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Abstract

The choice of a specific distribution for random parametédsserete choice models is a critical

iIssue in transportation analysis. Indeed, various pietessearch have demonstrated that an

inappropriate choice of the distribution may lead to sesibiases in model forecast and in
the estimated means of random parameters. In this paperropese a practical test, based
on seminonparametric techniques. The test is analyzeddmosiynthetic and real data, and is
shown to be simple and powerful.
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1 Introduction

An important advantage of discrete choice models to anatgnsportation demand is their dis-
aggregate nature, allowing them to capture heterogemettyel population under interest. The
analyst identifies segments, typically characterized lmyoseconomic characteristics such as
income, age, or gender, or by the choice context, definedkemele by the trip purpose. Each
segment must be sampled in order to have a sufficient amouwddtafto estimate statistically
significant models. However, even after controlling for@fable characteristics, there is as a
rule lots of heterogeneity left. This remaining heteroggnean be accounted for with random
parameters

Except for some specific models (such as probit models wittmathy distributed coefficients),
the error structure of the resulting model becomes very ticatpd, and cannot be represented
by a closed form probability model. We obtain mixtures of misgdwhere the underlying choice
model, conditional on the value of the parameters written as

Fu(ilCn, B) (1)

whereC,, is the choice set of decision-maker: € C,, is the alternative under consideration and
3 € R¥ is a vector of parameters. Assuming tids randomly distributed with PDF (), the
mixture of models is defined by

PL(ilC,) = /ﬁ PL(i(Ca, B)£(8)d. )

In practice, the kernel choice model (1) is often a Multinahtiogit (MNL) model, but any
closed form probability model (such as Generalized Extr&alae models) is adequate. Al-
though proposed about 30 years ago (see for instance ElPower Research Institute, 1977),
the use of mixtures of MNL models (MMNL) has only become p@puhore recently thanks to
the increasing power of computers allowing for the systenese of Monte-Carlo simulation to
approximate the complex error structures of these modets ésnong many others, discussions
by McFadden and Train, 2000, Ben-Akiva et al., 2001, HenahdrGreene, 2003, Train, 2003,
Viton, 2004).

This modeling approach has been found to be very useful tinE@many complex transporta-
tion phenomena, such as the analysis of the value of trawel t¢.g. Algers et al., 1998, Hess,
Bierlaire and Polak, 2005, Greene et al., 2006) and reiiglgd.g. Brownstone and Small, 2005,
Small et al., 2005), route choice (see Han et al., 2001, Be&hal., 2002, Bierlaire and Fre-
jinger, 2005), airport choice (Hess and Polak, 2005), regrichoice (Carrier, 2003), vehicle
choice (Brownstone et al., 2000, Hess, Train and Polak, 2@0f congestion pricing (Bhat
and Castelar, 2002).

An important issue is the choice of a specific distributiontfee random parameters. Actually,
various pieces of research have demonstrated that an om@apde choice of the distribution
may lead to serious biases in model forecast and in the dstihmaean of random parameters.

3
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A noticeable example is the Normal distribution, used asfaidiefor many applications. Hess,
Bierlaire and Polak (2005) discuss wrong interpretatidngiingness-to-pay indicators when
normal distributions are considered. Fosgerau (to appeaks at various distributions and
concludes that a bad choice may lead to extreme biases. Rggs<caausen (2005) have exam-
ined how well a wide range of parametric distributions cgreduce given target distributions,
which are constructed to reflect common assumptions abstatvariation in transport demand
models.

We note immediately that using only the goodness-of-fit tmgare models does not allow one
to reach valid conclusions about the validity of the rand@rameters distribution. Therefore,
we propose a test based on seminonparametric (SNP) tedsrimdecide if a given distribution
IS appropriate or not.

