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Tetrapyrroles such as chlorophyll and heme are co-factors for essential proteins involved in a 22 

wide variety of crucial cellular functions. Nearly 2% of the proteins encoded by the 23 

Arabidopsis thaliana genome are thought to bind tetrapyrroles, demonstrating their central 24 

role in plant metabolism. Although the enzymes required for tetrapyrrole biosynthesis are 25 

well characterized, there are still major questions about the regulation of the pathway, and 26 

the transport of tetrapyrroles within cells. These issues are important as misregulation of 27 

tetrapyrrole metabolism can lead to severe photo-oxidative stress, and because tetrapyrroles 28 

have been implicated in signaling pathways coordinating interactions between plant 29 

organelles. In this review, we discuss the cell biology of tetrapyrrole metabolism and its 30 

implications for tetrapyrroles as signaling molecules. 31 

 32 

The importance of tetrapyrroles 33 

Tetrapyrroles are probably one of the most ancient prosthetic groups in all organisms and, when 34 

bound to their apoproteins, exhibit a wide range of chemical properties, including light absorption, 35 

electron transfer and oxygen binding. Such properties have been exploited by cells across all 36 

Kingdoms of life, and tetrapyrroles are essential components of critical biological processes, 37 

including respiration and photosynthesis. However, these life-giving chemical properties of 38 

tetrapyrroles can also lead to severe photo-oxidative damage, and cell death under some conditions, 39 

because unregulated excitation by light can lead to the generation of free radicals and reactive 40 

oxygen species, primarily singlet oxygen [1]. For these reasons, tetrapyrrole metabolism needs to be 41 

carefully managed within the cellular environment, and transport of these molecules requires 42 

precise regulation. In plants, the tetrapyrroles chlorophyll, heme, siroheme and phytochromobilin 43 

are synthesized in plastids, but tetrapyrrole cofactors are widespread, and hemoproteins in particular 44 

are found throughout the cell. Tetrapyrroles have also been proposed as signaling molecules that 45 

coordinate organelle function within the cell. There are recent reviews on the tetrapyrrole synthesis 46 
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pathway itself [2-4] and the putative roles of tetrapyrroles in signalling [5-7]. The aim of this review 47 

is to address what is known about the localization and transport of tetrapyrroles within the cell, and 48 

how this knowledge can help us to understand their suitability as signaling molecules. 49 

 50 

Location of tetrapyrrole-binding proteins 51 

As shown in Figure 1, plants allocate tetrapyrrole-binding proteins virtually everywhere within the 52 

cell. In the chloroplast, chlorophyll-binding proteins predominate in the thylakoid membranes, 53 

which comprise more than 80% protein by surface area [8]. The light-harvesting antenna proteins 54 

bind both chlorophyll a and b, whereas the reaction centre polypeptides in the photosystems contain 55 

chlorophyll a only. The reaction centre of photosystem II also contains pheophytin a, a modified 56 

chlorophyll lacking the central Mg2+ ion. In addition, subunit IV of the cytochrome b6/f complex 57 

has been shown to bind a chlorophyll a molecule [9]. The cytochrome b6/f complex also contains 58 

heme as the prosthetic group of the two cytochromes: the c-type cytochrome (i.e. where heme is 59 

bound covalently, see below), cytochrome f, and cytochrome b6, which along with cytochrome b559 60 

in photosystem II, is a b-type cytochrome, with non-covalently bound heme. Nitrite reductase and 61 

sulfite reductase in plastids contain another type of tetrapyrrole, siroheme, which mediates electron 62 

transfer from the [4Fe-4S] centres of these enzymes for the reduction of nitrite or sulfite, key 63 

intermediates in nitrogen and sulfur assimilation. The phytochrome photoreceptor family uses a 64 

linear tetrapyrrole chromophore, phytochromobilin, to perceive red and far-red light. 65 

Phytochromobilin is assembled with phytochrome apoproteins in the cytosol, but on activation by 66 

light, phytochromes become nuclear-localized [10]. Heme has an even more widespread 67 

distribution. In mitochondria, heme plays an essential role in the respiratory chain in the 68 

cytochrome bc1 complex, and in cytochrome c oxidase, which contains heme a. Several types of 69 

heme-binding peroxidases and catalase are localized in peroxisomes, with other peroxidases known 70 

to function in chloroplasts, and in the extracellular space. Cytochrome P450s constitute the largest 71 
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family among the tetrapyrrole-containing proteins in plants. In the genome of Arabidopsis 72 

(Arabidopsis thaliana), a total of 272 cytochrome P450 genes have been identified (including 26 73 

pseudogenes) and over 350 have been found in rice (Oryza sativa) [11]. For the majority of these, 74 

the subcellular localization is not yet determined although several are known to be targeted to 75 

mitochondria and chloroplasts, and at least 18 have been found in the ER of Arabidopsis [12]. 76 

Identification of heme-binding motifs by analysis of plant genomes has also enabled prediction of 77 

many other putative hemoproteins, such as a family of over 100 transcription factors [13]. A 78 

conservative estimate of the number of tetrapyrrole binding proteins in Arabidopsis is therefore 79 

approaching 500, which corresponds to nearly 2% of the 27,379 protein-coding genes in the 80 

