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Abstract

Mammals perform a multitude of well-coordinated orofacial behaviors such as breathing, sniffing,

chewing, licking, swallowing, vocalizing, and in rodents, whisking. The coordination of these

actions must occur without fault to prevent fatal blockages of the airway. Deciphering the

neuronal circuitry that controls even a single action requires understanding the integration of

sensory feedback and executive commands. A far greater challenge is to understand the

coordination of multiple actions. Here we focus on brainstem circuits that drive rhythmic orofacial

actions. We discuss three neural computational mechanisms that may enable circuits for different

actions to operate without interfering with each other. We conclude with proposed experimental

programs for delineating the neural control principles that have evolved to coordinate orofacial

behaviors.

Neural control of the mammalian face and mouth

It has long been postulated that there is a hierarchical control structure for motor acts in the

nervous system1, 2. Individual motor “actions”, or “primitives”3 can be executed singly or

arranged in nested groups to form more complex “behaviors”. The nature of the interactions

among the neural circuits that generate these actions and behaviors has been a topic of long-

standing interest to neuroscientists. Interactions between different actions are unavoidable in

the mammalian face and the mouth, which contain sophisticated motor plants that serve a

variety of basic physiological functions. These functions include breathing, nutrient

ingestion, active sensation, and communication. Effective breathing, for example, requires

orofacial movements that maintain upper airway patency4, while nutrient ingestion requires

chewing, licking, lapping, suckling, and swallowing. Sensory exploration also involves

licking and chewing for taste, as well as fast breathing, or “sniffing”, for smell. In rodents,
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“whisking” of the mystacial vibrissae is used for touch5, 6. In humans and some other

mammalian species, specialized orofacial movements produce vocalizations or speech.

These actions, which are central to mammalian life, must be coordinated with a high degree

of precision to prevent blockages of the airway and other maladaptive interactions. For

example, the feeding process (eating, drinking and swallowing) involves spatiotemporally

coordinated activities of more than 26 pairs of muscles and five cranial nerves to ensure

proper breakdown of food, transfer of food or liquid bolus, and safe swallowing7. Consistent

with the notion that such precise coordination represents a computationally demanding

function of the nervous system, defects in orofacial coordination are prominent symptoms of

many neurological and neurodegenerative diseases. In Parkinson’s disease for example,

impaired coordination of breathing and swallowing contributes to dysphagia (e.g. difficulty

in swallowing) and respiratory impairment8, 9, which form the leading cause of aspiration

pneumonia and death in these patients10.

How does the nervous system coordinate the activities of different orofacial actions such as

chewing, swallowing and breathing? To answer this question it is first important to note that

many mammalian orofacial behaviors involve periodic, or “rhythmic” movement. In fact

rhythmicity characterizes some of the most basic, evolutionarily conserved types of

movements, such as respiration, digestion, and many forms of locomotion. Considerable

insight into the general problem of coordination among different rhythmic movements is

addressed in the pioneering work of von Holst, which surveys the different types of

coordinated fin movements in swimming teleost fish11. Like swimming, basic rhythmic

orofacial movements are thought to depend on the presence of “central pattern generators”

(CPGs) which could be implemented by small networks of neurons in the brainstem. In this

review, we evaluate evidence for three possible mechanisms by which coordination both

within and among orofacial actions can occur: (1) local interactions between potentially co-

active circuits (CPGs) ensure their coordination, (2) a central “executive” command system

arbitrates the execution and amplitude of different actions, and (3) peripheral feedback

ensures the appropriate timing between different muscle groups (Fig 1). We believe studies

of the brainstem may teach us general lessons about how nervous systems deal with

computations that can be performed autonomously but then must interact at times.

Coordination of orofacial behaviors with breathing

Orofacial behaviors typically involve functions that affect the upper airway and therefore

must be coordinated with breathing. The nature of this coordination constrains the

organization of the neural circuits which control these behaviors. Rhythmic ingestive

behaviors occur at frequencies that are faster than the 1 to 2 Hz frequency of basal

respiration in rats. Chewing and mature suckling movements occur at approximately 4 Hz12,

and rhythmic licking at 5 to 7 Hz13. Rhythmic activities in the trigeminal (V), facial (VII),

hypoglossal (XII), and respiratory (cervical) nerve rootlets can be elicited via bath

application of NMDA in isolated brainstem preparations, suggesting that the brainstem

alone is sufficient to generate rhythmic orofacial actions14, 15. For such preparations, it has

further been proposed that the slower breathing rhythm can reset the phase of the faster

licking/suckling rhythm15 (Fig 2a). Indeed, in behaving animals it appears that rhythmic