The term seminonparametric distinguishes a certain clas®dels from parametric, nonpara-
metric and semiparametric models. Parametric models arstémdard classical models and
include, e.g., the MNL or the MMNL models. One specifies a mhstteicture and estimates a
number of parameters or deep parameters such as the meataadard deviation of a model
parameter. A nonparametric model has very little strucamekis based on local approximations
of some kind to the relationship of interest rather than steretion of parameters. A recent
general reference to nonparametric methods is Pagan aald (1999). Examples of nonpara-
metric techniques in a transport context are nonparanregiession (Fosgerau, to appear) and
local logit (Fosgerau, 2005a). Semiparametric models dmghbaid between parametric and
nonparametric models. They introduce parametric assomgptike the specification of some
relationship to be a linear combination of independentalaes while perhaps the errors remain
nonparametric. A notable semiparametric model for digarhbice data is the Klein and Spady
(1993) estimator, which has been applied in the transpotest by Horowitz (1993), Fosgerau
(2005b) and Fosgerau (to appear). Seminonparametric siatehot based on local approxi-
mations but use instead series approximations to appregifaactions such as densities. SNP
methods were introduced by Gallant and Nychka (1987). kpghper, we employ a series ap-
proximation to approximate an unknown density and hencepproach is seminonparametric
in nature.

In the next section, we describe the general methodolog$etttion 3, we illustrate the power
of the test on synthetic data, where the “true” distribut®specified and known in advance.
We also apply the test on real data in Section 4, where weriltesinstances such that the test
rejects the assumed distribution, and instances where# dot. After concluding in Section 5,
we provide some technical details for SNP methods based gerdee polynomials in the
Appendix.

2 Methodology

We want to test if a random parameteof a discrete choice model follows an a priori postulated
distribution. We label this our base distribution with CIbFand densityf.

4
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The true distribution may be different from. We denote the true CDF iy and its density by
g. We can rewrite the distributiof in terms of F" as

G(w) = Q(F(w)),

where @ is a monotone function fron, 1] to [0, 1]. As such, is a CDF for a stochastic
variable on the unit interval. We can differentiate thisxpress the density as

g(w) = q(F(w))f(w).

The next step is to approximagein a seminonparametric fashion. Following Bierens (2005),
we let L, be transformed Legendre polynomials (see appendix), wioich an orthonormal
basis for functions on the unit interval. Defining

N
gyv(z) =1+ Z OxLi (), (3)
k=1

we approximate by
1
a(x) ~ 203 (@),
where

K:[Wﬁwwvww (4)

is a normalizing constant such that the dengiiptegrates to 1. Squaring, guarantees pos-
itivity, so thatg is a density. We call thé, L;(z) SNP terms andV is the number of such
terms.

Bierens (2005) shows that any density on the unit interval lma approximated in this way.
This approximation is convenient for several reasons. hdgepolynomials have a recursive
definition which is easy to implement in software. Orthonality of the transformed polyno-
mials is likely to reduce problems with correlation in esttmon, and makes it easy to compute
the normalizing constant. Indeed, defining= F'(w) so thatw = F~'(z) anddz = f(w)dw,
we write (4) as

1 1 N N
K= [ @@= [0+ an@yar =1+ 6,
0 0 k=1 k=1

the last equality being obtained from the orthonormalityte# polynomials. A great deal of
flexibility is obtained to approximate, already with a small number of terms, and flexibility
can be gradually increased by adding more terms, if negessar

Assume now that is a parameter of a discrete choice model. The probabilitaiternative:

to be chosen in choice sétis given by

Ry = [ P15 Cgas,

o0
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where P, (i|5,C,) is a closed form model, such as the Generalized Extreme Valomgel
(McFadden, 1978). Then,

Ba(i|Cn)

Q

% / : Po(il8,C) % (F(8)) f(5)d3

- = / Pu(ilF71(2), Co) g2 (2)dz,

where, again; = F(3). This integral is approximated by Monte-Carlo simulatiand the
term F~1(z) corresponds to the draws of the base distribution.

Now, under the null hypothesis that the base distributidhedrue distribution, we havg = g,
which implies thay is identically 1 and thus thaj, = 0, for all £ in (3). Then the model

+oo
P.(ilC,) = / Po(il3, C.)g(8)dB, (5)

o0

is equivalent to the model

+oo
RiC) = [ Pui5.CF(B)d5 ©)
By construction, model (6) is a special case of model (5) whadr coefficients (except the
constant) of the polynomial approximation @fare set to 0. Consequently, a likelihood ratio
test for nested hypotheses is appropriate to test the npbthesis. If£;; is the loglikelihood
of the sample with model (5), andy is the loglikelihood of the sample with model (6), then,
underH, : f = g, the likelihood ratio statistic

—2(Lr — Ly)

is 2 distributed withN degrees of freedom, wher€ is the number of terms considered in the
polynomial approximation.