Arabidopsis genome.  81 

 82 

Biosynthesis in plants 83 

Despite the various locations of tetrapyrrole proteins, the synthesis of tetrapyrroles is thought to 84 

take place almost exclusively in plastids (see later). The pathway is shown in Figure 2, together 85 

with our current understanding of the location of the enzymes and intermediates within the 86 

organelle. Tetrapyrrole biosynthesis has been extensively explored by both biochemical and 87 

molecular genetic analyses. The first committed precursor for all tetrapyrroles is 5-aminolevulinic 88 

acid (ALA). In plants, algae, and many bacteria, ALA is synthesized from glutamyl-tRNAGlu 89 

(which is also required for plastid protein synthesis) by glutamyl-tRNA reductase and glutamate 1-90 

semialdehyde aminotransferase. Eight molecules of ALA are then assembled into the tetrapyrrole 91 

primogenitor uroporphyrinogen III in three enzymatic steps. Uroporphyrinogen III can be converted 92 

to siroheme, by methylation and oxidation, and then insertion of Fe2+ by the enzyme 93 

sirohydrochlorin ferrochelatase. Alternatively, uroporphyrinogen III is oxidatively decarboxylated 94 

to form protoporphyrin IX, with the final step by the enzyme protoporphyrinogen oxidase being the 95 
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oxidation of the colorless protoporphyrinogen IX, to the fully conjugated (and thereby colored) 96 

protoporphyrin IX.  97 

 The second branchpoint of the pathway involves the insertion of either Mg2+ or Fe2+, by Mg-98 

chelatase and ferrochelatase, respectively, thereby directing protoporphyrin IX into the chlorophyll 99 

or heme biosynthetic pathways. In the chlorophyll branch, Mg-protoporphyrin IX is sequentially 100 

modified to form protochlorophyllide, which in higher plants accumulates in the dark, because the 101 

next enzyme, NADPH:protochlorophyllide oxidoreductase (POR), requires light to reduce 102 

protochlorophyllide to chlorophyllide a. Chlorophyllide a is esterified with a long-chain poly-103 

isoprenol (geranylgeraniol or phytol) by chlorophyll synthase to give chlorophyll a, some of which 104 

is reversibly converted to chlorophyll b via the “chlorophyll cycle” [3].  105 

 In the heme branch, ferrochelatase catalyzes the insertion of Fe2+ into protoporphyrin IX to 106 

produce protoheme (heme b). This is the prosthetic group of b-type cytochromes, and proteins such 107 

as catalase, peroxidase and hemoglobin, where the heme is held noncovalently via coordination 108 

with the Fe atom by histidine and/or cysteine residues [14]. In c-type cytochromes, protoheme is 109 

covalently attached via thioether links between the vinyl groups to cysteines in a characteristic 110 

CxxCH motif in the protein. Heme a is synthesized from protoheme presumably in the 111 

mitochondria, although this has not been characterized in plants. Essentially nothing is known about 112 

the assembly of a-type or b-type cytochromes, whereas we have a good understanding of c-type 113 

cytochrome biogenesis (reviewed in Ref. [15]). There are three systems that have been 114 

characterized. The type I system, found in  α- and γ-proteobacteria, including E. coli, and in plant 115 

mitochondria, involves at least eight protein components, called cytochrome c maturation (CCM) 116 

proteins. Chloroplasts, cyanobacteria and Gram-positive bacteria use the type II system, comprising 117 

of a complex of 2–4 cytochrome c synthetase (CCS) proteins. These two prokaryotic-like 118 

maturation mechanisms contrast with the type III system found in animal and yeast mitochondria, 119 

which involves a single protein, heme lyase. However, despite the differences in protein 120 
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components, all three systems operate to transport the heme across a membrane to the site of 121 

assembly.  122 

 Protoheme also serves as the substrate for the formation of phytochromobilin. In 123 

chloroplasts, protoheme is oxidatively cleaved by heme oxygenase to form biliverdin IX. 124 

Phytochromobilin synthase then converts biliverdin to 3Z-phytochromobilin, which is subsequently 125 

isomerized to 3E-phytochromobilin, the immediate precursor of the bound phytochrome 126 

chromophore [16].  127 

 128 

Regulation of the pathway 129 

Clearly, given the different roles of the tetrapyrrole cofactors, there will be contrasting demands for 130 

these compounds in different tissues of the plant and at different developmental stages. Thus 131 

chlorophyll is absent from non-photosynthetic cells but must be synthesized in large amounts 132 

during chloroplast biogenesis, for example, during de-etiolation. The combination of substantial 133 

changes in demand, together with the severe consequences of photo-oxidation when these 134 

molecules are in excess, has resulted in a tight and complex regulatory system for managing the 135 

pathway. Considerable progress has been made in recent years in understanding these control 136 

mechanisms. The rate-limiting step for the pathway is the synthesis of ALA, or more specifically 137 

the activity of glutamyl tRNA reductase (reviewed in Refs [3,4]). More recently attention has 138 

focused on the major branchpoint in the pathway at which protoporphyrin IX is directed towards 139 

either the chlorophyll or heme branches. Regulation at these steps primarily comprises strong 140 

transcriptional control during chloroplast biogenesis together with a range of post-translational 141 

mechanisms for rapid regulation of the pathway [2–4,17]. 142 

 It is now clear that a small subset of tetrapyrrole genes comprise crucial regulatory targets in 143 

the pathway. In Arabidopsis, a miniarray was used to demonstrate that HEMA1, CHLH, CRD1 144 

