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Abstract

The aim of this paper is to analyze the performance of hedging strategies based on snow and
temperature options developed by ski operators to protect their profitability under adverse
changes in climatic conditions. The setup is based on a joint non-parametric model for snow
and temperature aimed at providing a modelling support for the assessment of the impact of
these weather variables on the number of visitors at the ski resort. The analysis is carried out
considering the case of Austrian Alps, and examines: i) the ability of the proposed approach to
provide a realistic representation of the true data-generating process; ii) the variability reduction
in the Profit and Loss of the ski operator offered by the suggested strategies; and iii) the tradeoff
between the budget earmarked for hedging and profitability protection.

Keywords: Ski tourism; Climate change; Weather variables; Block bootstrap; Risk
management; Options; Profitability

1. Introduction

The tourism sector plays an important role in many economies; for example, in Europe, its
total contribution (direct, indirect and induced) to EU GDP and overall EU employment is,
respectively, 10.2% and 11.6% (WTTC 2017). In particular, winter tourism’s economic impact
varies across different regions and areas, but for some of these, such as the Alpine region, it
represents one of the main sources of income for local population across several industries,
including accommodation, food services, transportation, arts and entertainment, and retail
trade. In Austria and Switzerland, for example, the winter tourism industry is estimated to
account for up to 49% of the countries’ annual overnight stays (ANTO 2016, STV-FST 2016),
to which a multiplier effect applies to account for income employment, government revenues and
other inter-industrial relations. The tourism sector, though, is one of the most weather-sensitive
ones, and winter tourism, in particular, is highly dependent on the level and reliability of the
snow cover; as such, it has been earmarked as one of the most vulnerable industries to climate
change (see Dawson and Scott 2013, for example).
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Climate change is one of the most pressing global challenges society faces today. The
United Nations has highlighted the potential for climate change to cause major disruption to na-
tional economies (see https://www.un.org/sustainabledevelopment/climate-change-2/),
also due – amongst others – to negative impacts on agriculture and tourism. Given the high
degree of adaptive capacity and flexibility of tourists, entire tourism sectors may lose attrac-
tiveness due to climate change. For instance, a study by Cavallaro et al. (2017) for South Tyrol
puts in evidence a forecast shift in tourism expenditure from the winter to the summer season,
as Alpine regions gain attractiveness in summer due to more temperate conditions compared
to hotter Mediterranean regions, whilst they lose it in winter due to less reliable natural snow
cover. Further evidence of the impact of climate change on the ski tourism segment is offered,
for example, in Wolfsegger et al. (2008) and Wyss et al. (2014).

Adaptation strategies aimed at supporting ski tourism operators in managing the impact of
weather variability and climate change are evolving along three main directions (see Scott and
McBoyle 2006, Bank and Wiesner 2011). These include protection of the affected businesses in
the form of snowmaking, slope contouring, landscaping and glacier protection; revenue diversi-
fication beyond traditional ski activities which, in many instances, leads to all-season facilities;
and sharing of risks of financial impacts by either adopting a conglomerate business model or
accessing the financial market for products such as weather derivatives.

Although snowmaking is the most common adaptation strategy, Scott and McBoyle (2006)
highlight how this raises important questions about its sustainability in certain locations, its
environmental impact, and consequent potential government restrictions on, for example, the
use of additives to help artificial snow last longer in above-average temperature conditions
(like in Austria, for example, see Wolfsegger et al. 2008) and on water access rights in certain
regions. Further, snowmaking and other technical strategies as well as strategies based on
revenue diversification do involve high investment costs for infrastructure and operating costs,
especially in higher-average temperature conditions (see, for example, Damm et al. 2014 for a
cost-revenue study of snowmaking related to a site in Austria).

In this context, weather derivatives can represent a useful complementary measure to the
other adaptation strategies for hedging against weather variability and climate change risk (see,
for example, Damm et al. 2014, Damm et al. 2017, Dawson and Scott 2013, Toeglhofer et al.
2012, and references therein). Indeed, this class of products can play a significant role not
only in hedging against non-catastrophic weather risk, but also in supporting other adaptation
strategies as they can offer flexible means for stabilizing business profitability year-on-year
and developing a suitable investment planning. In fact, they provide protection against lower-
risk higher-probability scenarios, and are characterized by a payout which is usually based
on a weather index (such as temperature level, snow level and rainfall); this latter feature
guarantees at the same time transparency and promptness in the settlements, as these are
irrespective of the actual impact of weather on companies. These features are in sharp contrast
with conventional weather insurance, which instead is focused on higher-risk lower-probability
events (one-time catastrophe, natural disaster) and are characterized by payouts based on a
demonstrated loss. Transparency and settlements’ promptness of weather derivatives might
also justify the interest and attention they attract from ski operators (Bank and Wiesner 2011);
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although their applicability is hindered by a number of factors such as product and practice
knowledge, access to the necessary financial resources, related high fixed costs, counterparty
risk due to the over-the-counter nature of these contracts, transparency and basis risk.

In this paper, we focus our attention on ski tourism, the core of winter tourism, with the goal
of proposing possible risk management strategies based on weather derivatives, such as snow
and temperature options, which are relatively transparent, easy to use and maintain, and can
help protect the profitability of ski resorts. Due to the close links between these operators and
their local communities, reducing the resort exposure to weather-induced risk also contributes
to stabilizing the economies of such communities and protecting their investments.

In details, we propose a joint non-parametric model for snow and temperature aimed at
capturing the impact of these weather variables on ski operation viability and visitors’ decisions,
and consequently the number of visitors at a given ski resort. This latter component becomes
the main reference variable for the estimation of the ski resort revenues in need of protection.
Specifically, we identify snow depth as a key variable (see Falk and Hagsten 2016, and references
therein) as, in order to determine the economic viability of ski areas, operators in Europe and
North America use the so-called 100-day rule, according to which a snow depth of at least 30cm
is required for at least 100 days per season (see, for example, Abegg et al. 2007, Steiger and
Abegg 2013).

Our choice for a non-parametric model is in contrast with previous literature, such as Beyazit
and Koc (2010) who impose a normal distribution to the (cumulative) level of the snow. A non-
parametric approach constrains the shape of the fitted distribution of interest to a much lesser
degree than parametric methods. The proposed methodological framework: i) is parsimonious
and simple, requiring the estimation of only a few parameters, and the use of only standard
statistical methods; ii) can flexibly capture dynamics that may contain trend and seasonality;
iii) is extensible, i.e., may readily be modified to accommodate additional features, if desired,
or weather variables such as rainfall, wind speed and global radiation; iv) is inexpensive in the
sense that its implementation and analysis requires only standard, easily accessible software and
data, as well as minimal human maintenance and oversight; v) does not impose a restriction of
convenience on the distribution of the snow level; and vi) has very good statistical properties if
a large dataset is available, such as for snow and temperature that exceeds 55 years.