licking and breathing are coordinated despite the difference in their frequencies16 (Fig 2b).
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With regards to rhythmic exploratory behaviors, whisking and sniffing have similar

frequencies of 5–10 Hz and have been reported to occur in a phase-locked, one-to-one

manner in rodents. Specifically, inspiration during sniffing is synchronous with vibrissa

protraction, as first described by Welker in rats5. These behaviors involve the use of

common muscles in the snout4, 17, and their robust one-to-one coordination suggested that

they might depend on a common rhythm generator. Since Welker’s initial qualitative

observations, synchronous sniffing and whisking has been more completely described18, 19

and quantified20, 21 in a number of subsequent studies in rats. There is also evidence that

high-frequency sniffing and whisking are phase locked in mice20; however, one study

reports a lack of such coordination in this species22. Nonetheless, all of the recent studies of

whisking behavior found that whisking, like licking, can also occur during basal

respiration20–22. The separable timing of the whisking and basal breathing motor outputs

indicates that these actions are paced by separate rhythm generators (Fig 2c). During basal

respiration, the slow breathing rhythm resets the faster vibrissa protraction rhythm, while

vibrissa retraction is controlled by the breathing rhythm directly. These results suggest a

hierarchical organization in which the breathing rhythm influences the whisking rhythm but

not vice versa20. This organization is consistent with the aforementioned results from

isolated brainstem preparations that elicit rhythmic hypoglossal outputs14, 15. However, it

remains to be determined whether this hierarchical organization extends to other orofacial

behaviors in behaving animals.

While breathing may exert influence over some orofacial rhythms, transient events may call

for a temporary cessation of breathing that overrides the importance of supplying the body

with oxygen. For example, noxious stimuli that may damage the airway can trigger a

cessation of breathing and a corresponding pause of the respiratory patterning elements in

the medulla23. Similarly, swallowing triggers a closure of the epiglottis to prevent clogging

of the airway, and it appears to modify respiratory and chewing motor outputs24, 25 (Fig 2d).

This hierarchical control between swallowing, breathing, sniffing, chewing, licking, and

whisking must be reflected in the interactions among the neural circuits that generate these

actions. Thus, we now turn our discussion to these putative brainstem neural circuits.

Central pattern generators for breathing, chewing, licking, and swallowing in the brainstem

A central pattern generator (CPG) is operationally defined as a small network of neurons, or

even a single neuron, whose activity can generate specific movements with correct timing

and sequences in the absence of sensory feedback26, 27. Various studies have suggested

brainstem central origins for rhythmic whisking, chewing, and licking. Whisking, for

example, can be generated in the absence of olfactory or trigeminal sensory input, and also

after removal of the cortex5, 18, 28, 29. Similarly, chewing30, 31, licking32, 33, and breathing34

can occur without proprioceptive feedback, and without descending input from cortex35.

The major circuits that underlie the generation of rhythmic orofacial actions, including their

putative CPGs, are thought to be located in the pons and medulla of the brainstem. These

regions contain both the primary sensory input nuclei (Fig 3a) and the final motor output

nuclei (Fig 3b). Detailed descriptions of the main functions of the cranial motor nuclei (V,

VII, IX, X, and XII) in driving each of the different orofacial behaviors are provided in Box

1.
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(i) Locations of central pattern generators for breathing

The best characterized brainstem CPG in the mammalian nervous system is the circuitry in

the ventral respiratory column that controls breathing42, 43. The core neural circuitry that

paces rhythmic breathing is located in the pre-Bötzinger complex (pre-BötC), a small region

in the medulla ventral to the nucleus ambiguus. Specific populations of glutamatergic cells

in the pre-BötC are both sufficient44, 45 and necessary46, 47 to generate the inspiratory

rhythm. The pre-BötC is interconnected with the parafacial respiratory group (pFRG), a

region that has been shown to control active expiration48, 49 (Fig 3c). Since sniffing is part

of the normal breathing behavior, it is presumed that pre-BötC also participates in the

generation of sniffing20, though the exact circuit mechanism by which the higher

frequencies for sniffing are generated remains unknown19. Similarly, the pre-BötC is likely

to be the key CPG for upper airway control during breathing, and is also involved in other

breathing-related rhythms such as gasping and sighing50–52. These different respiratory

patterns are likely to involve different neuromodulatory influences50 (Fig 1).

