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Abstract

The choice of a specific distribution for random parameters of discrete choice models is a critical
issue in transportation analysis. Indeed, various pieces of research have demonstrated that an
inappropriate choice of the distribution may lead to serious biases in model forecast and in
the estimated means of random parameters. In this paper, we propose a practical test, based
on seminonparametric techniques. The test is analyzed bothon synthetic and real data, and is
shown to be simple and powerful.
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1 Introduction

An important advantage of discrete choice models to analyzetransportation demand is their dis-
aggregate nature, allowing them to capture heterogeneity in the population under interest. The
analyst identifies segments, typically characterized by socio-economic characteristics such as
income, age, or gender, or by the choice context, defined for example by the trip purpose. Each
segment must be sampled in order to have a sufficient amount ofdata to estimate statistically
significant models. However, even after controlling for observable characteristics, there is as a
rule lots of heterogeneity left. This remaining heterogeneity can be accounted for with random
parameters
Except for some specific models (such as probit models with normally distributed coefficients),
the error structure of the resulting model becomes very complicated, and cannot be represented
by a closed form probability model. We obtain mixtures of models, where the underlying choice
model, conditional on the value of the parametersβ is written as

Pn(i|Cn, β) (1)

whereCn is the choice set of decision-makern, i ∈ Cn is the alternative under consideration and
β ∈ R

K is a vector of parameters. Assuming thatβ is randomly distributed with PDFf(x), the
mixture of models is defined by

Pn(i|Cn) =

∫

β

Pn(i|Cn, β)f(β)dβ. (2)

In practice, the kernel choice model (1) is often a Multinomial Logit (MNL) model, but any
closed form probability model (such as Generalized ExtremeValue models) is adequate. Al-
though proposed about 30 years ago (see for instance Electric Power Research Institute, 1977),
the use of mixtures of MNL models (MMNL) has only become popular more recently thanks to
the increasing power of computers allowing for the systematic use of Monte-Carlo simulation to
approximate the complex error structures of these models (see, among many others, discussions
by McFadden and Train, 2000, Ben-Akiva et al., 2001, Hensherand Greene, 2003, Train, 2003,
Viton, 2004).
This modeling approach has been found to be very useful to capture many complex transporta-
tion phenomena, such as the analysis of the value of travel time (e.g. Algers et al., 1998, Hess,
Bierlaire and Polak, 2005, Greene et al., 2006) and reliability (e.g. Brownstone and Small, 2005,
Small et al., 2005), route choice (see Han et al., 2001, Bekhor et al., 2002, Bierlaire and Fre-
jinger, 2005), airport choice (Hess and Polak, 2005), airline choice (Carrier, 2003), vehicle
choice (Brownstone et al., 2000, Hess, Train and Polak, 2005), and congestion pricing (Bhat
and Castelar, 2002).
An important issue is the choice of a specific distribution for the random parameters. Actually,
various pieces of research have demonstrated that an inappropriate choice of the distribution
may lead to serious biases in model forecast and in the estimated mean of random parameters.
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A noticeable example is the Normal distribution, used as a default for many applications. Hess,
Bierlaire and Polak (2005) discuss wrong interpretations of willingness-to-pay indicators when
normal distributions are considered. Fosgerau (to appear)looks at various distributions and
concludes that a bad choice may lead to extreme biases. Hess and Axhausen (2005) have exam-
ined how well a wide range of parametric distributions can reproduce given target distributions,
which are constructed to reflect common assumptions about taste variation in transport demand
models.
We note immediately that using only the goodness-of-fit to compare models does not allow one
to reach valid conclusions about the validity of the random parameters distribution. Therefore,
we propose a test based on seminonparametric (SNP) techniques to decide if a given distribution
is appropriate or not.
The term seminonparametric distinguishes a certain class of models from parametric, nonpara-
metric and semiparametric models. Parametric models are the standard classical models and
include, e.g., the MNL or the MMNL models. One specifies a model structure and estimates a
number of parameters or deep parameters such as the mean and standard deviation of a model
parameter. A nonparametric model has very little structureand is based on local approximations
of some kind to the relationship of interest rather than the estimation of parameters. A recent
general reference to nonparametric methods is Pagan and Ullah (1999). Examples of nonpara-
metric techniques in a transport context are nonparametricregression (Fosgerau, to appear) and
local logit (Fosgerau, 2005a). Semiparametric models are ahybrid between parametric and
nonparametric models. They introduce parametric assumptions like the specification of some
relationship to be a linear combination of independent variables while perhaps the errors remain
nonparametric. A notable semiparametric model for discrete choice data is the Klein and Spady
(1993) estimator, which has been applied in the transport context by Horowitz (1993), Fosgerau
(2005b) and Fosgerau (to appear). Seminonparametric models are not based on local approxi-
mations but use instead series approximations to approximate functions such as densities. SNP
methods were introduced by Gallant and Nychka (1987). In this paper, we employ a series ap-
proximation to approximate an unknown density and hence ourapproach is seminonparametric
in nature.
In the next section, we describe the general methodology. InSection 3, we illustrate the power
of the test on synthetic data, where the “true” distributionis specified and known in advance.
We also apply the test on real data in Section 4, where we illustrate instances such that the test
rejects the assumed distribution, and instances where it does not. After concluding in Section 5,
we provide some technical details for SNP methods based on Legendre polynomials in the
Appendix.