The hedging strategies proposed in this paper consider different portfolios of options on
snow and temperature, with the aim of stabilizing ski resort revenues. As these are significantly
affected by visitors’ decisions, which in turn are conditioned by a number of variables in addition
to snow cover and temperature, such as available holidays, transportation and country of origin,
there is an inevitable intrinsic basis risk in the hedge (technological basis risk). Additional
basis risk arising with weather derivatives is the so-called spatial basis risk due to difference
between the reference weather index the derivative contract is linked to and the actual weather
experienced at the location of interest. Thus, following standard financial theory for dealing
with basis risk, our construction relies on the minimum variance principle applied to the position
as a whole, after the cost of implementation is accounted for. The alternative strategies are
then tested in terms of hedging effectiveness, tradeoff with the actual cost, and robustness with
respect to spatial basis risk.
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We note that we focus on options as our derivative contracts of choice; this is motivated
by the results of Broll et al. (2001) and Manfredo and Richards (2009), which suggest that the
convexity of options makes them more appealing for hedging than forwards and other linear
derivatives in the presence of non-linear risk exposure. Indeed, the work of Damm et al. (2014)
highlights the high non-linearity between the level of snow and the number of visitors at the ski
resorts, and therefore the revenues exposed to risk. The importance of non-linear models and
methods in tourism demand is also highlighted in Baggio and Sainaghi (2016). Beyazit and Koc
(2010) adopt snow options as well for hedging in their study, although the issue of basis risk is
not dealt with; Ðorđević (2018) and Tang and Jang (2011, 2012), on the other hand, consider
the case of snowfall forwards in the context of the minimum variance principle.

The paper is organized as follows. In Section 2, we introduce the dataset of interest; in
Section 3, we illustrate the proposed modelling and methodological framework and perform
empirical model comparisons. In Section 4, we present a preliminary empirical analysis which
leads to the construction, implementation and testing of the proposed hedging strategies, dis-
cussed in Section 5. Finally, Section 6 offers concluding remarks and highlights some pressing
directions for future research.

2. Data

The dataset we consider includes observations of both snow and temperature levels. A
systematic climate change detection and analysis of sub-monthly climate extremes requires
dataset with daily resolution. For this purpose, we use daily observational climatic time se-
ries that have been compiled for the European Climate Assessment (ECA) available from
http://www.ecad.eu/ (Klein Tank et al. 2002). The European Climate Assessment and
Dataset (ECA&D) is a database of daily meteorological station observations across Europe
and is gradually being extended to countries in the Middle East and North Africa. The series
collected from participating countries generally do not contain data for the most recent years
mainly due to time restrictions, for example, for data quality control. The ‘blended’ series has
these gaps infilled by an automated update procedure that relies on the daily data from synoptic
messages for the same or nearby stations (within 12.5km distance and height differences less than
25m) that are transmitted in near real time over the Global Telecommunication System. The
synoptic data should be replaced once the ‘official’ series are available from the data providers in
participating countries. For more information about the underlying series used in the blending
process, the quality control and homogeneity procedures, as well as comparisons with other
datasets of lower temporal resolution, refer to https://www.ecad.eu/documents/atbd.pdf

and Klein Tank et al. (2002).
More specifically in this paper we consider the blended series of snow depth from station

Sonnblick, Austria, a mountaintop site in the eastern Alps (3,106m above sea level – highest
observatory in the world to be operated year-round) for the period 1 November 1959 to 30
September 2016 (20,774 daily observations). The series are regularly updated, together with
concentrated and enhanced efforts on data quality control and homogenization. The daily-mean
temperature is given by the average of the daily-maximum and daily-minimum. The daily-mean
snow depth is calculated as the average snow depth of the available values at certain times during
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the day. For more information, refer to the summarized data characteristics in Table 1.
Due to its daily resolution, the ECA&D enables a variety of empirical climate studies,

including detailed analyses of changes in the occurrence of extremes in relation to changes in
climate variables.

3. Snow level and temperature modelling

In this section, we present the joint model for snow and temperature, as changes in daily
temperature conditions are expected to affect not only skiing operation feasibility, but also
visitors’ decisions. For example, too low temperature levels can cause adverse variations in
skiing demand, whereas too high temperature levels lead to snow melt, therefore, high likelihood
for expensive artificial snowmaking, or shortened ski season, even ski area closure.

We model the process of the generic weather variable W = {S, T}, where S denotes the
snow depth and T the temperature, as the sum of a predictable component Λ and a stochastic
component ε,

Wt = Λt + εt.

We discuss these two components in detail in the following.

3.1. Seasonality in snow and temperature

It is possible to represent the seasonal function in the following parametric form

Λt = λ0 + λ1t+ λ2 sin(2πt) + λ3 cos(2πt), (1)

where the constant coefficients {λj} account for deterministic regularities, i.e., seasonal fluc-
tuations and time trend capturing long-run climate change effects. We estimate {λj} by a
non-linear regression of Wt on time t, for t = 1, 2, . . . , 20,774 (total number of observations),
using the Matlab function fitnlm based on the Levenberg–Marquardt non-linear least squares
algorithm (see Seber and Wild 2003). These estimates are reported alongside their standard
errors and t-statistics in Table 2 and are statistically significantly different from zero. Not
surprisingly, both the daily-mean temperature and snow depth exhibit significant regularities
throughout the annual cycle with adjusted R2 of 52% and 64% for the snow depth and the
temperature, respectively. Moreover, the parameter estimates imply a positive (negative) trend
for the temperature (snow), which can be attributed to global warming as our sample includes
more than 55 years of data. From Table 2, the estimated parameter λ1, in fact, implies that
the snow level reduces by 0.49cm per year, while the temperature increases by 0.03℃ per year.

[Insert Table 2]

Alternatively, we have considered the possibility of estimating the seasonal effect in our
weather variables for a particular period (e.g., January) by computing the average of the month’s
daily observations across all the years in the sample, bypassing any parametric functional form
assumption. A visual inspection of the empirical properties of the two approaches is presented
in Figures 1(a)–(d). Results from both methods are similar, with the two deseasonalized time
series εt exhibiting a significantly positive relationship (0.95 for snow, 0.96 for temperature),
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with non-trivial impact on the study hereafter. For series that contain a substantial trend a
more sophisticated approach might be required (e.g., see Chatfield 2004), although this is not
necessary in our case.

[Insert Figure 1]

After removing Λt, we need to suitably model the stochastic component with the aim of
generating sample trajectories of our climate variables and, subsequently, projecting the ski
visitor numbers (see Section 4.1) and implementing the hedging strategies (see Section 5), which
is the core of this research. To this end, in what follows, we consider, first, a (semi-)parametric
bootstrap approach based on resampling of the residual series (see Section 3.2) and, second,
non-parametric block bootstrap (see Section 3.3).