Note that the number of SNP terms must be chosen in advanoeabing the number of SNP
terms makes the alternative hypothesis more general luiradseases the demand on the data.
Our experience reported later in this paper suggests thad SbIP terms give a large degree of
flexibility, which may be sufficient for most purposes, wHi&NP term is not always sufficient
to reject a false null hypothesis.

3 Simulation study

We first illustrate the concept on semi-simulated data, deoto measure the power (that is, the
ability to reject false hypotheses) and the size (that esy#ite at which true hypotheses are re-
jected) of the test. By semi-simulated data, we mean thatawve hsed an existing database, and
performed sample enumeration with a prespecified “true” @htwigenerate simulated choices.
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The data derive from a stated choice experiment, which is gfathe Danish value of time
study. Some design considerations for this study are éetal Burge et al. (2004). We have
selected a route choice experiment concerning a recertiytriqus. The experimental design is
particularly simple involving only in-vehicle travel timand cost. By design, the ratio of cost
to time differences range between 1 and 200 DKK per hour (1 EURS DKK).

Each respondent made 9 choices, one of which was always adtadichoice included as a
check on respondents. Respondents who failed to chooseothmaint alternative were ex-
cluded from the analysis. So were all dominant chdicdis leaves 1070 respondents who
carried out an average of 7.7 non-dominated choices each.

The true model is specified as a binary model based on theviolputility function:

ant - ﬁTnTTjnt + ﬁCTCjnt + 6jmﬁ (7)

whereUj,, is the utility associated with alternativeby individual » for question numbet,
By 1s a random coefficient distributed across individuglsis fixed and: j,,, are i.i.d. extreme
value distributions, so that

and
eﬁTnTTint +/8CTCznt

o Z . eBraTTknt +BcTCrnt
k=t,j

Pnt(Z|Cn76Tn) - Pr(Uint Z ant)

The simulated choices were generated using a cost coeffiofe®0.3 and time coefficients
following either a normal or a lognormal distribution. Tleesvo distributions were chosen to
have the same mean and variance and most of their mass vhighiarige of time-cost trade-offs
in the data. More specifically, with cost in DKK and time in mias, the normal distribution
had mean 0.5 and standard deviation 0.2, while the lognodis&ibution had mean -1 and
standard deviation 0.6 in the underlying normal distribnti

A total of 100 data sets have been generated for each “trueglfemdVe have applied the test
using one SNP term. We have tested two null hypotheses(tyde distribution is normal and
(ii) the true distribution is lognormal. The estimationsv@deen performedwith simulated
maximum likelihood, using a total of 500 Halton draws. Thenter of rejected models is
reported in Table 1. At the 95% level of confidence, the nuidthesis that the true distribution
of B is normal is (falsely) rejected 9% of the times with the firstdal, and (correctly) rejected
100% of the times with the second model. The null hypothésisthe true distribution of

is lognormal is (correctly) rejected 99% of the times witk tlrst model, and (falsely) rejected
5% of the times with the second model.

1Due to rounding, there could be other choices that did natlireva positive price of time. They are similarly
treated as dominant and removed from the sample.
2All estimations are carried out in Ox (Doornik, 2001). Theleds available from the authors upon request.
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Hy
Normal Lognormal
95% True dist: Normal 9 99
True dist: Lognormal 100 5
99% True dist: Normal 1 78
True dist: Lognormal 88 0

Table 1: Simulated data: number of rejections with 1 SNP term

We analyze these results in more details in Figures 1 and @enthe cumulative distribution
of the likelihood ratio statistic is reported for tdex 100 experiments. Figure 1 reports the
results for testing the null hypothesis that the true dstion is a normal (corresponding to
the first column in Table 1), and Figure 2 reports the resoltsdsting the null hypothesis that
the true distribution is a lognormal. The threshold for th&®test is shown (3.84, from the
x? distribution with one degree of freedom), as well as the 98%3). At the 99% level of
confidence, the number of false rejections drops, as welleaamber of correct rejections, as
reported in Table 1.