2 Methodology

We want to test if a random parameterω of a discrete choice model follows an a priori postulated
distribution. We label this our base distribution with CDFF and densityf .
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The true distribution may be different fromF . We denote the true CDF byG and its density by
g. We can rewrite the distributionG in terms ofF as

G(ω) = Q(F (ω)),

whereQ is a monotone function from[0, 1] to [0, 1]. As such,Q is a CDF for a stochastic
variable on the unit interval. We can differentiate this to express the densityg as

g(ω) = q(F (ω))f(ω).

The next step is to approximateq in a seminonparametric fashion. Following Bierens (2005),
we let Lk be transformed Legendre polynomials (see appendix), whichform an orthonormal
basis for functions on the unit interval. Defining

qN (x) = 1 +
N∑

k=1

δkLk(x), (3)

we approximateq by

q(x) ≈ 1

K
q2

N (x),

where

K =

∫
+∞

−∞

q2

N (F (ω))f(ω)dω (4)

is a normalizing constant such that the densityg integrates to 1. SquaringqN guarantees pos-
itivity, so that g is a density. We call theδkLk(x) SNP terms andN is the number of such
terms.
Bierens (2005) shows that any density on the unit interval can be approximated in this way.
This approximation is convenient for several reasons. Legendre polynomials have a recursive
definition which is easy to implement in software. Orthonormality of the transformed polyno-
mials is likely to reduce problems with correlation in estimation, and makes it easy to compute
the normalizing constant. Indeed, definingz = F (ω) so thatω = F−1(z) anddz = f(ω)dω,
we write (4) as

K =

∫
1

0

q2

N(z)dz =

∫
1

0

(1 +
N∑

k=1

δkLk(x))2dx = 1 +
N∑

k=1

δ2

k,

the last equality being obtained from the orthonormality ofthe polynomials. A great deal of
flexibility is obtained to approximateg, already with a small number of terms, and flexibility
can be gradually increased by adding more terms, if necessary.
Assume now thatβ is a parameter of a discrete choice model. The probability for alternativei
to be chosen in choice setC is given by

Pn(i|Cn) =

∫
+∞

−∞

Pn(i|β, Cn)g(β)dβ,

5



Swiss Transport Research Conference March 15-17, 2006

where Pn(i|β, Cn) is a closed form model, such as the Generalized Extreme Valuemodel
(McFadden, 1978). Then,

Pn(i|Cn) ≈ 1

K

∫
+∞

−∞

Pn(i|β, Cn)q
2

N (F (β))f(β)dβ

=
1

K

∫
1

0

Pn(i|F−1(z), Cn)q2

N (z)dz,

where, again,z = F (β). This integral is approximated by Monte-Carlo simulation,and the
termF−1(z) corresponds to the draws of the base distribution.
Now, under the null hypothesis that the base distribution isthe true distribution, we havef = g,
which implies thatq is identically 1 and thus thatδk = 0, for all k in (3). Then the model

Pn(i|Cn) =

∫
+∞

−∞

Pn(i|β, Cn)g(β)dβ, (5)

is equivalent to the model

Pn(i|Cn) =

∫
+∞

−∞

Pn(i|β, Cn)f(β)dβ. (6)

By construction, model (6) is a special case of model (5) where all coefficients (except the
constant) of the polynomial approximation ofq are set to 0. Consequently, a likelihood ratio
test for nested hypotheses is appropriate to test the null hypothesis. IfLU is the loglikelihood
of the sample with model (5), andLR is the loglikelihood of the sample with model (6), then,
underH0 : f = g, the likelihood ratio statistic

−2(LR − LU)

is χ2 distributed withN degrees of freedom, whereN is the number of terms considered in the
polynomial approximation.
Note that the number of SNP terms must be chosen in advance. Increasing the number of SNP
terms makes the alternative hypothesis more general but also increases the demand on the data.
Our experience reported later in this paper suggests that 2 or 3 SNP terms give a large degree of
flexibility, which may be sufficient for most purposes, while1 SNP term is not always sufficient
to reject a false null hypothesis.

