identity of the chemical 
species, and intensity. Our method works well for 
alloy EDS datasets as the X-ray spectra contain 
many interacting (and covarying) signals. In a 
dataset there may for example be a majority of scan 
points with intense Ni and weak Mo peaks, 
producing a principal component with that self-same 
pattern of intensity (intense Ni and weak Mo). An 
improved noise function would be useful where the 
EDS signal is less distinctly clustered. However, we 
note that in our workflow the final phase 
classification is performed on the EBSD signal, with 
the EDS data used for chemical quantification 
(interpreted as a function of structure). A similar but 
different noise model could be applied to each pixel 
within the EBSD pattern, dependent on the 
anisotropic spatial distribution of (near elastic) 
backscatter electrons that can be modulated in 
counts by Kikuchi diffraction. For example, this 
could be implemented through inclusion of a pixel 
and energy bin specific weighting function prior to 
operation of the ‘macro’ weighting term we have 
applied to mix the signals prior to applying the PCA 
that we have fairly extensively discussed. 
In the absence of advanced noise models, we have 
employed a simpler method designed with our data 
processing stream in mind. This is focussed on (1) 
maximisation of the likelihood of successful 
segmentation of similar domains and the generation 
of appropriate characteristic signals; (2) the ability 
to register those domains against the EBSD signal 
for phase classification (which is augmented by the 
rotation of components to create uniform variance, 
as per Wilkinson et al [13]); (3) the subsequent EDS 
chemical signature analysis. Our approach is simple 
and sufficiently successful, and will be made 
available open source via AstroEBSD [27].  
Improvements to our methodology could be 
motivated by the discussed prior work of Keenan 
and Kotula [44], provided noise and variance models 
of the EBSD signal and EDS signal can be 
determined and validated. At present, these are 
limited and the origins of the signals are still 
somewhat disputed [11,16,19,40]. While we have a 
significant grasp of the EBSD signal we are limited 
in our analysis of EDS information, and currently 
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use standard proprietary software such as Bruker 
eSprit 2.1. Further method development could 
involve implementing open source quantification 
(accounting for discussed effects), including better 
accounting for Poisson noise within our processing 
toolbox. 

 
5. Conclusions 

We develop an analysis pipeline to provide robust 
correlative microscopy, mixing chemical 
information obtained using EDS and structural 
information obtained using EBSD. This enables us 
to observe small carbides and optimise signal-to-
noise for the different phases present. PCA is an 
effective data processing technique for identifying 
regions of strong similarity in a dataset 
(microstructure), while remaining spatially unbiased 
(two adjacent points share the same propensity to be 
assigned the same principal component and RCC as 
two far-field points). Inclusion of both EBSPs and 
EDS spectra into the data matrix, D, provides a 
mechanism for obtaining simultaneous structural 
and chemical fingerprints of features in an AOI. It is 
possible to weight the identification of these 
characteristic EBSPs and spectra (RC-EBSPs and 
RC-spectra) in favour of similarity in 
crystallography or chemistry between points. In this 
work we present the following observations: 

 
1. Selection of the number of principal components 

to retain for VARIMAX rotation and subsequent 
analysis can be made less subjective by counting 
grains in a Radon transform EBSP quality map, 
for example by a Watershed transform, or by 
selecting a tolerance limit (low pass filter) for the 
proportional explained variance of the retained 
principal components. Oversampling reduces 
signal to noise ratio in RCCs but reduces the risk 
of missing fine precipitates from the analysis. 
 

2. An EBSD weighted PCA exhibits a finer 
effective spatial resolution in label assignment 
due to the smaller interaction volume of 
backscattered than secondary electrons, and 
therefore for EBSP than EDS-spectra 
generation.  
 

3. Leveraging the PCA slightly towards EDS 
measurements can improve segmentation (lower 
standard deviation in cross-correlation peak 
height) of characteristic EBSPs and spectra. 

 

4. Structural phase-ID of an AOI, for example by a 
Refined Template Matching algorithm, can be 
enhanced via data reduction of a 40,000 point 
map to (in the case of the dataset presented in 
this work) 35 RC-EBSPs. This drives a 
significant processing speedup, and permits the 
trialling of many candidate structure libraries, 
improving confidence in assignment.  

 
5. Quantification of RC-spectra, assigned a 

structure label by RC-EBSP Refined Template 
Matching, permits measurements of average 
chemical segregation between phases. 
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