1
0.9 |-
0.8 |-
0.7 f
0.6 |-
0.5 |-
0.4
0.3
0.2

0.1% | P
0 ; 3 b 0";

True normal
True logr}ormal o

|
0 5 10 15 20

Figure 1: Distribution of the likelihood ratio for 100 exp@ents under{,="true normal”

Although both the power and the size of the test are very gdoehvjust one SNP term is used,
we have also applied the test with two SNP terms. The resudteeported in Table 2.

The test seems to perform very well in these circumstandes pdwer of the test is very high,
allowing us to reject a very large proportion of false nutigen at the 99% level of confidence.
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True normal o
True logr}ormal +

10 15 20

Figure 2: Distribution of the likelihood ratio for 100 exp@ents underd,="true lognormal”

Hy
Normal Lognormal
95% True dist: Normal 9 100
True dist: Lognormal 100 3
99% True dist: Normal 4 99
True dist: Lognormal 100 0

Table 2: Simulated data: number of rejections with 2 SNP serm

The actual size seems to differ from the nominal size in ba#ctions. Consequently, it may
be appropriate to increase the critical value in practice.

4 Casestudy

We now apply the test to the real data set, using again the Inspdeification (7). We test the
model with one SNP term, where the base distributiofi;ois a normal. The results of the two
estimations are reported in Table 3. The likelihood ratiB)kest is

—2(—4153.57 + 4150.14) = 6.86

and theH, hypothesis thati; follows a normal distribution can be rejected at the 99%lleve
of confidence. Note that the coefficientof the SNP term is significantly different from 0. A

9



Swiss Transport Research Conference March 15-17, 2006

visual comparison of the estimated densities of the normé#he first model and of in the
second shows however that they look quite similar (see Ei@)yr Moreover, the estimated
VTTS are quite similar. This shows that informal tests mayrbgleading in this context, and
that a formal likelihood ratio test is necessary.

Br ~ f(z) = N(u,0?) Br ~ g(x)

L= -4153.57 -4150.14
Estim. Std.err. t-test| Estim. Std.err. t-value
O6c  -0.36 0.01 -25.1 -0.35 0.01 -25.3
w(Br) 0.03 0.01 1.9 -0.15 0.06 2.7
o(Br) 0.34 0.01 244 0.38 0.02 16.2
01 0.25 0.08 3.3

VTTS (DKK/h) 25.33 25.49

Table 3: Testing a normal distribution

1.2

1

0.8

0.6

0.4

0.2

g —— f~N(0.03,0.342) -

Figure 3: Comparison of andg, f normal

We now test the model with one SNP term, where the base distiibof 51 is lognormal. The
results of the two estimations are reported in Table 4.
The LR testis

—2(—4304.32 + 4302.94) = 2.76

and theH, hypothesis that; follows a lognormal distribution cannot be rejected at tb&c9
level of confidence and not even at the 85% level. A visual anmspn of the densities of the

10
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lognormal in the first model and g@fin the second show no visible differences (see Figures 4
and 5), and the VTTS is about the same with the two models. Menvthes, parameter of the
Legendre polynomial appears to be significantly differeatrf zero, which indicates that the
case could be analyzed in more details.

In(Br) ~ f(z) = N(u,0?) Br ~ g(z)

L= -4304.32 -4302.94
Estim. Std.err. t-test| Estim. Std.err. t-value
Bc  -0.45 0.01 -38.3 -0.45 0.02 -28.7
w(Br) -2.52 0.05 -46.§ -2.92 0.06 -46.5
o(Br) 1.43 0.05 30.§ 1.50 0.04 36.8
01 0.14 0.04 3.3

VTTS (DKK/h) 30.48 32.13

Table 4. Testing a lognormal distribution

—
o

O R, N WP 01Oy J 0 ©

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

In(f) ~ N(-2.92, 1.502()J ,,,,,,

Figure 4: Comparison of andg, f lognormal

Consequently, we have performed the test with 2 and 3 SNPstefime results are presented
in Table 5, where we denote k) the distribution obtained witlv. SNP terms. We obtain
a large improvement in the likelihood when a second SNP teradded. Also, the average
VTTS significantly changes between the model with one andrtbdel with two terms. The
likelihood ratio test for the model with two terms in the pobmial is

—2(—4304.32 + 4263.57) = 81.50

11
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Figure 5: Comparison of andg, f lognormal (zoom)

which is far beyond the 5.99 threshold of the 95% level, arehdar beyond the 9.21 threshold
of the 99% level. Therefore, we clearly reject the lognormadhis case. A visual comparison
(Figures 6 and 7) illustrates well the cause of this rejectio

As a final note on this example, we emphasize the fact thatikkhlood with the normal
distribution is much better than with the lognormal, eveoutlh the normal distribution is also
rejected.