In principle, for rhythmic movements, there could be a separate central rhythm generator

(CRG) that works as a clock, and downstream pattern generators that orchestrate the

periodic motor sequences based on input from the clock. Such CPG architectures have been

proposed for both breathing and locomotion53–55. For breathing, it is thought that neurons in

the pre-BötC generate the rhythm and neurons in the ventral respiratory group drive the

appropriate pools of spinal motoneurons (Fig 3c). However, it has recently been proposed

that the pre-BötC itself contains both rhythm and pattern generating elements (i.e. a separate

CRG and CPG)56. According to this proposal, the pre-BötC generates an internal time-

keeping reference oscillation which can then be sub-divided to generate the fundamental

respiratory drive signal. There is anatomical and physiological evidence to suggest that the

respiratory drive signal is then “broadcast” to multiple CPG elements further

downstream57, 58.

(ii) Putative locations of the CPGs for ingestive and exploratory orofacial behaviors

As a starting point to identify the specific neuronal components of orofacial CPGs, there

have been many efforts to survey “premotor” interneurons that project to motoneurons in

different cranial motor nuclei. Early studies involved injecting classic retrograde neural

tracers into cranial motor nuclei to directly label neurons projecting to those nuclei59, 60.

Later, replication competent pseudorabies or rabies viruses were injected into muscles of

interest, and as the viruses spread retrogradely across synapses, they labeled both pre-

motoneurons and neurons oligosynaptically connected with motoneurons61, 62. Most

recently, the use of glycoprotein-deleted deficient rabies viruses (ΔG-rabies) in combination

with genetic complementation has enabled the selective identification of whisker, jaw, and

tongue pre-motoneurons36, 38. In contrast to earlier techniques, this use of ΔG-rabies allows

for transsynaptic retrograde labeling of only pre-motoneurons via intramuscular injection.

These various tracing studies have identified locations of various orofacial pre-motoneurons

in the brainstem (Fig 3c). Details of the anatomical locations of key groups of putative pre-

motoneurons are summarized in Box 2.
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The locations of pre-motoneurons arising from these tracing studies have been used to guide

functional observational and manipulation studies to identify orofacial CPGs. Using fictive

rhythmic chewing preparations in guinea pigs, it was suspected that the minimal pattern

generating circuitry for mastication included the reticular formation between the rostral

extent of the V nucleus and the caudal extend of the VII nucleus65, 66. This work led to the

hypothesis that chewing involves a CRG in the oral division of the medial gigantocellular

reticular formation (Gi/GcO) that provides input to a more caudal CPG region in the

parvocellular reticular formation (PCRt) to coordinate the timing between jaw opening and

jaw closing67. Other experiments demonstrate that neurons in the dorsal principal trigeminal

nucleus (dPrV) burst rhythmically during fictive chewing in anesthetized and paralyzed

rabbits68 and raised the possibility that the chewing CPG is in the dPrV69. In contrast to both

these possibilities, a more recent study by Travers and colleagues demonstrates that

inactivation of the PCRt and the intermediate reticular formation (IRt) between the VII and

XII nuclei diminishes chewing activity and food intake in alert rats, whereas injections into

Gi/GcO have no effect70. This study suggests the alternative possibility that the chewing

CPG may be located more caudally in the medulla, and that the role of Gi/GcO may be to

relay cortical commands to this medullary CPG rather than to generate the chewing rhythm

itself (Fig 3d). Nonetheless, differentiating between these hypotheses will require

manipulations that demonstrate sufficiency and necessity of these various regions in alert,

behaving animals.

Like chewing, rhythmic licking involves centrally generated, coordinated actions of the jaw

opener, tongue protruder, and tongue retractor muscles13, 71. Interneurons that are

presynaptic to XII motoneurons are concentrated in the IRt. This region is dorsomedial to

the pre-BötC and ventrolateral to the XII motor nucleus58, 72. Extracellular recording found

that the spiking activity of units in this region is phase-locked to rhythmic licking73, and

infusion of an inhibitory agonist into the IRt between the VII and XII nuclei blocks

licking74. Further, injection of a mu-opioid agonist in the same region alters the frequency of

licking75. Thus the CPG for licking, and possibly the CRG as well, is thought to be located

in the IRt (Fig 3d). This region overlaps with the IRt region necessary for chewing,

consistent with the fact that both behaviors require coordinated jaw and tongue movements.