3.2. An autoregressive model for the climate variables

Consider the autoregressive (AR) model of order q,

εt = φ0 +
∑q

j=1
φjεt−j + ηt (2)

with ηt independent and identically distributed random variables, and constant coefficients {φj}.
The parameters {φj} are estimated by maximum likelihood available through the arima class
of Matlab and are shown in Table 3. The lag length is chosen based on the Schwarz (1978)
Bayesian Information Criterion (BIC) which is smallest for orders q = 2 and q = 5 for snow
and temperature, respectively. The sample Autocorrelation Function (ACF) and Partial Auto-
correlation Function (PACF) plots of the filtered residuals {ηt} in Figure 2 show no significant
autocorrelation. More formally, we conduct a Ljung–Box Q-test at 5, 10, 15 and 20 lags, with
adjusted degrees of freedom of the test statistic distribution to account for the estimated pa-
rameters. The test confirms the sample ACF and PACF results. The null hypothesis that all
autocorrelations are jointly equal to zero up to the tested lag is not rejected for any of the four
lags, with p-values ranging from 6% to 40% for the snow, and 60% to 90% for the temperature
(full results available upon request). Therefore, the models capture most of the dependence
(after taking care of seasonality), i.e., {ηt} can be considered to be white noise.

[Insert Table 3]

[Insert Figure 2]

In order to generate sample trajectories of the stochastic component (2), we employ, by
independence, standard bootstrap approach based on random resampling of the residual series
{ηt} corresponding to each month with replacement (Efron 1979), and feeding of the bootstrap
samples into the model. In particular, random resamples η∗ = (η∗1, η∗2, . . . , η∗ñ) are drawn from
(η1, η2, . . . , ηn), where ñ is the number of days of each month, and n the total number of days of
each month across all years in the sample, by generating ñ uniformly distributed pseudorandom
integers (data locations) between 1 and n. Due to joint modelling of the snow depth and
temperature evolutions, we use common locations. By repeating several times, we obtain a
collection of snow and temperature paths. Finally, as a benchmark, we fit the bivariate normal
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distribution to snow and temperature ηt corresponding to each month and generate sample
paths using Monte Carlo simulation. The normality assumption is in line with Beyazit and Koc
(2010); we formally test this in Section 3.4.

3.3. Block bootstrap approach to climate variables modelling

Although parametric models have been widely used to model climate variables, their pitfall
is the a priori assumption of the parametric functional form of the variable to be estimated.
Misspecification often occurs because restrictive assumptions can lead to misrepresentative char-
acterization of the true data-generating process, thus resulting in inaccurate inferences. Non-
parametric approaches constitute an alternative possibility as these are generally free from
functional forms, hence flexible yet consistent.

To avoid breaking up the dependence in the data, we resample the data using blocks in-
stead of individual observations1. By retaining the neighbouring observations together within
the blocks, the dependence structure of the random variables at short lag distances is pre-
served. As a result, resampling blocks allows carrying this information over to the bootstrap
variables. In particular, we use the moving-block stationary bootstrap introduced by Politis
and Romano (1994) in which the length of block k, lk, is generated from a geometric distribu-
tion with probability θ, thus the average block length equals 1/θ. The kth block is given by
Bk = (εi, εi+1, . . . , εi+lk−1). By randomness of the block length, the method generates random
resamples which preserve the serial dependence of the original series and are also stationary.
The kth block begins from a random index i which is generated from the discrete uniform
distribution on {1, . . . ,M}, where M is the total number of sample dates, and random resam-
pling with replacement is possible. As a generated block length is not limited from above, i.e.,
lk ∈ [1,∞), and the block might begin with observation εM , the stationary bootstrap method
‘wraps’ the data around in a ‘circle’, so that ε1 follows εM , and so on. The different blocks
together make up a bootstrapped time series. Then, by repeating a number of times, we ob-
tain a collection of pseudo-time series of snow and temperature. To this end, we use Kevin
Sheppard’s implementation of the stationary bootstrap on Matlab available freely online from
https://www.kevinsheppard.com/MFE_Toolbox, which returns the locations of the original
series, with optimal block length selected according to Politis and White (2004). As we are
modelling jointly the snow depth and temperature evolutions, we use common locations.

3.4. Visual diagnostics and distribution backtesting

To get an idea about the fitted AR model of Section 3.2, we plot in Figures 3(a)–(b) the em-
pirical densities of the filtered AR residuals for both snow and temperature. A closer inspection
via QQ plots in Figures 3(c)–(d) indicates fat-tailed distributions, suggesting that the proba-
bility of rare events is much higher than what captured by the normal distribution. Figures
3(e)–(f) exhibit consistent time plots.

[Insert Figure 3]

1If we apply instead standard bootstrap to serially dependent observations, as is the case with weather data,
the resampled series will not retain the statistical properties of the original dataset, yielding inconsistent results
and statistical inference (see Ruiz and Pascual 2002).
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These indications motivate us to pursue formal testing of a particular model being the true
data-generating process. We assess the performance of the models by examining the distribu-
tional properties of the simulated paths. Following Diebold et al. (1998), a relevant approach
is the Probability Integral Transform (PIT)2. More specifically, for each season commencing at
t = 1 November 1959, 1960, . . . , 2016 and ending on 30 April of the same season (181 days per
season), we generate the cumulative distribution forecast for each weather variableW . Then, at
the end of every day, after the actual weather variable value wt+k, k = 1, . . . , 181, is observed,
we calculate the probability of getting a value below the actual one by counting the number
of generated values below that threshold; we denote this so-called transform probability by
pt+k. Under a correct distributional specification, the time series of transform probabilities
(i.e., the transformed weather variable trajectories) should be distributed independently over
time as a standard uniform random variable. As for a given k, testing the null hypothesis H0:
pt+k ∼ i.i.d. Unif(0, 1) is cumbersome due to the restricted support of the uniform distribution,
we transform pt+k using the standard normal inverse distribution function Φ−1(·) and test H0:
zt+k = Φ−1(pt+k) ∼ i.i.d. N (0, 1) (for more details about the inverse standard cumulative nor-
mal transform of the PIT sequence, see Berkowitz 2001 based on an extension of the Rosenblatt
1952 transformation). Finally, we compute the Berkowitz (2001) statistic (likelihood ratio of
normals) and the (asymptotic) probability of significance for every day k.

Our results (available upon request) undoubtedly favour the block bootstrap approach which
yields p-values suggesting 70% chance, for example in the case of temperature, of no significant
evidence against it, implying its ability to generate distributions that are able to replicate the
historical features of the weather variables. The (semi-)parametric approach is rejected based
on highly significant evidence. The test outcome is also visually reflected in Figure 4, which
presents a comparison of the generated sample paths for the period 1 November to 30 April.
This indicates the non-parametric method’s ability to capture the seasonal mean perfectly,
and adequately the 1st and 99th percentiles. (Note that the comparison against the historical
percentiles is less informative as they are monthly in order to ensure a sufficiently large total
number of daily observations in a month across the sample years for use in their estimation.)

[Insert Figure 4]

In light of our empirical analysis, in what follows, we focus on generating required sample
trajectories of the climate variables using the block bootstrap method in lieu of parametric
techniques.

4. Preliminary results and analysis

4.1. Visitor numbers

To model the ski visitor numbers, we consider the multiple regression model of Damm et al.
(2014) for daily visitor numbers based on snow and temperature and several dummy variables

2Diebold et al. (1998) propose a density evaluation method which consists of computing the sequence of
cumulative probability of the observed counts under the assumed forecast distribution (Probability Transform
Integral). If the density fit is adequate, this sequence will be uniformly distributed.