(CHL27) and CAO were clustered in a highly regulated group of genes responding strongly to light 145 
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and circadian signals [18] (Figure 2). The GUN4 regulator of Mg-chelatase (see below) is also a 146 

member of this group [19]. Co-expression analysis using data from multiple published microarray 147 

studies identified GUN4 as a member of this group, and also led to the addition of two genes CLA1 148 

(encoding 1-deoxy-D-xylulose-5-phosphate synthase) and CHLP (encoding geranylgeranyl 149 

pyrophosphate reductase), both required for the synthesis of the phytol tail of chlorophyll [4]. Work 150 

is now underway to identify the regulators of these pathway genes during de-etiolation, with the 151 

phytochrome-interacting factor proteins, PIF1 and PIF3 [20], and the GLK (Golden2-like) proteins 152 

[21] being proposed as major players. Regulation of transcript abundance is also important in 153 

mature leaves where HEMA1 and CHLH transcript levels show diurnal and circadian oscillation 154 

[22]. 155 

 The tetrapyrrole pathway is highly regulated at the post-translational level. The major 156 

mechanism of product feedback is heme inhibition of glutamyl tRNA reductase (see Ref. [17]). It 157 

might be expected that intermediates on the chlorophyll branch such as protochlorophyllide, 158 

chlorophyllide or chlorophyll itself would also have a regulatory role. If they are involved, then a 159 

potential intermediate would be the regulatory protein FLU [23], which binds GluTR and strongly 160 

represses ALA synthesis, but is currently without a known modulator. Another regulator is GUN4, 161 

which interacts with Mg-chelatase and stimulates its activity by facilitating substrate binding and/or 162 

product release and possibly the interaction of Mg-chelatase with chloroplast membranes [24,25]. 163 

Both of these proteins are crucial to plant survival as the absence of FLU is lethal in plants grown 164 

under light–dark cycles [23], and gun4 knockout mutants are entirely chlorophyll deficient under 165 

these conditions, even in low light [26].  166 

 Redox regulation of CHLI (one of the three subunits of Mg-chelatase) via thioredoxin has 167 

been observed, in which the ATPase activity of CHLI is reversibly inactivated by oxidation [27]. 168 

Several other tetrapyrrole biosynthesis proteins have also been identified as targets for thioredoxin-169 

regulation via modification of disulfide bonds [28]. Phosphoproteomic analysis of chloroplasts has 170 
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indicated that several proteins in the pathway, including CHLI and GUN4, are targets of plastid-171 

localized protein kinases [29]. Regulation through the formation of complexes between adjacent 172 

enzymes and the localization of enzymes within the plastid is also thought to be important, and 173 

phosphorylation has the potential to modify assembly or localization of tetrapyrrole enzymes as 174 

well as their activity. One well characterized example of post-translational regulation is the 175 

destabilization of chlorophyllide a oxygenase (CAO) in response to over accumulation of 176 

chlorophyll b [30]. A stretch of ten specific amino-acid residues within the N-terminal domain of 177 

CAO has been identified as a degron for destabilization, although the entire N-terminal domain is 178 

necessary to respond to chlorophyll b [31]. It is likely that these and other mechanisms can account 179 

for the numerous examples of post-translational control observed in transgenic plants grown under 180 

photo-oxidative conditions (e.g. Refs [32–34]). 181 

 182 

Subcellular and intraorganellar localization of biosynthetic pathways 183 

In mammals and yeast, heme synthesis is spatially separated between mitochondria and the cytosol 184 

[35]. In higher plants, all the enzymes in the tetrapyrrole pathway (with the exception of the final 185 

steps of heme a synthesis from protoheme) are present in plastids; however, it has been proposed 186 

that a portion of protoporphyrinogen IX is also transferred from plastids to mitochondria and there 187 

converted to protoheme by protoporphyrinogen oxidase and ferrochelatase. This hypothesis was 188 

based on fractionation studies demonstrating protoporphyrinogen oxidase activity in mitochondrial 189 

fractions from pea (Pisum sativum) leaves [36], a result supported by subsequent GFP localization 190 

studies [37]. In plants, this mitochondrial localization is phylogenetically conserved, but, 191 

interestingly, not in the green alga Chlamydomonas reinhardtii [38]. If protoporphyrinogen oxidase 192 

is present in mitochondria it might be expected that ferrochelatase would also be present to provide 193 

a dedicated heme supply for respiratory hemoproteins. However, although ferrochelatase activity 194 

has frequently been measured in a mitochondrial membrane fraction (e.g. Refs [39–41]), a variety 195 
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of molecular methods have so far failed to provide convincing evidence that ferrochelatase is 196 

located there (see Ref. [3] for discussion). Proteomic analyses have also failed to detect either 197 

enzyme among 416 Arabidopsis [42] or 322 rice [43] mitochondrial proteins. 198 

 The current model for the distribution of the tetrapyrrole pathway in chloroplasts is shown in 199 