3 Simulation study

We first illustrate the concept on semi-simulated data, in order to measure the power (that is, the
ability to reject false hypotheses) and the size (that is, the rate at which true hypotheses are re-
jected) of the test. By semi-simulated data, we mean that we have used an existing database, and
performed sample enumeration with a prespecified “true” model to generate simulated choices.
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The data derive from a stated choice experiment, which is part of the Danish value of time
study. Some design considerations for this study are detailed in Burge et al. (2004). We have
selected a route choice experiment concerning a recent tripby bus. The experimental design is
particularly simple involving only in-vehicle travel timeand cost. By design, the ratio of cost
to time differences range between 1 and 200 DKK per hour (1 EUR≈ 7.5 DKK).
Each respondent made 9 choices, one of which was always a dominated choice included as a
check on respondents. Respondents who failed to choose the dominant alternative were ex-
cluded from the analysis. So were all dominant choices1. This leaves 1070 respondents who
carried out an average of 7.7 non-dominated choices each.
The true model is specified as a binary model based on the following utility function:

Ujnt = βTnTTjnt + βCTCjnt + εjnt (7)

whereUjnt is the utility associated with alternativej by individualn for question numbert,
βTn is a random coefficient distributed across individuals,βC is fixed andεjnt are i.i.d. extreme
value distributions, so that

Pn(i|Cn = {i, j}, βTn) =
∏

t

Pnt(i|Cn, βTn)

and

Pnt(i|Cn, βTn) = Pr(Uint ≥ Ujnt) =
eβTnTTint+βCTCint

∑
k=i,j eβTnTTknt+βCTCknt

.

The simulated choices were generated using a cost coefficient of -0.3 and time coefficients
following either a normal or a lognormal distribution. These two distributions were chosen to
have the same mean and variance and most of their mass within the range of time-cost trade-offs
in the data. More specifically, with cost in DKK and time in minutes, the normal distribution
had mean 0.5 and standard deviation 0.2, while the lognormaldistribution had mean -1 and
standard deviation 0.6 in the underlying normal distribution.
A total of 100 data sets have been generated for each “true” model. We have applied the test
using one SNP term. We have tested two null hypotheses: (i) the true distribution is normal and
(ii) the true distribution is lognormal. The estimations have been performed2 with simulated
maximum likelihood, using a total of 500 Halton draws. The number of rejected models is
reported in Table 1. At the 95% level of confidence, the null hypothesis that the true distribution
of βT is normal is (falsely) rejected 9% of the times with the first model, and (correctly) rejected
100% of the times with the second model. The null hypothesis that the true distribution ofβT

is lognormal is (correctly) rejected 99% of the times with the first model, and (falsely) rejected
5% of the times with the second model.

1Due to rounding, there could be other choices that did not involve a positive price of time. They are similarly
treated as dominant and removed from the sample.

2All estimations are carried out in Ox (Doornik, 2001). The code is available from the authors upon request.
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H0

Normal Lognormal
95% True dist: Normal 9 99

True dist: Lognormal 100 5
99% True dist: Normal 1 78

True dist: Lognormal 88 0

Table 1: Simulated data: number of rejections with 1 SNP term

We analyze these results in more details in Figures 1 and 2, where the cumulative distribution
of the likelihood ratio statistic is reported for the4 × 100 experiments. Figure 1 reports the
results for testing the null hypothesis that the true distribution is a normal (corresponding to
the first column in Table 1), and Figure 2 reports the results for testing the null hypothesis that
the true distribution is a lognormal. The threshold for the 95% test is shown (3.84, from the
χ2 distribution with one degree of freedom), as well as the 99% (6.63). At the 99% level of
confidence, the number of false rejections drops, as well as the number of correct rejections, as
reported in Table 1.