8



controlling, e.g., for ski openings, particular public holidays and school breaks. The fitted
regression model for the daily visitor numbers Vt is

√
Vt = α0 + α1 ln(St + 1) + α2Tt + α3SkiOpening + α4PreXmas + α5Dec8

+α6XmasEve + α7XmasDay + α8SchoolHols + α9April

+α10Friday + α11Saturday + α12PreXmas× Saturday

+α13PreXmas× Sunday + α14SchoolHols× Saturday + εt, (3)

where εt ∼ N (0, σ2), S is the daily (non-negative) snow depth (cm), T the daily-mean tem-
perature (℃), dummy “SkiOpening” indicates the day(s) of the ski-opening event, “PreXmas”
the period from season start to the beginning of Christmas holidays, “Dec8” the 8th December
holiday, “XmasEve” the Christmas Eve, “XmasDay” the Christmas Day, “SchoolHols” the Aus-
trian school holidays (Christmas, term break, Easter), “April” the April month (excl. Easter
holidays), “Friday” the Fridays, “Saturday” the Saturdays, and “Sunday” the Sundays. The
adjusted R2 is 86.8%.3

Simulated trajectories of the climate variables using the block bootstrap approach in Section
3.3 are passed into the fitted regression model (3) in order to generate sample trajectories of
daily visitor numbers. In addition, for the feasibility of skiing activities a specific minimum
snow depth is required, here, 30cm. Zero visitor numbers are assumed for days with snow
conditions indicating high chances for total ski area closure. Finally, we assume that our season
extends from 1 November to April end (see Damm et al. 2014). From Figure 5, we can see
that the simulated ski visitor numbers vary considerably during the winter season with peaks
during Christmas holidays, weekends and public holidays, affecting the profitability of skiing
operations. Abrupt downward movements of the visitor numbers outside the main part of the
season implies that the likelihood of extreme negative outcomes is higher than what predicted
by a normal model, and can be linked to lack of snow highlighting the importance of managing
this type of risk.

[Insert Figure 5]

4.2. Empirical model assessment of snow conditions and skiing operation

Regarding the critical snow depth, a common rule in the literature (e.g., Abegg et al. 2007,
Koenig and Abegg 1997, Scott et al. 2003) which is widely used nowadays for snow reliability
and feasibility of skiing operations is the “100-days” rule, suggesting a snow depth of at least
30cm for at least 100 skiing days per winter season. (The rule may slightly vary, for example,
Damm et al. 2014 found a threshold of 20cm to be more relevant for their analysis.)

In order to assess the reliability of snow cover, we estimate, using our simulated snow
trajectories, the probability of having a specified minimum snow cover for at least 100 days

3The estimated parameters of the regression visitor model (3) are α0 = 48.365, α1 = 3.8, α2 = −0.027,
α3 = 11.251, α4 = −32.603, α5 = 12.522, α6 = −31.321, α7 = −21.911, α8 = 12.613, α9 = −15.103, α10 = 3.856,
α11 = 6.574, α12 = 13.1, α13 = 16.076, α14 = −11.438 and σ = 20. Taking square root on the left-hand side of
(3) has the advantage of not generating negative visitor numbers. In addition, it performed best in terms of R2

against tested alternatives such as log-transformation. See Damm et al. (2014) for fuller details.
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from 1 December until 15 April, for different initial snow levels at the beginning of the season.
Figure 6 shows the results which, as expected, suggest decreasing probability the higher the
minimum snow cover required; also, the lower the initial snow level, the lower the probability
of achieving a given minimum snow cover. For example, a reliable snow cover of 30–50cm with
at least 70% chance, consistently with the assessment of Elsasser and Messerli (2001) of snow
cover reliability in 7 out of 10 winters in a (Swiss) ski area, corresponds to minimum initial snow
levels of 25–40cm. Given this, in the ensuing hedging analysis, we assume an initial level of
30cm, and examine the impact of upward and downward deviations on the effectiveness of our
hedging strategies. Indeed, Figure 6 shows that an initial level of 30cm ensures excess reliable
snow cover of up to 60cm with 45% probability, whilst an initial level of 15cm results in just
30cm of snow cover with the same probability. An initial snow level as low as 5cm is not reliable
at all, while an initial of 10cm results in a snow cover of 30cm with 11% chance.

[Insert Figure 6]

4.3. Projection of future revenues

We transform the projected visitor numbers from Section 4.1 into revenues by assuming
a day ticket mean price for the ski season 2016/17 of c = e29.75 (based on 425 ski resorts,
source: http://www.skiresort.info/); this is consistent with the projection of Damm et al.
(2014) for this period for ski lift ticket prices. Figure 7 shows the cumulative percentage of total
revenues over the ski season against the cumulative percentage of days. Assuming, for example,
an initial level of 30cm, we find that the least-busy 50% of the days account for less than 20%
of the season’s total revenues. In contrast, the busiest 10% of the days account for about 30%
of the revenues. Same considerations hold for the case of an initial snow level of 50cm. This
is consistent with the empirical patterns observed by Hamilton et al. (2007). A lower initial
level of, for example, 15cm results in least-busy 50% of the days accounting for less than 10%
of the season’s total revenues, whereas the busiest 10% of the days for approximately 40% of
the revenues.

[Insert Figure 7]

5. Hedging exposure

In this section, we explore different hedging strategies that a ski resort establishment could
consider in order to protect its profitability against adverse weather conditions.

As hedging positions based on weather derivatives are affected by spatial basis risk due
to the difference between the weather conditions at the location of interest and the reporting
station, in order to avoid unnecessary additional basis risk, the underlying of the chosen hedging
instrument should be ideally directly connected to the revenues themselves, i.e., to the number
of visitors at the specific resort. Given the uncertainty and discretionary nature of this type of
information (i.e., not certified by some official entity), derivatives on snow and/or temperature
might in a sense be easier to construct due to the fact that the information about their seasonal
level is provided by independent bodies. And, indeed, as the main business activity of ski resorts
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is snow sports, the risk factors affecting the firm’s revenues are primarily the snow level and the
temperature.

In this context, due to the observed non-linear relationship between revenue and snow level
(see equation 3), viable products for hedging might be represented by options on the cumula-
tive daily snow level over the entire season, as in Beyazit and Koc (2010). Given the direct
relationship between the number of visitors and snow levels at the ski resort, typical protection
against drops in profits is offered by (purchased) put option strategies; indeed, put options allow
risk managers to construct portfolios with bounded revenues losses without imposing a cap on
potential upside movements. We observe, though, that a potentially more effective cover could
be obtained by considering periodically reset contracts on snow, possibly paired with contracts
on temperature.

Thus, in the next sections, we examine these alternatives, test their effectiveness in terms of
protection measured by the percentage reduction of the profits’ variability, and challenge their
robustness with respect to spatial basis risk. For the purpose of the analysis that follows, we
denote by p the premium of the option contract, m the corresponding percentage markup which
captures the profit margin asked by the financial institution offering the contract, and r > 0 the
continuously compounded risk free rate of interest. As the pricing of non-standard contracts,
such as weather options, is a non-trivial problem, we defer the discussion on how the premium
p is determined to Section 5.2.