In addition to its role in the control of ingestive orofacial movements, the IRt has been

implicated exploratory movement. A recent study provides experimental evidence that the

CPG for whisking is located in the ventral part of the IRt (vIRt) near nucleus ambiguus and

dorsal-medial to the pre-BötC20 (Fig 3d). Units in this region phase-lock to rhythmic

whisking, are necessary for its production, and project to the VII motoneurons that control

vibrissa protraction. Local application of a glutamatergic agonist near this region produces

sustained rhythmic bursts of spikes in the vIRt and corresponding phase-locked rhythmic

vibrissa movements. All told, it appears that the brainstem contains CPGs for breathing,

chewing, suckling, licking, swallowing, and whisking, with one on each side (left and right

sides), total of ten CPGs, located within or nearby regions of the medullary IRt. How these

CPGs interact to coordinate various orofacial behaviors is considered below.
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The “breathing primacy” hypothesis for coordinating multiple orofacial

actions

It is likely, as noted above, that there is a hierarchical control structure which ensures that

orofacial behaviors do not interfere with each other. One possibility is that many of these

actions are paced by the breathing CPG. Indeed, the whisking20 and licking rhythms14, 15

appear to be similarly reset by the breathing rhythm (Fig 2a–c); however the case of

chewing remains equivocal in this respect25. What is the neural circuit basis for such

interactions between rhythmic actions? We note that breathing is robustly represented

throughout the medulla42 near the sensory, motor, and premotor pattern generating nuclei

for these other actions (Fig 3c,d). The pre-BötC has widespread projections throughout the

medulla—these include extensive projections through the IRt where the putative CPGs for

other orofacial rhythmic movements are located20, 58, and even directly to the VII36 and XII

motor nuclei themselves. In particular, the projections of somatostatin (sst) expressing

neurons in the pre-BötC have been mapped using AAV viral vectors that express GFP under

the control of the sst promoter57. These specific pre-BötC neurons, which are known to be

part of the respiratory CPG network46, 76, also have extensive collateral arborizations in the

IRt as they extend dorsomedially towards the XII nucleus. Other work shows that pre-BötC-

generated rhythmic inspiratory drive directly modulates the activities of XII motoneurons

and interneurons directly presynaptic to XII motoneurons (premotor neurons)58, 77, 78, again

suggesting that breathing paces other orofacial rhythms. In fact, in the in vitro isolated

brainstem preparation, at resting stage, the rhythmic respiratory activities (1Hz) in the V,

VII, XII nerve rootlets can be recorded15, 79, whereas faster rhythmic activities appear only

after the application of NMDA15.

Is breathing at the top of the hierarchy of control? The argument against this idea notices

those instances in which normal breathing may be interrupted by more immediately critical

influences, such as swallowing25, 80, 81 (Fig 2d) and sighing51. Indeed, when the breathing

CPG is inhibited following the occurrence of these activities, Motoneurons are gated off and

breathing behavior is suppressed. However the occurrence of sighing and swallowing events

are pegged to the preceding respiratory cycle25, 81, 82, at least in the presence of normal

inhibitory synaptic transmission51, and it is unknown whether rhythm-generating

mechanisms internal to the pre-BötC continue under conditions in which respiratory output

is suppressed56. Thus, a much more detailed and accurate understanding of breathing

“rhythm” and “pattern” generators is needed to determine the nature of these apparent

interdependencies. It will be exciting to examine the connectivity and functional interactions

between pre-BötC and other orofacial CPGs.

Interactions among non-respiratory CPGs and multifunctional neurons

Taking a page from the vertebrate and invertebrate locomotion CPGs, in which the left and

right CPGs of the same segment, as well as the CPGs between different segments, have

reciprocal connections and thus interact to coordinate different muscles during locomotion,

it is conceivable that the different non-respiratory orofacial CPGs also interact to coordinate

oromotor activities. The simplest form of interaction is bilateral synchrony as seen in

chewing, which is known to be dependent on commissural axons crossing the midline66,
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suggesting that the equivalent CPGs on the two sides might interact through midline

crossing axons in a manner similar to the breathing CPG47.

Is there evidence supporting the interactions of CPGs for the more intricate coordination of

multiple groups of muscles such as those observed for feeding behaviors? For example,

during rhythmic chewing of food, the tongue positions food between the surfaces of the

teeth, while the jaw moves the teeth to break down the food; hence the jaw and tongue move

at the same frequency. The tongue-protruding muscle and the jaw-opening muscle are

generally active at the same phase in the chewing cycle, but the activities of the tongue-

retracting and the jaw-closing muscles are active at the opposing phase (so one does not bite

one’s own tongue). It is thought that the CPGs controlling tongue motoneurons (XII) and the

CPGs controlling jaw motoneurons (V) interact with each other in a sophisticated manner to

co-activate the synergistic muscle groups while reciprocally inhibiting the antagonistic

muscle groups. However, this remains an untested hypothesis, because the precise neuronal

populations comprising the different CPGs remain largely unknown.