00.10.20.30.40.50.60.70.80.91

0 5 10 15 20
95% 99%

True normalTrue lognormal
Figure 1: Distribution of the likelihood ratio for 100 experiments underH0=“true normal”

Although both the power and the size of the test are very good when just one SNP term is used,
we have also applied the test with two SNP terms. The results are reported in Table 2.
The test seems to perform very well in these circumstances. The power of the test is very high,
allowing us to reject a very large proportion of false nulls,even at the 99% level of confidence.
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00.10.20.30.40.50.60.70.80.91

0 5 10 15 20
95% 99%

True normalTrue lognormal
Figure 2: Distribution of the likelihood ratio for 100 experiments underH0=“true lognormal”

H0

Normal Lognormal
95% True dist: Normal 9 100

True dist: Lognormal 100 3
99% True dist: Normal 4 99

True dist: Lognormal 100 0

Table 2: Simulated data: number of rejections with 2 SNP terms

The actual size seems to differ from the nominal size in both directions. Consequently, it may
be appropriate to increase the critical value in practice.

4 Case study

We now apply the test to the real data set, using again the model specification (7). We test the
model with one SNP term, where the base distribution ofβT is a normal. The results of the two
estimations are reported in Table 3. The likelihood ratio (LR) test is

−2(−4153.57 + 4150.14) = 6.86

and theH0 hypothesis thatβT follows a normal distribution can be rejected at the 99% level
of confidence. Note that the coefficientδ1 of the SNP term is significantly different from 0. A

9



Swiss Transport Research Conference March 15-17, 2006

visual comparison of the estimated densities of the normal in the first model and ofg in the
second shows however that they look quite similar (see Figure 3). Moreover, the estimated
VTTS are quite similar. This shows that informal tests may bemisleading in this context, and
that a formal likelihood ratio test is necessary.

βT ∼ f(x) = N(µ, σ2) βT ∼ g(x)
L = -4153.57 -4150.14

Estim. Std.err. t-test Estim. Std.err. t-value
βC -0.36 0.01 -25.1 -0.35 0.01 -25.3

µ(βT ) 0.03 0.01 1.9 -0.15 0.06 -2.7
σ(βT ) 0.34 0.01 24.4 0.38 0.02 16.2

δ1 0.25 0.08 3.3
VTTS (DKK/h) 25.33 25.49

Table 3: Testing a normal distribution

00.20.40.60.811.2

-1 -0.5 0 0.5 1
g f ∼ N(0.03, 0.342)

Figure 3: Comparison off andg, f normal

We now test the model with one SNP term, where the base distribution ofβT is lognormal. The
results of the two estimations are reported in Table 4.
The LR test is

−2(−4304.32 + 4302.94) = 2.76

and theH0 hypothesis thatβT follows a lognormal distribution cannot be rejected at the 95%
level of confidence and not even at the 85% level. A visual comparison of the densities of the
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lognormal in the first model and ofg in the second show no visible differences (see Figures 4
and 5), and the VTTS is about the same with the two models. However, theδ1 parameter of the
Legendre polynomial appears to be significantly different from zero, which indicates that the
case could be analyzed in more details.

ln(βT ) ∼ f(x) = N(µ, σ2) βT ∼ g(x)
L = -4304.32 -4302.94

Estim. Std.err. t-test Estim. Std.err. t-value
βC -0.45 0.01 -38.3 -0.45 0.02 -28.7

µ(βT ) -2.52 0.05 -46.8 -2.92 0.06 -46.5
σ(βT ) 1.43 0.05 30.6 1.50 0.04 36.8

δ1 0.14 0.04 3.3
VTTS (DKK/h) 30.48 32.13

Table 4: Testing a lognormal distribution

01234
56789

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
gln(f) ∼ N(−2.92, 1.502)

Figure 4: Comparison off andg, f lognormal

Consequently, we have performed the test with 2 and 3 SNP terms. The results are presented
in Table 5, where we denote bygN the distribution obtained withN SNP terms. We obtain
a large improvement in the likelihood when a second SNP term is added. Also, the average
VTTS significantly changes between the model with one and themodel with two terms. The
likelihood ratio test for the model with two terms in the polynomial is

−2(−4304.32 + 4263.57) = 81.50
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0 0.005 0.01 0.015 0.02
gln(f) ∼ N(−2.92, 1.502)