5.1. Hedging strategies

Assume that the season starts at time t0 and ends at tN ; the period [t0, tN ] is divided in
N equidistantly spaced sub-periods [t0, t1], [t1, t2] , . . . , [tN−1, tN ]. Further, we assume that the
hedge period coincides with the season, although allowing for forward-start hedging and/or
early hedge termination is straightforward.

In order to provide a general treatment which can be adapted to several circumstances, we
consider the hedging strategy as a portfolio of option contracts (cases A1–A3) or a single option
(case A4); each of these financial instruments is assigned a hedge ratio representing the loss
amount protected by the corresponding instrument. To this purpose, let us denote by ϑ(A)

the vector of the hedge ratios characterizing the hedging strategy (A). In addition, let χ(ϑ(A))
be the terminal payoff of the strategy and B(ϑ(A)) the corresponding (future value of the)
implementation cost, i.e., the (forward) budget that the ski operator establishment needs to set
aside for risk management. The functions χ(ϑ(A)) and B(ϑ(A)) are defined consistently with
the hedge construction (see cases A1–A4 later). The resulting Profit and Loss (P&L) function
of the hedged position at the end of the selected horizon is

Π(A) = c
N∑

j=1
Vtj + χ(ϑ(A))− B(ϑ(A)).

The choice of the hedge ratio ϑ(A) is based on the minimum variance principle and, therefore,
is the optimal solution to the minimization problem

min
ϑ(A)

Var
(
Π(A)

)
. (4)
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The P&L and its variance are computed using the simulated trajectories of the climate variables
based on the block bootstrap approach in Section 3.3. Let ϑ̃(A) be the optimal solution of
(4), that is, the optimal monetary value of the compensation received, and Π̃ the optimal
hedge portfolio. A well-known consequence of the minimum variance principle is that ϑ̃(A) is
given by the coefficient of regressing the cash flows on the option net payoff; therefore, it is
determined by the covariance between the cash flows and the option net payoff, which is the
key to immunization against basis risk. The hedging effectiveness is then measured by the
percentage variance reduction

H = 100

1−
Var

(
Π̃
)

Var
(
c
∑N

j=1 Vtj

)
%. (5)

For the current analysis, the following are the alternative strategies of interest.

(A1) Strategy S: put options on daily snow level. The underpinning assumption is that the
management of the ski resort can operate it smoothly when the current snow level is above
a certain threshold K(S)

j , referred to as the strike level, during the whole or part of the
season. In this case, the hedging strategy is formed by a basket of put options on the
snow level, with each contract expiring at tj for j = 1, . . . , N , so that

χ(ϑ(S)) = ϑ(S)
N∑

j=1

(
K

(S)
j − Stj

)+
,

where x+ = max(x, 0).

The financial institution offering the contract expiring at tj adds onto the premium pj

a markup m in order to cover the costs of doing business and create a profit, thus the
actual price charged for such a contract is pj(1 + m). Therefore, in this particular case,
the implementation cost is ϑ(S)(1 +m(S))∑N

j=1 p
(S)
j , with m taking a positive or negative

value consistently with the sign of ϑ. The future value of the strategy is

B(ϑ(S)) = ϑ(S)(1 +m(S))
N∑

j=1
p

(S)
j er(tj−t0).

For convenience, we may hold the strikes fixed across the expiry dates tj . For the details
on the computation of pj , we refer to Section 5.2.

(A2) Strategy (S, T ): put options on daily snow and temperature levels. As pointed out in
Damm et al. (2014), for example, snow reliability of ski areas depends on the level of
temperature. Indeed, as reported in Abegg et al. (2007), under a +1℃ scenario only 75%
of the ski areas are still snow-reliable, while this percentage drops to 61% and 30% under
a +2℃ and a +4℃ scenario, respectively. We note, though, that too low temperatures
could make skiing uncomfortable. Thus, in order to financially protect the ski resort from
reduction in the number of visitors due to either too cold climate or too high temperatures
that the snow begins to melt, we augment the original strategy S with a strangle on
temperature to achieve overall daily protection of the ski resort against both snow and
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temperature exposures throughout the season (or part of it). The strangle comprises one
call and one put option on temperature, with the same maturity, but different strikes
K

(U,T )
j , K(L,T )

j for the call and put, respectively, with K
(U,T )
j > K

(L,T )
j . The resulting

payoff of the full strategy is

χ(ϑ(S,T )) = ϑ(S)
N∑

j=1

(
K

(S)
j − Stj

)+
+ ϑ(T )

N∑
j=1

((
K

(L,T )
j − Ttj

)+
+
(
Ttj −K

(U,T )
j

)+
)
,

with future value of the implementation cost

B(ϑ(S,T )) = ϑ(S)(1 +m(S))
N∑

j=1
p

(S)
j er(tj−t0) + ϑ(T )(1 +m(T ))

N∑
j=1

(
p

(L,T )
j + p

(U,T )
j

)
er(tj−t0).

For convenience, we may hold the strikes fixed across j.

(A3) Strategy R: put options on monthly revenues. In this case, we consider as the relevant
underlying variable the number of visitors; the strike for the options is based on the average
monthly historical revenue for the season (November, December, . . . , April). Therefore,
the hedge is given by a portfolio of options with terminal payoff

χ(ϑ(R)) = ϑ(R)c
N∑

j=1

(
K

(R)
j − Vtj

)+
,

floating strike

K
(R)
j =

∑Nj

k=1 Vtk

Nj
,

and Nj denoting the actual number of days in each month of the season. Consequently,
the future cost is

B(ϑ(R)) = ϑ(R)(1 +m(R))
N∑

j=1
p

(R)
j er(tj−t0).

We note that in this strategy the relevant strike price changes every month along the
hedge horizon to reflect the corresponding monthly historical average number of visitors
to the resort. This differs from the previous two hedging strategies in which the strike was
fixed at inception and kept constant to the end of the hedging period, although amending
these to a non-constant strike, if required, would be straightforward.

(A4) Strategy CS: put options on cumulative daily snow level as at the season end. This
strategy is based on the cumulative daily snow level at the time the position is closed,
as considered in Beyazit and Koc (2010). Therefore, the hedge is formed by only one
contract, and the terminal payoff is

χ(ϑ(CS)) =

K(CS) −
N∑

j=1
Stj

+

,
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with future value of implementation cost

B(ϑ(CS)) = ϑ(CS)(1 +m(CS))p(CS)er(tN−t0).

This strategy represents the benchmark against which the other strategies are tested in
terms of hedging effectiveness.

5.2. Option value

The identification of the optimal hedge ratio by solving the optimization problem (4) depends
on the implementation cost of the hedging strategy, B, and therefore the price p of the contracts
used to set up the hedge.

The problem of determining a ‘fair’, market-consistent price for weather derivative instru-
ments, though, is not trivial. Indeed, standard approaches to arbitrage-free pricing (e.g., Black
and Scholes 1973) are questionable in this case as, in general, it is not possible to construct a
portfolio of ‘tradeable’ securities that replicates the payoff in question. We notice, however, that
under the assumptions of a continuous-time capital asset pricing model with constant investment
opportunity set, if revenues are uncorrelated with the market, then the risk can be considered
as diversifiable and not be priced (see Merton 1976 and references therein). This implies that
option pricing can be legitimately carried out under the physical probability measure.