Figure 2. The trunk pathway through to protoporphyrinogen is localized in the stroma [44], with the 200 

enzymes for Mg-porphyrin synthesis, from protoporphyrinogen oxidase through to POR, all 201 

associated with both envelope and thylakoid membranes. The situation for Mg-chelatase is 202 

particularly complex. Mg-chelatase has been reported to be associated with envelope membranes 203 

when the Mg2+ concentration is high, but to dissociate from membranes when the Mg2+ 204 

concentration decreases [45,46]. Membrane-bound activity is also markedly increased by ALA 205 

feeding [25]. This complex localization pattern is reflected in the data on the localization of 206 

individual subunits. CHLI is always identified in stromal fractions [44] and CHLD has also been 207 

considered to be predominantly stromal [45]. However, recent proteomic data have suggested an 208 

additional thylakoid localization [44]. In contrast, CHLH is localized in both envelope membranes 209 

and the stroma [44, 46]. While this data appear to be difficult to reconcile at the current time, 210 

understanding how Mg-chelatase localization is regulated, and the role of GUN4 in this process 211 

[25], will undoubtedly be important for understanding the regulation of porphyrin distribution both 212 

within the Mg-branch and between the Mg- and Fe-branches of the pathway. There is similarly 213 

some uncertainty over the final steps of chlorophyll synthesis, given that chlorophyll synthase is 214 

present only in thylakoid membranes [44] whereas CAO has been proposed to be localized in 215 

envelope membranes [47]. Unfortunately, the exact location of this enzyme remains elusive due to 216 

its low accumulation level [44]. On the heme branch, ferrochelatase is found in thylakoid 217 

membranes, whereas the heme oxygenase, HO1, is located in the stroma [44]. There are four heme 218 

oxygenase sequences in Arabidopsis (three encoding functional enzymes) and all four are localized 219 

to the chloroplast [48], which begs the question, how is the majority of cellular heme degraded? 220 
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 221 

Transport within the cell 222 

As outlined above, as well as tetrapyrrole metabolism within plastids, heme and phytochromobilin 223 

are exported to other parts of the cell. However, we know little about the transport of tetrapyrroles 224 

around plant cells, a situation that is not much better in animal or fungal systems [49]. For 225 

hemoproteins, heme is presumably transported to the appropriate cellular location such as the 226 

peroxisomes or ER. Heme might also be transported directly to mitochondria, but the possibility 227 

that protoporphyrinogen is transported instead or as well as cannot be disregarded. In addition to the 228 

evidence on the location of enzyme activities, there is a considerable body of accumulated data 229 

showing that inhibition of protoporphyrinogen oxidase by herbicide treatment results in the 230 

production of large quantities of protoporphyrin IX in the cytosol, presumed to be due to non-231 

specific oxidation of accumulated protoporphyrinogen [50]. This results in photo-oxidation and 232 

death – the basis of the herbicide action – and underlines the point that a transport mechanism for 233 

protoporphyrinogen would have to be extremely carefully managed. There are two additional 234 

transfers of tetrapyrroles from plastids: phytochromobilin is exported from the chloroplast to the 235 

cytosol for assembly with phytochrome apoproteins that are synthesized in the cytosol (see Ref. 236 

[16]); and during chlorophyll degradation a series of catabolic steps leads to the production of non-237 

fluorescent chlorophyll catabolites, which are moved from plastids to vacuoles in a process that 238 

probably requires the biggest transport capacity for tetrapyrroles in the cell [51]. Compared with 239 

cyclic tetrapyrroles, the linear chlorophyll catabolites present a reduced photo-toxic risk as free 240 

molecules, owing to their less rigid and/or conjugated structures. 241 

 It is probable that an energy-dependent transport mechanism is required to move heme and 242 

other more hydrophilic tetrapyrrole metabolites through or out of the lipid bilayer [49]. At present, 243 

with the exception of the movement of chlorophyll catabolites, little is known about these processes. 244 

However, given the need to avoid accumulation of non-metabolized porphyrins with the potential 245 
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for photo-oxidative damage, these transporters are likely to play a pivotal role in the biology of the 246 

cell. One interesting candidate for a porphyrin transporter is the membrane-bound, tryptophan-rich 247 

sensory protein, TSPO, first identified in Rhodobacter sphaeroides. This protein is a homolog of the 248 

protoporphyrin-binding mammalian benzodiazepine receptor that is involved in the interaction with 249 

dicarboxylic porphyrins and is essential for the homeostasis and excretion of uroporphyrinogen III 250 

[52]. The Arabidopsis TSPO has been functionally linked to protoporphyrin IX uptake in a 251 

recombinant E. coli protoplast system [53] and a Physcomitrella patens tspo mutant also shows 252 

distinct changes in the protoporphyrin IX levels [54]. Although a good candidate as a heme 253 

transporter, recent evidence has shown that Arabidopsis TSPO is localized to the secretory pathway, 254 

where it might be involved in responses to drought stress [55]. 255 

 In other Kingdoms several heme and porphyrin-binding proteins with a function in 256 

intracellular trafficking have been reported [49,56]. The heme-carrier protein HCP1 and the heme 257 

exporter FLVCR (feline leukemia virus subgroup C cellular receptor) have been described in 258 

mammalian stem or cancer cells [57,58]. ABCB6, a member of the half-molecule ABC (ATP-259 

binding cassette)-transporter subfamily ATM was identified as a mitochondrial outer membrane 260 

transporter for translocation of coproporphyrinogen from the cytosol for completion of the final 261 

steps of mammalian heme biosynthesis [59]. The heme-efflux protein ABCG2/BCRP (breast cancer 262 

resistance protein) is involved in the translocation of a wide variety of pharmacological substances 263 