Figure 5: Comparison off andg, f lognormal (zoom)

which is far beyond the 5.99 threshold of the 95% level, and even far beyond the 9.21 threshold
of the 99% level. Therefore, we clearly reject the lognormalin this case. A visual comparison
(Figures 6 and 7) illustrates well the cause of this rejection.
As a final note on this example, we emphasize the fact that the likelihood with the normal
distribution is much better than with the lognormal, even though the normal distribution is also
rejected.
This suggests that the model might be misspecified. Therefore, we now estimate a different
model specification on the same data set. The idea is to specify a model in the VTTS space,
as suggested by Train and Weeks (2005). This model, proposedby Fosgerau (to appear), is
defined as

ynt = 1

(
βn < ln

C2nt − C1nt

T1nt − T2nt

+ ηnt

)
.

It can be written as a classical binary random utility model,with

U1nt = λ ln C2nt−C1nt

T1nt−T2nt
+ ε1nt

U2nt = λβn + ε2nt

where it is assumed without loss of generality that the alternatives are numbered such that
T1nt > T2nt for each observation. Also, we assume that there is no dominated alternative, that
is C1nt < C2nt, for all observations, so that the argument of the logarithmis always positive.
The unknown parameterβn is interpreted as the logarithm of the Value of Travel Time Savings
of individualn, andλ is a scale parameter.
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Figure 6: Comparison off , g1, g2 andg3, f lognormal

We test the model with one, two and three SNP terms, where the base distribution forβn is
normal. The results are reported in Table 6. Note that the values of the likelihood obtained with
this new specification are much better than those obtained previously.
Looking at the model with one SNP term, the likelihood ratio statistic is

−2(−3732.04 + 3730.01) = 4.06

which is just above the 3.84 threshold of the 95%, proposing aweak rejection. Inflating slightly
the level to 96% gives a threshold of 4.22 which is not reached. From the conclusions of the
simulation study in Section 3, we decide not to reject the normal based on this test. We reach
the same conclusion with the model with 2 SNP terms, where thetest statistic is

−2(−3732.04 + 3728.83) = 6.42

which is just above the 5.99 threshold of the 95% level, but does not reach the 6.44 threshold of
the 96% level. Finally, the test with three SNP terms give

−2(−3732.04 + 3727.79) = 8.50

which is just above the 7.81 threshold of the 95% level, and under the 8.95 threshold of the 97%
level. Therefore, even with more terms, the test suggests not to reject the normal distribution in
this model.
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Figure 7: Comparison off , g1, g2 andg3, f lognormal (zoom)

5 Conclusion

We have proposed a method based on a seminonparametric (SNP)specification to test if a
random parameter of a discrete choice model indeed follows agiven distribution.
The simulation study shows that the test is well able to discriminate between normal and log-
normal with 1 SNP term only. It also suggests that it is good practice to look for a slightly
higher loglikelihood difference before rejecting a distribution.
We have demonstrated the application of the test on two case studies. In preference space,
we reject the normal with 1 SNP term. The lognormal is not rejected with 1 term but it is
clearly rejected with two terms. So we conclude that it is generally desirable to include two or
three SNP terms in order to test the base distribution against an alternative that is as general as
possible. There are relevant alternatives which are not captured with just 1 SNP term. However,
there seems to be little point in using more than 2 or 3 SNP terms.
The first case study showed that the significant improvement in the likelihood with the model
with a normal distribution is not sufficient to accept the distribution, which was actually rejected
by the test. It was rather evidence of model misspecification, which motivates the model in
VTTS space analyzed in the second case study, as suggested byFosgerau (to appear).
In this case, the likelihood is dramatically improved relative to all previous models. For each
test with 1, 2 and 3 SNP terms, we get a weak rejection of the normal using the nominal test
level of 95%. If we inflate this level slightly as suggested bythe simulation study, we conclude
that the normal distribution cannot be rejected forβ, the logarithm of the VTTS.
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In summary, the test works well on simulated data, and we haveshown a successful application
of the test to real data. It can reject bad models and, by including more terms for flexibility,
show how a particular distribution may fail. So we believe that it is a very powerful tool for
concrete applications.
In the future, it would be interesting to adapt the test for more than one random parameter. A
simple heuristic would consist in testing each parameter independently. The robustness of this
approach must be analyzed both in the case of independent andcorrelated random parameters.
Also, the practical use of multivariate polynomial approximations should be assessed.
Note that other uses of the model are possible. Namely, one can treat the SNP extension to
some base distribution as a way of generating a larger model universe with greater flexibility
allowed for the mixing distribution. As the sample size and the number of SNP terms tends
to infinity, one could hope that the model would be capable of approximating any true mixing
distribution. Identification and consistency of this procedure is the subject of ongoing research.
Note however that the trade off between model flexibility anddata overfitting must always be
considered by the analyst.