For the purpose of verifying the above stated assumption, we construct an index of simulated
daily returns for a hypothetical ski resort establishment using the simulated visitor numbers
– specifically, we use 10, 000 daily return samples for a year. Then, we match these values to
corresponding S&P 500 daily (bootstrapped) returns (see also Chance et al. 2008, for a similar
application in the movie industry). A comparison of the market index returns to the daily
returns of the ski establishment shows no significant correlation in bivariate Granger-causality
tests, as well as regressions including contemporaneous values, at reasonable lags (up to 20).
The results are confirmed when the analysis is repeated using Thomson Reuters Datastream
stock indices, i.e., world, regional (for our example, Austria) and sectoral (Austria travel &
leisure in our case); these are capitalization-weighted stock indices covering a minimum of 75%
of the total market value.

As a result of the above, we obtain the premium for an option expiring at time tj with
generic exercise price K and terminal payoff P (tj ,K) directly under the ‘real-world’ probability
as

pj = Et0

(
e−r(tj−t0)P (tj ,K)

)
, (6)

where Et0 denotes the conditional expectation with respect to the information available at time
t0. We estimate (6) using the simulated values of the weather variables (cases A1, A2, A4) or
visitor numbers (case A3). Given the short life of the options and the currently low interest
rates, we set r = 0.

5.3. Results

The numerical analysis is organized as follows. Using 10, 000 daily sample trajectories, we
solve the optimization problem (4) in correspondence of different levels of the strike prices
for each strategy considered in Section 5.1 and for different initial snow levels. Specifically,
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we vary the strikes K(S), K(R) and K(CS) in strategies S, (S, T ), R and CS respectively;
however, we keep K(L,T ),K(U,T ) for the temperature strangle in strategy (S, T ) fixed at –6℃
and +4℃ respectively. This choice is based on the quantiles of the historical distribution of
temperature at the resort (see, for example, Figure 4 and some common recommendation from
a specialized source such as http://www.snow-forecast.com/). We note, though, that the
simulation results are relatively insensitive to the chosen range for K(L,T ),K(U,T ) (more results
available upon request).

As K(S), K(R) and K(CS) are the strikes of put options, higher values of these quantities
correspond to higher option premiums, hence higher implementation costs. Thus, for compar-
ison purposes, we report results in terms of the budget B, also with the aim of gaining insight
into the tradeoff between the hedge cover and its cost.

Results are summarized in Figures 8 and 9, in which we plot respectively the resulting
optimal hedge ratios and the corresponding hedging effectiveness – as measured by the index H
defined in equation (5) – for both different levels of the budget B and the initial snow level S0.

[Insert Figure 8]

In details, each column of Figure 8 illustrates the optimal hedge ratios ϑ̃ in correspondence
of different initial level of snow S0; each row, instead, classifies the optimal hedge ratios based
on the originating strategy. We consider first strategies S, R and CS (rows 1, 3 and 4). The
corresponding hedge ratios are all positive, consistently with the intuition of a purchased put
option hedge, and decreasing as the budget level (i.e., the cost of the strategy) increases. As
mentioned earlier, higher budget levels correspond to higher strike prices of the put options
forming each strategy; this means that these put options move progressively more and more in
the money; this implies that the payoff, and therefore the level of protection, offered by these
contracts increases, as does the probability of exercise. Consequently, a smaller multiplier is
required to achieve an optimal level of insurance against adverse weather movements. For these
strategies, we also observe that, ceteris paribus, the optimal hedge ratios decrease as the initial
level of snow increases. This reduction in the optimal hedge ratio reflects the lower probability
that the put options will be exercised, due to more favourable operational conditions for the ski
resort; this effect also allows to keep the cost of implementation of the strategy under control.

The second row of Figure 8 reports the optimal hedge ratios of strategy (S, T ); for each
plot, ϑ̃(S) can be read on the y-left-hand-axis, whilst ϑ̃(T ) on the y-right-hand-axis. In the first
place, we notice that strategy (S, T ) entails a long position in the snow put options – similarly
to strategies S and CS – and a short position in the temperature-based strangle. This reflects
the inverse relationship between temperature and snow, and, therefore, the number of visitors
at the resort and the corresponding revenues. Secondly, we note the significant difference in
terms of scale between the two hedge ratios. Indeed, the (purchased) put option on snow takes
a larger position in the hedging portfolio compared to the (written) strangle. Further, both ϑ̃(S)

and ϑ̃(T ) (in absolute terms) are decreasing functions of the budget B; bearing in mind that
K(L,T ),K(U,T ) are kept fixed in this analysis, the argument for ϑ̃(S) is similar to what described
earlier for the other strategies. This, though, implies a ‘substitution’ effect as B increases: due
to increasing strikes of the snow options, the weight of the protection is shifted more and more
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on the snow component, with consequent reduction of the amount invested in the temperature
strangle.

The optimal hedge ratios ϑ̃(S), ϑ̃(T ) (in absolute terms) are also decreasing functions of the
initial level of snow. In case of a low level S0, as already observed, the largest fraction of
the hedging portfolio is represented by the (purchased) put option on snow. The (written)
strangle on temperature, though, provides a useful ‘top-up’ which reflects the high sensitivity
of the revenues to temperature movements outside the selected range and, therefore, their
impact on skiing conditions. As S0 increases, revenues are less exposed to these changes and
consequently less protection is required. We note that, although ϑ̃(T ) is relatively small (in
absolute value) for large S0, its size reflects the residual temperature risk: on the one hand, it is
conceivable to assume that higher initial levels S0 are mainly related to lower temperature; the
lower the temperature, the more uncomfortable skiing becomes, and as a consequence the more
the put option segment of the strangle would move in the money, providing a larger portion
of the hedging cover. On the other hand, copious snowfalls could also be associated with
uncharacteristically high temperature levels; in such situations, though, the risk of avalanches
could be high with negative repercussions on the revenues of the ski resort due to (partial)
closures for related safety operations. Indeed, avalanches represent a significant fatal risk for
ski tourers (see, for example, Plank 2016), the perception of which can also influence travel
decisions (see Eitzinger and Wiedemann 2007, for example) and, consequently, the profitability
of the ski operators. The call segment of the strangle would, in such circumstances, provide a
useful floor to revenues losses.

[Insert Figure 9]

In terms of effectiveness, as shown in Figure 9, strategy R provides the maximal reduction in
the variance of the P&L of the position (note the different scale on the y-axis). This is consistent
with the fact that the underlying (i.e., the visitor numbers) of the hedging put option matches
the underlying of the position requiring the hedge; basis risk effects in this case are, indeed, at
the minimum level. Also, consistently with intuition, strategy CS based on cumulative snow
level at the season end is the one performing worst amongst all considered in this analysis,
especially for high initial levels of the snow S0. The more flexible contracts S and (S, T ) offer,
indeed, a better control of the P&L variance thanks to the periodic reset they offer. We notice
the similar performance of these two strategies, especially for a low initial snow level such as
15cm: both strategies offer up to 89% variance reduction with a similar cost of 9 million, with
strategy (S, T ) being less expensive. For higher S0 levels, the percentage variance reduction
is still very similar for the two strategies, with strategy (S, T ) performing slightly better (for
S0 = 50cm, H(S) = 83.17% and H(S,T ) = 83.27%), while also managing to offer up to 6.85%
reduction in the implementation cost; this is due to the more comprehensive cover offered by
strategy (S, T ) which exploits the interplay between the two components as explained earlier.