This suggests that the model might be misspecified. Thexefoe now estimate a different
model specification on the same data set. The idea is to gpeaifodel in the VTTS space,
as suggested by Train and Weeks (2005). This model, progns&mdsgerau (to appear), is

defined as o o
= 1 8 < 1 2nt — Int . '
Yt (6 " Tlnt - T2nt * It

It can be written as a classical binary random utility mouath

— CQnt*CIni
Ulnt o )\ ln Tlnt_TQnt + glnt

UQnt - Aﬂn+€2nt

where it is assumed without loss of generality that the adteves are numbered such that
Ty > Ts,: for each observation. Also, we assume that there is no daedraternative, that
IS Cn < Coy, for all observations, so that the argument of the logarith@ways positive.
The unknown parametgt, is interpreted as the logarithm of the Value of Travel Timeifgs

of individualn, and)\ is a scale parameter.

12
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Figure 6: Comparison of, ¢;, go andgs, f lognormal

We test the model with one, two and three SNP terms, wheredbke @istribution fors,, is

normal. The results are reported in Table 6. Note that theegabf the likelihood obtained with
this new specification are much better than those obtairedaqursly.

Looking at the model with one SNP term, the likelihood ratatistic is

—2(—3732.04 + 3730.01) = 4.06

which is just above the 3.84 threshold of the 95%, proposivgak rejection. Inflating slightly
the level to 96% gives a threshold of 4.22 which is not reacti@dm the conclusions of the

simulation study in Section 3, we decide not to reject themabbased on this test. We reach
the same conclusion with the model with 2 SNP terms, wheréttestatistic is

—92(—3732.04 4 3728.83) = 6.42

which is just above the 5.99 threshold of the 95% level, bessdwt reach the 6.44 threshold of
the 96% level. Finally, the test with three SNP terms give

—2(—3732.04 + 3727.79) = 8.50

which is just above the 7.81 threshold of the 95% level, ardkuthe 8.95 threshold of the 97%

level. Therefore, even with more terms, the test suggest®meject the normal distribution in
this model.
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Figure 7: Comparison of, g1, g andgs, f lognormal (zoom)

5 Conclusion

We have proposed a method based on a seminonparametric E€plétjication to test if a
random parameter of a discrete choice model indeed follogwgea distribution.

The simulation study shows that the test is well able to disoate between normal and log-
normal with 1 SNP term only. It also suggests that it is goaatpce to look for a slightly
higher loglikelihood difference before rejecting a distriion.

We have demonstrated the application of the test on two daskes. In preference space,
we reject the normal with 1 SNP term. The lognormal is notatejgé with 1 term but it is
clearly rejected with two terms. So we conclude that it isggatty desirable to include two or
three SNP terms in order to test the base distribution agamalternative that is as general as
possible. There are relevant alternatives which are natioagh with just 1 SNP term. However,
there seems to be little point in using more than 2 or 3 SNPgerm

The first case study showed that the significant improvenmetita likelihood with the model
with a normal distribution is not sufficient to accept thetdlmition, which was actually rejected
by the test. It was rather evidence of model misspecificatidrich motivates the model in
VTTS space analyzed in the second case study, as suggedteddpgrau (to appear).

In this case, the likelihood is dramatically improved rfatto all previous models. For each
test with 1, 2 and 3 SNP terms, we get a weak rejection of thenalbusing the nominal test
level of 95%. If we inflate this level slightly as suggestedliby simulation study, we conclude
that the normal distribution cannot be rejectedgothe logarithm of the VTTS.

14
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In summary, the test works well on simulated data, and we Bagen a successful application
of the test to real data. It can reject bad models and, by diretumore terms for flexibility,
show how a particular distribution may fail. So we believatth is a very powerful tool for
concrete applications.

In the future, it would be interesting to adapt the test forentan one random parameter. A
simple heuristic would consist in testing each paramewgpendently. The robustness of this
approach must be analyzed both in the case of independecbamdated random parameters.
Also, the practical use of multivariate polynomial apprazations should be assessed.