and is found in all organisms [60]. A mouse brcp1 knock-out mutant suffered from accumulation of 264 

the phototoxic chlorophyll catabolite pheophorbide a derived from the diet [61]. In yeast a plasma 265 

membrane-localized protein, PUG1 (protoporphyrin IX uptake gene I), enables protoporphyrin IX 266 

uptake in exchange for heme efflux [62]. However, deletion of PUG1 does not affect the uptake of 267 

heme or protoporphyrin IX, indicating that other loci also encode heme and protoporphyrin IX 268 

transporters. 269 
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 These findings suggest possible candidates for tetrapyrrole transporters in plants. ABC 270 

transporters are encoded in plant genomes in large gene families [63], and it has already been 271 

demonstrated that the Arabidopsis vacuolar ABC transporters AtMRP1-3, which are similar to the 272 

glutathione-conjugate transporters MRP1 (human) and YCF1 (yeast), can transport non-fluorescent 273 

chlorophyll catabolites to the vacuole during chlorophyll degradation [64,65]. It is likely that ABC 274 

transporters can fulfill similar functions in intracellular heme and porphyrin transport in plants. One 275 

candidate is the Arabidopsis plastid ABC protein LAF6, which was reported to accumulate 276 

protoporphyrin IX [66]. However, further analysis has shown that its phenotype is likely to result 277 

from a defect in Fe–S cluster biosynthesis [67], resulting in accumulation of 7-hydroxymethyl 278 

chlorophyll, an intermediate of the chlorophyll cycle [68]. 279 

 In addition to transport through membranes, it is also assumed that there must be 280 

tetrapyrrole carrier proteins that are responsible for tetrapyrrole trafficking in cells because 281 

tetrapyrroles are poorly soluble in aqueous solutions under physiological conditions. Indeed given 282 

the relatively hydrophobic nature of many tetrapyrroles such as heme it is possible that carrier 283 

proteins might be sufficient for transport in some circumstances, acting to recruit tetrapyrroles 284 

directly from membranes. In animal cells, the cytosolic proteins, p22HBP and SOUL, have been 285 

isolated from mouse liver [69] and chicken retina and pineal gland extracts [70], respectively. These 286 

22 kDa proteins are ~40% identical at the amino acid level and show high affinity for porphyrins. 287 

EST database searches have revealed rice, tobacco (Nicotiana tabacum), and Arabidopsis genes 288 

with sequence similarity to the SOUL/p22HBP family, and thus it is possible that these gene 289 

products are functioning in heme trafficking in plant cells. Takahashi et al. [71] characterized 290 

Arabidopsis cytosolic heme-binding proteins (cHBPs) homologous to the p22HBP/SOUL family. 291 

Recombinant cHBP proteins bind to a range of porphyrins (including both Fe- and Mg-porphyrins) 292 

with dissociation constants (Kd) of less than 1 μM, suggesting that their properties are suitable for 293 

tetrapyrrole carrier proteins in plant cells [71].  294 
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 295 

Coordination of tetrapyrrole metabolism with other cellular processes  296 

The function of tetrapyrroles is not limited to their roles as prosthetic groups; they can also serve as 297 

signaling molecules. In mammals and yeast, heme has several important signaling roles. For 298 

example, in yeast it binds to the transcription factor HAP1, mediating responses to oxidative stress 299 

[72]. In mammals, heme coordinates regulation of metabolism with the circadian clock via the Rev-300 

erb heme sensors [73,74]. In these organisms, heme also controls its own synthesis at the level of 301 

ALA synthase [35], a single enzyme that catalyses the synthesis of ALA directly from succinyl CoA 302 

and glycine. Heme has been demonstrated to regulate expression, enzyme activity and even 303 

mitochondrial import of ALA synthase. It also regulates pri-miRNA processing of heme synthesis 304 

genes via the heme-binding protein DGCR8 (DiGeorge critical region-8) [75]. In bacteria, heme has 305 

a well-established role in the iron-dependent control of gene expression in α-proteobacteria [76]. 306 

Other tetrapyrroles have also been linked with signaling functions. In the red alga Cyanidioschyzon 307 

merolae, synchronization of nuclear DNA replication with organellar DNA replication has been 308 

shown to be mediated by Mg-protoporphyrin [77]. Similarly, there is evidence for tetrapyrrole 309 

regulation of gene expression in Chlamydomonas where feeding exogenous Mg-protoporphyrin to 310 

cultures has been shown to substitute for light in inducing nuclear HSP70 expression [78]. More 311 

recent experiments using Mg-chelatase mutants suggest that heme might also be an active signaling 312 

molecule in this system [79]. In bacteria there is also the intriguing hypothesis that phytochrome 313 

photoreceptors originated as bilin sensors [80]. 314 

 A regulatory role for tetrapyrroles in higher plants is currently uncertain. The coordination 315 

of genome replication by Mg-protoporphyrin seen in Cyanidioschyzon has also been observed in 316 

tobacco BY-2 cell cultures [77], and pheophorbide a has been shown to induce programmed cell 317 

death in Arabidopsis, although the mechanism of this light-independent signaling is unknown [81]. 318 

Perhaps the most discussed role for a tetrapyrrole in plant signaling is the proposal that Mg-319 
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protoporphyrin acts as a signal mediating communication between plastids and the nucleus [82].  320 