The findings discussed earlier are also reflected in the implementation cost of each strategy
per fixed level of the index H. As a matter of fact, the H curves shown in Figure 9 are concave
functions of the budget B, with the exception of strategy R whose H curve is – along the interval
considered in this study – increasing in the level of B. It is therefore possible to identify an
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optimal value of the (optimal) hedge ratios across all budget levels and a corresponding optimal
efficiency level H∗: for the considered interval of B, increasing the budget – and therefore the
level of protection – in the case of strategies S, (S, T ) and CS does not necessarily always
translate in a more effective hedging of the firm’s profitability.

We conclude this section with a robustness check of the results obtained above with respect
to spatial basis risk due to the difference between the reference weather index to which the
options forming the hedging portfolios are linked and the actual weather conditions experienced
at the location of interest. Indeed, as mentioned in Section 2, our weather data refer to the
Sonnblick station (Austria), whilst the parameters of the model for the number of visitors
discussed in Section 4.1 refer to a study site in Styria (Austria) – see Damm et al. (2014) for
full details – which is located about 95km away from the weather station. We note that such
differences in weather conditions might also be due to the presence or not of artificial snow in
the resort under analysis.

To this purpose, we run a sensitivity analysis by stressing the regression parameters (α1, α2) =
(3.8,−0.027) in equation (3) which control the dependence between the number of visitors, and
therefore the revenues, and the level of snow and temperature, and determine the corresponding
optimal hedge ratios and effectiveness. Specifically, we consider the cases in which both parame-
ters are stressed by adding/subtracting multiples of their standard errors (see Damm et al. 2014),
(s1, s2) = (0.183, 0.005). Thus, we generate four alternative scenarios: S1 = (α1−3s1, α2−3s2),
S2 = (α1 + 3s1, α2 − 3s2), S3 = (α1 − 3s1, α2 + 3s2), S4 = (α1 + 3s1, α2 + 3s2). We note that
S1 and S4 can be interpreted, respectively, as scenarios of lower/higher ‘volatility’ of the vis-
itor numbers with respect to the weather indices of relevance, and therefore as scenarios of
minimum/maximum spatial basis risk.

The behaviour of the hedge ratios ϑ̃(A) and the corresponding effectiveness H with respect
to the budget level B̃(A) is qualitatively the same as the ones of the reference case shown in
Figures 8 and 9. Consistently with intuition, the hedging portfolio requires a larger position in
the hedging instruments in presence of higher level of basis risk and, consequently, it becomes
more expensive to maintain. Note that in the interest of readability, we do not report the
actual values ϑ̃(A) and H for each strategy in each stress scenario (complete results available
upon request), but focus, instead, on the comparison of the optimal effectiveness levels of the
strategies under each scenario, which we label as HSi , i = 1, . . . , 4, with the one of the reference
case. Results are summarized in Figure 10 and Table 4.

[Insert Figure 10]

Starting with Figure 10, the height of each bar represents the optimal effectiveness H∗ of the
reference case as identified in Figure 9; the error bars indicate the range between the largest
and smallest values of H∗Si

across all the stress scenarios. We observe the following points: the
largest optimal value of the hedge effectiveness is generated for all strategies by scenario S4,
that is, H∗S4

, corresponding to the case of largest possible spatial basis risk with respect to the
reference case; the smallest optimal hedge effectiveness originates, instead, from scenario S1,
that is, H∗S1

, which identifies a situation with lowest level of basis risk.
Overall, the variations as indicated by the error bars are relatively small, particularly for

strategy R; strategy CS, on the other hand, seems the most affected. This suggests that
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the minimum variance principle, on which the construction of the hedge is based, performs
successfully in keeping the basis risk at a minimum level, so that even a sub-optimal hedging
ratio (with respect to the actual weather conditions at the location of interest) is relatively
satisfactory in offering an effective risk cover. The robust performance is supported by the
non-linearity of the contracts chosen for the purpose, and their design – consistently with our
previous findings. Thus, these observations suggest that for hedging principles robust with
respect to basis risk, such as the minimum variance one, the choice of the weather station is
less critical in managing the spatial basis risk in the case of weather derivatives. This is also
consistent with the findings of Manfredo and Richards (2009).

These results are also confirmed with respect to the tradeoff between efficiency levels and
cost of the hedge, i.e., the budget level B. In order to better quantify this aspect, we argue as
follows. Recall that the reference case is characterized by an optimal hedge effectiveness H∗

which is achieved with an implementation cost B∗; similarly, the stress scenarios Si, i = 1, . . . , 4,
are associated with an optimal effectiveness H∗Si

with cost B∗Si
. The tradeoff between efficiency

and cost can then be quantified by the multiplier

MSi =
H∗Si
B∗Si

H∗B∗
, i = 1, . . . , 4, (7)

of the budget that is requested in scenario Si to achieve a particular effectiveness level compared
to the reference case. If M > 1 (< 1), the hedging portfolio in the reference case is (is not) to
be preferred to the one of scenario Si. The multipliers of each strategy are reported in Table 4
for all stress scenarios and initial snow levels considered in this study; the numbers confirm the
relative robust performance of the proposed hedges with respect to basis risk.

[Insert Table 4]

6. Conclusions

We propose a methodology for the identification of effective hedging strategies for ski tourism
operators based on weather derivatives, such as snow and temperature options. The framework
consists of a non-parametric approach based on block bootstrap for the modelling of the evo-
lution of these variables, a regression model for the number of visitors at the resort, which
determines its revenues, a valuation method for the derivatives, and the minimum variance
principle for the computation of the relevant hedge ratios. Our simulation study shows the su-
perior performance of hedging strategies based on portfolios with periodic reset of snow options,
and combination of snow and temperature options.

Our analysis focuses on natural snow conditions, and therefore does not include artificial
snow. The motivation behind this choice is to focus on the role of weather derivatives as tools
for stabilizing business profitability and facilitating the implementation and maintenance of
adaptation strategies such as snowmaking, whose economic profitability is threatened, too, by
climate change (see Damm et al. 2014).

The results reported in this paper refer to the case of one single resort; the analysis could
be extended to the case of ski conglomerates with multiple properties on the line of the work
of Tang and Jang (2011), but we leave this to future research.
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Data characteristics
Station name Sonnblick
Latitude (◦:′:′′) +47:03:00
Longitude (◦:′:′′) +012:57:00
Station elevation (m) 3,106
Period 1-Nov-59–30-Sept-16
Frequency of observation Daily (20,774 observations)
Daily-mean temperature Average daily-max (06–18 UT) & daily-min (18 UT–06 UT current day)
Daily-mean snow depth Average available values at 00, 06, 12 and/or 18 UT

Table 1: The table presents the summarized data characteristics. Notes. UT: Universal Time; Latitude: + (−)
refers to North (South); Longitude: + (−) refers to East (West).