Note that other uses of the model are possible. Namely, oméreat the SNP extension to
some base distribution as a way of generating a larger modetnse with greater flexibility
allowed for the mixing distribution. As the sample size ahd humber of SNP terms tends
to infinity, one could hope that the model would be capableppiraximating any true mixing
distribution. Identification and consistency of this prdeee is the subject of ongoing research.
Note however that the trade off between model flexibility aiath overfitting must always be
considered by the analyst.

A Appendix: Legendrepolynomials

The Legendre ponnomialEn(x) are defined by
M

~ B m (2n — 2m)!

Lnfw) = Z( Y 2rm!l(n —m)!(n — 2m)!x

m=0

n—2m

whereM = n/2 or M = (n — 1)/2, whichever is an integer. They can also be defined
recursively, R R R
Ln(x)=((2n —1VaL,_1(z) — (n — 1)L, _o(z))/n,

whereLo(z) = 1andL, (z) = = (see Abramowitz and Stegun, 1972, chap. 8 and 22). They are
orthogonal orj—1, 1] in the sense that

/1 Lon(2)Ly(z)dz =0 if m # n.

1

In our context, it is more appropriate for the polynomial®éoorthogonal ofd), 1], as the argu-
ments are defined by a CDF. Therefore, Bierens (2005) prephsdollowing transformation:

Ln(z) = V20 + 1L,(2z — 1)

so that they are orthonormal ¢ 1], that is

/01 Lo () L () da = { (1) if m £ n

if m=n.

15
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The recursive definition of these transformed polynommfgiven by

Lo(w) = Y2 = 00 1)L, (o) - VIR ]

n nyvan — 3

L, _o(x).

Lo(z) = 1

Li(r) = V3(2x—1)

Lo(z) = +/5(62% — 62+ 1)

Ly(r) = /7(202° — 3022 + 122 — 1).
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6T

In(6r) ~ f(z) = N(p,0?) Br ~ g1(x) Br ~ g2(x) Br ~ g3(x)
L= -4304.32 -4302.94 -4263.57 -4263.29
Estim. Std.err. t-test Estim. Std.err. t-test Estim. Std.err. t-test Estim. Std.err.  t-test
Bc | -0.45 0.01 -38.3] -0.45 0.02 -28.7 -0.45 0.01 -38.5 -0.45 0.01 -34.94
w(Br) | -2.52 0.05 -46.8| -2.92 0.06 -46.5 -3.25 0.04 -86.9 -3.16 0.03 -92.28
o(Br) 1.43 0.05 30.6 1.50 0.04 36.8 1.29 0.02 517 1.26 0.02 63.80
01 0.14 0.04 3.3 -0.07 0.05 -1.52 -0.02 0.08 -0.19
09 1.20 0.25 4.7 1.29 0.32 4.07
03 -0.12 0.13 -0.92
VTTS (DKK/h) | 30.48 32.13 52.85 46.56
LR against 0 2.76 81.50 82.06
LR against 1 78.74 79.30
LR against 2 0.56

Table 5: Testing a lognormal distribution with more than teren
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0¢

B~ flz) =N(p,0?) B~ gi(z) B~ g2(x) B~ g3(z)
L= -3732.04 -3730.01 -3728.83 -3727.79
Est. Std.err. t-test| Est. Std.err. ¢-test| Est. Std.err. ¢-test| Est. Std.err. t-test
A 1.8 0.1 346/ 1.8 0.1 346 1.8 0.1 345 1.8 0.1 345
1 -2.5 0.1 -28.5 -1.2 04 -29| 0.2 0.7 0.2 -1.0 0.6 -1.8
o -2.0 0.1 -25.7] -2.2 0.2 -11.4| -2.6 0.3 -94| -27 04 -6.3
01 0.3 0.1 3.3 0.6 0.1 50, 04 0.1 2.7
09 0.2 0.1 1.8/ -0.1 0.1 -0.6
03 -0.1 01 -1.7
VTTS 26.56 27.08 27.66 27.75
LKR O 4.06 6.42 8.50
LKR 1 2.36 4.44
LKR 2 2.08

Table 6: Testing a normal distribution with more than onenter
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