 Coordinated expression of photosynthesis-related genes encoded in the plastid and nuclear 321 

genomes is important for photosynthetic eukaryotes, and can be achieved by both anterograde 322 

(nucleus-to-plastid) and retrograde (plastid-to-nucleus) signaling [6,7]. Although originally 323 

discovered through the analysis of mutants with defective chloroplast biogenesis, retrograde 324 

signaling has typically been demonstrated using inhibitors of chloroplast function, such as the 325 

chloroplast protein synthesis inhibitor lincomycin, or the photobleaching herbicide Norflurazon 326 

(NF). Treatment with these compounds leads to the loss of expression of many hundreds of genes 327 

[82,83] (A.C. McCormac and M.J. Terry, unpublished), the best studied of which are the Lhcb genes 328 

encoding light-harvesting chlorophyll a/b-binding proteins associated with photosystem II. Several 329 

studies have led to the suggestion that tetrapyrroles are plastid signals in higher plants. Early 330 

experiments using pathway inhibitors had already implicated Mg-porphyrins in regulating nuclear 331 

gene expression (e.g. Ref. [84]), but it was the identification of Arabidopsis mutants with an altered 332 

response to NF-treatment that led to the model of Mg-protoporphyrin as a mobile signal. A reporter-333 

based screen isolated five genomes uncoupled (gun) mutants that showed a partial recovery of 334 

Lhcb1 expression following NF treatment [85,86]. Four of these mutants were in genes involved in 335 

tetrapyrrole metabolism: gun2, gun3, gun4 and gun5 were deficient in heme oxygenase, 336 

phytochromobilin synthase, GUN4 and CHLH, respectively [24,86]. In contrast, GUN1 is a plastid-337 

localized, nucleic acid-interacting protein [87], which appears to act independently of the 338 

tetrapyrrole pathway. Each of the tetrapyrrole-related gun mutants would be expected to have 339 

impaired ability to synthesize Mg-protoporphyrin, gun4 and gun5 because of a direct effect on Mg-340 

chelatase, and gun2 and gun3 because their inability to metabolize heme would be expected to 341 

down regulate ALA synthesis. Similarly, a POR-overexpressing line also exhibits a gun phenotype 342 

[88]. Further analysis of the gun mutants led to the report that NF treatment caused accumulation of 343 

Mg-protoporphyrin in wild type, but not in gun2 and gun5 mutants, and that increasing Mg-344 
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protoporphyrin in gun2 and gun5 suppressed their gun phenotype [82]. Moreover, addition of Mg-345 

protoporphyrin, but not heme or other tetrapyrrole intermediates, could repress Lhcb1 expression in 346 

leaf protoplasts [82]. Finally, the increase in Mg-protoporphyrin after NF treatment was also 347 

reported using laser-scanning confocal microscopy, but only if accumulation of Mg-protoporphyrin 348 

had been enhanced by the addition of ALA [89].  349 

 Although this evidence might seem compelling there are some inconsistencies. Firstly, 350 

Arabidopsis cs and ch42 mutants defective in the CHLI1 subunit of Mg-chelatase do not show a 351 

gun phenotype, even though production of Mg-protoporphyrin is greatly reduced [86]. Furthermore, 352 

Mg-protoporphyrin accumulation was not detected in barley (Hordeum vulgare) seedlings treated 353 

with NF [90]. Recently, the role of Mg-protoporphyrin in plastid signaling after NF treatment was 354 

re-examined in detail in two complementary reports, which both concluded that Mg-protoporphyrin 355 

is not an accumulating mobile signal that mediates plastid signaling [83,91]. Both studies 356 

investigated the accumulation of Mg-protoporphyrin following NF treatment, either by using a 357 

liquid chromatography-mass spectrometry (LC/MS) system [83], or by conventional high-358 

performance liquid chromatography (HPLC) with fluorescence detection [91] (see Box 1 for a 359 

discussion about the analysis of tetrapyrroles in plant tissues). In both cases, no accumulation of 360 

Mg-protoporphyrin was observed, but rather there was a strong reduction of several intermediates 361 

including Mg-protoporphyrin after NF-treatment. These data were supported by microarray analysis, 362 

which demonstrated a strong downregulation of all tetrapyrrole synthesis genes after NF treatment 363 

[83]. Furthermore, both studies showed no correlation between tetrapyrrole intermediates (including 364 

Mg-protoporphyrin) and Lhcb1 expression levels regardless of whether tetrapyrrole levels were 365 

manipulated by light and chemicals [83], or genetically [91]. These conclusions were further 366 

supported by Voigt et al. [92] who also found no consistent effect of the gun mutations on total 367 

heme accumulation. 368 

 369 
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Are tetrapyrroles involved in plastid signaling? 370 