A Appendix: Legendre polynomials

The Legendre polynomialŝLn(x) are defined by

L̂n(x) =

M∑

m=0

(−1)m (2n − 2m)!

2nm!(n − m)!(n − 2m)!
xn−2m

whereM = n/2 or M = (n − 1)/2, whichever is an integer. They can also be defined
recursively,

L̂n(x) = ((2n − 1)xL̂n−1(x) − (n − 1)L̂n−2(x))/n,

whereL̂0(x) = 1 andL̂1(x) = x (see Abramowitz and Stegun, 1972, chap. 8 and 22). They are
orthogonal on[−1, 1] in the sense that

∫
1

−1

L̂m(x)L̂n(x)dx = 0 if m 6= n.

In our context, it is more appropriate for the polynomials tobe orthogonal on[0, 1], as the argu-
ments are defined by a CDF. Therefore, Bierens (2005) proposes the following transformation:

Ln(x) =
√

2n + 1L̂n(2x − 1)

so that they are orthonormal on[0, 1], that is

∫
1

0

Lm(x)Ln(x)dx =

{
0 if m 6= n
1 if m = n.
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The recursive definition of these transformed polynomials is given by

Ln(x) =

√
4n2 − 1

n
(2x − 1)Ln−1(x) − (n − 1)

√
2n + 1

n
√

2n − 3
Ln−2(x).

The first polynomials are

L0(x) = 1

L1(x) =
√

3(2x − 1)

L2(x) =
√

5(6x2 − 6x + 1)

L3(x) =
√

7(20x3 − 30x2 + 12x − 1).
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ln(βT ) ∼ f(x) = N(µ, σ2) βT ∼ g1(x) βT ∼ g2(x) βT ∼ g3(x)
L= -4304.32 -4302.94 -4263.57 -4263.29

Estim. Std.err. t-test Estim. Std.err. t-test Estim. Std.err. t-test Estim. Std.err. t-test
βC -0.45 0.01 -38.3 -0.45 0.02 -28.7 -0.45 0.01 -38.5 -0.45 0.01 -34.94

µ(βT ) -2.52 0.05 -46.8 -2.92 0.06 -46.5 -3.25 0.04 -86.9 -3.16 0.03 -92.28
σ(βT ) 1.43 0.05 30.6 1.50 0.04 36.8 1.29 0.02 51.7 1.26 0.02 63.80

δ1 0.14 0.04 3.3 -0.07 0.05 -1.52 -0.02 0.08 -0.19
δ2 1.20 0.25 4.76 1.29 0.32 4.07
δ3 -0.12 0.13 -0.92

VTTS (DKK/h) 30.48 32.13 52.85 46.56
LR against 0 2.76 81.50 82.06
LR against 1 78.74 79.30
LR against 2 0.56

Table 5: Testing a lognormal distribution with more than oneterm
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β ∼ f(x) = N(µ, σ2) β ∼ g1(x) β ∼ g2(x) β ∼ g3(x)
L= -3732.04 -3730.01 -3728.83 -3727.79

Est. Std.err. t-test Est. Std.err. t-test Est. Std.err. t-test Est. Std.err. t-test
λ 1.8 0.1 34.6 1.8 0.1 34.6 1.8 0.1 34.5 1.8 0.1 34.5
µ -2.5 0.1 -28.5 -1.2 0.4 -2.9 0.2 0.7 0.2 -1.0 0.6 -1.8
σ -2.0 0.1 -25.7 -2.2 0.2 -11.4 -2.6 0.3 -9.4 -2.7 0.4 -6.3
δ1 0.3 0.1 3.3 0.6 0.1 5.0 0.4 0.1 2.7
δ2 0.2 0.1 1.8 -0.1 0.1 -0.6
δ3 -0.1 0.1 -1.7

VTTS 26.56 27.08 27.66 27.75
LKR 0 4.06 6.42 8.50
LKR 1 2.36 4.44
LKR 2 2.08

Table 6: Testing a normal distribution with more than one term

2
0