Deterministic snow component
Coefficient Estimate Standard error t-statistic p-value

λ0 273.0304 1.5867 172.0773 0.0000
λ1 -0.4948 0.0483 -10.2532 0.0000
λ2 10.2382 1.1217 9.1274 0.0000
λ3 -167.8955 1.1222 -149.6184 0.0000

Deterministic temperature component
Coefficient Estimate Standard error t-statistic p-value

λ0 -6.2447 0.0562 -111.1072 0.0000
λ1 0.0361 0.0017 21.1220 0.0000
λ2 -7.6187 0.0397 -191.7430 0.0000
λ3 0.7850 0.0397 19.7478 0.0000

Table 2: The table presents the estimates for the deterministic snow and temperature components Λt (see equation
1) (number of observations = 20,774; root mean squared error = 114 – snow, 4.05 – temperature; adjusted R2 =
0.521 – snow, 0.645 – temperature; F -statistic vs. constant model = 7.52e+03 – snow, 1.26e+04 – temperature
with p-value = 0 – both).
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Deseasonalized snow component
Coefficient Estimate Standard error t-statistic p-value

φ0 0.0002 0.1087 0.0018 0.0000
φ1 1.0974 0.0033 331.9910 0.0000
φ2 -0.1046 0.0033 -32.0859 0.0000

Deseasonalized temperature component
Coefficient Estimate Standard error t-statistic p-value

φ0 0.0003 0.0163 0.0193 0.0000
φ1 1.0656 0.0055 193.3800 0.0000
φ2 -0.4423 0.0078 -56.4655 0.0000
φ3 0.1933 0.0089 21.6681 0.0000
φ4 -0.0484 0.0091 -5.3197 0.0000
φ5 0.0231 0.0064 3.5855 0.0000

Table 3: The table presents the estimates of the fitted AR(2) and AR(5) model, respectively, for the deseason-
alized snow and temperature components εt (see equation 2) (Bayesian information criterion = 1.6532e+05 –
snow, 9.3401e+04 – temperature; Anderson–Darling test for normality p-value < 0.0005 – both). The estimates
remained unaffected by the choice between parametric seasonality (see equation 1) and non-parametric estimation
of the seasonal effect (see relevant discussion in Section 3.1).

S0 Strategy S1 S2 S3 S4

15cm

S 0.92 1.07 0.92 1.12
S, T 0.92 1.06 0.93 1.15
R 0.96 1.07 0.96 1.05
CS 0.91 1.08 0.90 1.25

30cm

S 0.80 0.99 0.81 1.12
S, T 0.80 0.98 0.81 1.10
R 0.98 1.05 0.96 1.07
CS 0.82 1.09 0.85 1.25

50cm

S 0.92 1.08 0.87 1.28
S, T 0.87 0.97 0.85 1.21
R 0.98 0.96 0.98 1.04
CS 0.85 1.06 0.91 1.26

Table 4: The table presents the multipliers MSi (see equation 7) for different initial levels of snow S0 =
15, 30, 50cm, and hedging strategies in scenarios Si, i = 1, . . . , 4, obtained by stressing the coefficient param-
eters of snow level and temperature in the regression model of the number of visitors (see equation 3). In details:
S1 = (α1 − 3s1, α2 − 3s2), S2 = (α1 + 3s1, α2 − 3s2), S3 = (α1 − 3s1, α2 + 3s2), S4 = (α1 + 3s1, α2 + 3s2).
Contract parameters: ticket price c = e29.75; option price markup m(S) = m(S,T ) = m(R) = m(CS) = 10%;
K(L,T ) = −6℃, K(U,T ) = +4℃.
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Figure 1: Snow and temperature seasonality. The figure presents (a), (c) the fitted deterministic seasonality
component (see equation 1) versus the average snow level / temperature for each month; (b), (d) the scatterplot
of deseasonalized components using parametric versus non-parametric seasonality.
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Figure 2: AR snow and temperature residuals autocorrelations. The figure presents the sample (partial) autocor-
relation function of AR(2) snow residuals and AR(5) temperature residuals, ηt.

26



Figure 3: Distributional characteristics of AR snow and temperature residuals. The figure presents (a)–(b) the
empirical densities of the snow and temperature residuals, ηt, after fitting, respectively, the AR(2) and AR(5)
models to the deseasonalized components (see equation 2) against a normal density (indicated by the continuous
plot); (c)–(d) the QQ plots of the quantiles of the residuals against the theoretical quantile values from the
standard normal distribution (the plot appears linear if the distribution of the residuals is normal); (e)–(f) the
time plot of the residuals for the period 1 November 1959 to 30 September 2016.
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Figure 5: Statistics of visitor numbers. The figure presents the mean and standard deviation of the projected daily
numbers of visitors for the ski season 1 November to 30 April, for different initial levels of snow S0 = 15, 30, 50cm.

30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

Figure 6: Implementation of “100-days” rule for snow reliability. The figure presents the probability estimates of
having different specified minimum snow covers for at least 100 days from 1 December until 15 April, for different
initial levels of snow.
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(a) S0 = 15cm (b) S0 = 30cm

(c) S0 = 50cm

Figure 7: Analysis of revenues over season. The figure presents the cumulative percentage of total revenues over
the ski season against the cumulative percentage of days, for different initial levels of snow S0 = 15, 30, 50cm.
Note that the top red solid line indicates the revenue of the busiest 10% of the days; the bottom red solid line
indicates the revenue of the least-busy 50% of the days.
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(a) S0 = 15cm
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(b) S0 = 30cm
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(c) S0 = 50cm
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Figure 8: Optimal hedges. The figure summarizes the different optimal hedges, for different initial levels of snow
S0 = 15, 30, 50cm. Contract parameters: ticket price c = e29.75; option price markup m(S) = m(S,T ) = m(R) =
m(CS) = 10%; K(L,T ) = −6℃, K(U,T ) = +4℃.
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(a) S0 = 15cm
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(b) S0 = 30cm
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(c) S0 = 50cm
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Figure 9: Hedging effectiveness. The figure summarizes the effectiveness of the different optimal hedges, for
different initial levels of snow S0 = 15, 30, 50cm. Contract parameters: ticket price c = e29.75; option price
markup m(S) = m(S,T ) = m(R) = m(CS) = 10%; K(L,T ) = −6℃, K(U,T ) = +4℃.
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Figure 10: Impact of spatial basis risk on hedging effectiveness. The figures exhibit for different initial levels of
snow S0 = 15, 30, 50cm the optimal hedging effectiveness level H∗ for the reference case identified in Figure 9.
Error bars indicate the range between the largest and smallest optimal values ofH∗Si

, with S1 = (α1−3s1, α2−3s2),
S2 = (α1 + 3s1, α2− 3s2), S3 = (α1− 3s1, α2 + 3s2), S4 = (α1 + 3s1, α2 + 3s2). Contract parameters: ticket price
c = e29.75; option price markup m(S) = m(S,T ) = m(R) = m(CS) = 10%; K(L,T ) = −6℃, K(U,T ) = +4℃.
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