Although evidence now points away from a tetrapyrrole such as Mg-protoporphyrin functioning as 371 

a mobile signaling molecule, we still require an explanation for the connection between 372 

tetrapyrroles and plastid signaling demonstrated by the gun mutants. One possibility is that signals 373 

only accumulate transiently and locally and are therefore beyond detection. This makes sense 374 

because release of Mg-protoporphyrin would result in many of the same problems of photo-toxicity 375 

discussed earlier for protoporphyrinogen. Chlorophyll, it should be noted, is completely detoxified 376 

before release from the chloroplast. Potential alternative signaling candidates include heme and 377 

phytochromobilin, both of which are known to leave the plastid. As discussed in Box 1 we are now 378 

developing better methods for measuring tetrapyrroles and this will be crucial for detecting local, 379 

transient signals. The measurement of heme and, in particular, distinguishing unbound protoheme 380 

from non-covalently bound heme pools, is a particular problem for the field. Moreover, given that 381 

much of the research on plastid signaling to date has focused on Arabidopsis seedlings, other plant 382 

systems also need to be explored. For example, analysis of mature tobacco plants in which 383 

tetrapyrrole enzymes have been depleted using anti-sense technology has also shown a strong 384 

relationship between manipulation of the tetrapyrrole pathway and changes in nuclear gene 385 

expression [93,94].  386 

 One possibility for a tetrapyrrole-generated signal is the production of reactive oxygen 387 

species (ROS) such as singlet oxygen [1] or, indirectly, hydrogen peroxide [95]. Indeed, most 388 

plastid signaling experiments were carried out under intense light, where changes in tetrapyrrole 389 

intermediates levels might affect ROS levels. As discussed earlier, however, there is no simple 390 

correlation between the accumulation of tetrapyrrole intermediates (and therefore likely ROS 391 

production) and changes in gene expression after NF treatment [83,91], and any involvement of 392 

ROS is likely to involve more subtle temporal and spatial signals. The perturbation of tetrapyrrole 393 

synthesis might also impact on other known plastid signaling pathways [6]. For example, the redox 394 
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state of plastids also contributes to the regulation of nuclear gene expression and altered tetrapyrrole 395 

metabolism is likely to affect redox status [96]. It could also impact on translation efficiency, either 396 

through photo-oxidative damage, or perhaps via changes in glutamyl-tRNA availability [97].  397 

 398 

Conclusions and key areas for future research 399 

From the discussions above, it is clear that tetrapyrrole metabolism is at the heart of plant cellular 400 

function. Early studies concentrated on elucidating and characterizing the biosynthetic enzymes, 401 

whereas the advent of genome sequencing led to considerable focus on the regulation of tetrapyrrole 402 

synthesis and the identification of components important for some aspects of tetrapyrrole protein 403 

assembly. We now need to turn full circle and extend careful biochemical analyses to tease apart the 404 

processes that are important in localization and assembly. The new methodologies for tetrapyrrole 405 

analysis that have been established, including unambiguous identification of intermediates using 406 

mass spectrometry, and sophisticated imaging technologies, coupled with single-cell sampling 407 

approaches such as laser capture microscopy, will be important in this endeavor. Similarly, a full 408 

understanding of signaling processes, and tetrapyrrole metabolism more generally, requires detailed 409 

knowledge of where and how tetrapyrroles are transported within and between organelles. 410 

Candidate transporter protein genes, as well as the means to track these molecules through the cell 411 

will need to be the subject of scrutiny over the next few years. If this is the case, it is likely that 412 

plant tetrapyrrole metabolism will continue to provide surprises for years to come. 413 
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Box 1. Measuring tetrapyrroles in plant tissue 677 

Several methods have been used to measure tetrapyrroles in plant samples. Chlorophylls are the 678 

most abundant and can easily be measured by spectrophotometry after extraction with either 679 

acetone or N,N-dimethylformamide, followed by calculation using empirical formulae [98]. 680 

Although extraction with the two solvents is similar, it has been shown that N,N-681 

dimethylformamide is more efficient for chlorophyll extraction and does not require a grinding step 682 

[99]. Tetrapyrrole intermediate levels remain difficult to measure because of their low abundance in 683 

plants and interference by chlorophyll. They have been analyzed by spectrofluorimetry or 684 

spectrophotometry in crude acetone extracts [100]. Determination by fluorescence is made by using 685 

specific wavelengths for excitation and emission at 77 K, concentrations being calculated by 686 

empirical formulae [101,102]. A better way of measuring tetrapyrroles is separation by high-687 

performance liquid chromatography (HPLC). After acetone extraction, and phase separation with 688 

hexane to remove chlorophylls, tetrapyrrole intermediates are separated with a gradient of 689 

acetonitrile/methanol, coupled to a spectrofluorimeter [93,94,103]. Even so, this method can lead to 690 

misidentification or overestimation of intermediates (such as Mg-protoporphyrin and Chlide a) 691 

owing to the extraction solution and coelution [91]. The work-up required in all these methods, 692 

including derivatization to facilitate HPLC separation, can lead to differential losses and is time 693 

consuming. In addition fluorescence detection can also lead to misidentification of related pigments 694 

that have similar fluorescence properties at room temperature [104]. A major inconvenience is that 695 

heme cannot be detected by these methods because it does not fluoresce. Heme determination uses 696 

an acidic extraction method [105] that is not suitable for Mg-porphyrins because this induces the 697 

loss of the Mg2+ ion. Instead, there are several colorimetric methods that have been developed 698 

[106,107], and methods based on the ability of the horseradish peroxidase apo-enzyme to 699 

reconstitute with heme to form an active enzyme have been developed [108] that use a 700 

chemiluminescence-based measure of activity [109,110].  701 
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 A completely different approach has arisen through the advent of nuclear magnetic 702 

resonance (NMR) and mass spectrometry (MS) for measuring metabolites [111]. Tetrapyrroles can 703 

be detected by 1H NMR spectroscopy [112], but the sensitivity of the detectors remains too low for 704 

determining endogenous tetrapyrroles in plants. By contrast, MS is much more sensitive and is 705 

commonly used in medical science to study porphyrin disorders in humans [113], and for isolating 706 

and characterizing transformation products of chlorophyll pigments in sediments [114]. Recently, 707 

we showed that tetrapyrrole intermediates in crude plant extracts can be detected and quantified by 708 

HPLC coupled to an electrospray MS (LC-ESI MS/MS) [83]. Each chlorophyll biosynthetic 709 

intermediate was identified according to its mass and its fragmentation pattern, enabling them to be 710 

distinguished unequivocally. With the exception of NMR, the methods described above are efficient 711 

and sensitive enough to measure quantitatively tetrapyrrole intermediates in plant extracts. 712 

Nonetheless, these methods require extraction of the intermediates before analysis and thus are de 713 

facto destructive. The development of microscopy techniques now offers the possibility to detect 714 

these compounds in a non–invasive manner. So far two different methods have been described. 715 

Ankele et al. [89] reported the use of single photon laser excitation in combination with confocal 716 

scanning microscopy to detect Proto IX, Mg-Proto IX Mg-Proto ME, although these were only 717 

detectable after feeding plant tissues with 5-aminolevulinic acid (ALA). In contrast, an improved 718 

method using multi-photon microscopy reported the detection of endogenous levels of all 719 

tetrapyrrole intermediates from Proto IX to Chlide [115]. Multi-photon microscopy also appears to 720 

be more reliable for detecting Pchlide because it uses pulsed infrared light instead of a UV light 721 

source and prevents the photo conversion of Pchlide to Chlide [115]. 722 

723 
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Figure 1. Localization of tetrapyrroles in higher plant cells. The known tetrapyrrole-binding 

proteins are color-coded according to their respective tetrapyrrole cofactor: green, 

chlorophyll; brown, siroheme; blue, phytochromobilin; red, heme. Tetrapyrroles are 

represented schematically and their exact structure is shown in the lower part of the figure. 

*It has been proposed that protoporphyrinogen (indicated by a tetrapyrrole ring without color 

coding) might be exported from plastids to mitochondria and for heme synthesis. 

**Chlorophylls are degraded to non-fluorescent chlorophyll catabolites (NCCs) and exported 

to the vacuole. Broken arrows indicate biosynthetic pathways; solid arrows indicate 

tetrapyrrole transport; and question marks have been added when evidence for that transport 

pathway is limited (see main text). 
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Figure 2. Localization of tetrapyrrole synthesis in chloroplasts. Location of tetrapyrrole 

enzymes and biosynthetic intermediates in the chloroplast is shown based on proteomic 

analyses [44] and other data as outlined in the main text. In some cases (UPM, SIRB and 

CAO), there is currently no experimental data to indicate sub-organellar localization, and 

locations of these enzymes have been predicted. The location of enzymes represents their 

major sub-organellar localizations (stroma, envelope or thylakoids), but differences between 

grana- or stroma-thylakoids are not intended to be indicated. The localization of the subunits 

of Mg-chelatase is particularly difficult to indicate precisely (see main text), but their 

arrangement reflects what is currently known about the sub-chloroplast localization [25,44]. 

Enzymes are indicated by the following gene codes: HEMA, glutamyl-tRNA reductase 

(At1g58290, At1g09940, At2g31250); GSA, glutamate-1-semialdehyde 2,1-aminomutase 

(At5g63570, At3g48730); ALAD, 5-aminolevulinate dehydratase (At1g69740, At1g44318); 

PBGD, porphobilinogen deaminase (alternatively, hydroxymethylbilane synthase 

(At5g08280); UROS, uroporphyrinogen III synthase (At2g26540); UROD, uroporphyrinogen 

III decarboxylase (At3g14930, At2g40490); CPO, coproporphyrinogen III oxidase 

(At1g03475, At4g03205); PPO, protoporphyrinogen IX oxidase (At4g01690, At5g14220); 

CHLH, Mg-chelatase H subunit (At5g13630); CHLI, Mg-chelatase I subunit (At4g18480, 

At5g45930); CHLD, Mg-chelatase D subunit (At1g08520); GUN4, regulator of Mg-chelatase 

(At3g59400); CHLM, Mg-proto IX methyltransferase (At4g25080); CRD1, Mg-proto IX 

monomethylester cyclase (At3g56940); POR, NADPH:protochlorophyllide oxidoreductase 

(At5g54190, At4g27440, At1g03630); DVR, divinyl-protochlorophyllide reductase 

(At5g18660); CHLG, chlorophyll synthase (At3g51820); CAO, chlorophyllide a oxygenase 

(At1g44446); UPM, uroporphyrinogen III methylase (At5g40850); SIRB, sirohydrochlorin 

ferrochelatase (At1g50170); FC, protoporphyrin IX ferrochelatase (At2g30390, At2g26670); 

HO, heme oxygenase (At2g26670, At2g26550, At1g69720, At1g58300); HY2, 



phytochromobilin synthase (At3g09150). Note: CHLP (geranylgeranyl-diphosphate 

reductase, At1g74470), which is also essential for chlorophyll biosynthesis, catalysing the 

formation of the phytol side chain, localizes primarily on thylakoid membranes [44]. PB, 

phytochromobilin. 

 