Nonetheless, there is anatomical and physiological evidence to support the existence of

neurons that take part in multiple orofacial CPGs. As described above, many labeled pre-

motoneurons were found to be distributed rostrocaudally through IRt and PCRt where CPGs

for different orofacial actions are thought to reside83 (Fig 3c). Injecting different retrograde

tracers into two different orofacial motor nuclei suggests the existence of IRt neurons

projecting to both motor groups59, 84–86. A recent monosynaptic rabies-mediated tracing

study further shows that pre-motoneurons innervating tongue-protruding motoneurons

simultaneously innervate jaw-opening and lip-lowing motoneurons38, confirming the

presence of interneurons with appropriate multi-motor targets. Chronic neuronal recording

studies in the brainstem reticular formation also discovered “multifunctional” neurons, e.g

neurons showing responses during both swallowing and vocalization87 or neurons

responding during respiration, vocalization, and swallowing88. Likewise, some neurons

located laterally to the hypoglossal nucleus were found to be active during both masticatory

movements and swallowing89. A large proportion of neurons in the caudal IRt, as well as

some within the XII motor nucleus, were responsive during both licking and swallowing,

and subsets of them also show activities associated with gape responses73, 90. Together, the

anatomical and electrophysiological studies suggest chewing, licking, swallowing, gaping

may share neural substrates in brainstem. These studies raise the possibility that

multifunctional CPGs control multiple orofacial actions; or alternatively, that different CPGs

may recruit different populations of multi-target pre-motoneurons to coordinate the activities

of different motoneurons38.

Regulation of orofacial behaviors by higher-order brain regions

(i) Top-down activation of orofacial actions

While the pattern generating circuits for chewing, licking, sniffing, and whisking are located

in the brainstem, their activity is most likely gated by higher-order brain regions, including

the cortex, cerebellum, basal ganglia, and superior colliculus. In support of this idea,

stimulation of a region now called the “cortical masticatory area” produces rhythmic,

coordinated jaw-tongue movements that occur at a fixed frequency of 4 Hz irrespective of
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the stimulation frequency91. These “fictive chewing” movements appear to be similar to the

temporal sequences of jaw and tongue muscle activation during natural chewing and do not

depend on sensory feedback. Likewise, rhythmic whisking92 can be activated by electrical

stimulation of the motor cortex, and tongue protrusions during rhythmic licking are

dependent on frontal cortical areas in a sensory detection task in which mice were trained to

lick for a reward93. Cortical outputs from these regions project directly to the pons and

medulla near where the rhythm and pattern-generating elements are located36, 72, 94–96.

In addition to cortex, the cerebellum and basal ganglia were also found to activate and

modulate some orofacial actions. For example, stimulation of the deep cerebellar nuclei in

monkeys results in tongue movement97. Removal of the cerebellum results in slightly slower

licking rates in rodents but does not appear to affect the generation of either rhythmic

licking98 or coordinated whisking and sniffing18. Together with observations that the deep

cerebellar nuclei project to orofacial-related regions of the medullary reticular formation and

spike in phase with licking99, these results may suggest that the cerebellum plays a role in

modulating rather than patterning orofacial behaviors. Similarly, inputs from the basal

ganglia have been shown to influence chewing and licking either directly or through the

superior colliculus, or through both100. Pharmacological manipulations of basal-ganglia

circuitry101 or dopamine receptors102 can induce rhythmic jaw movements in anesthetized

rodents. Dopaminergic activation of jaw movements depends on the superior colliculus,

whereas electrical stimulation of cortex does not, and it has been proposed that the basal

ganglia may play a specific role in arbitrating between different orofacial actions103 (Fig 1).

All told, there appear to be multiple independent pathways to activate brainstem CPGs.

(ii) Top-down control of movement amplitude

There is evidence from multiple behaviors to suggest that in addition to activating brainstem

CPGs for orofacial behaviors, the central nervous system has control over the amplitude of

the movements that is independent of the rhythm generating circuitry. Behavioral evidence

suggests that rats modulate the range of whisking on much slower time scales than the

oscillatory rhythm, analogous to the separate control of frequency and amplitude in AM

radio104. Endocannabinoid agonists and antagonists affect the range of whisking without

affecting the frequency105, and spiking activity in primary motor cortex preferentially

reports this slowly varying component104, 106, 107. Serotonergic and other modulatory inputs

may also serve to control the amplitude of whisking108–110 (Fig 1). Similarly the generation

of the licking rhythm is independent of the amplitude of tongue muscle contractions71, 72,

and regulation of tonic jaw-force has been shown to depend on inputs from the

cerebellum111. Together the results suggest that control of rhythmic orofacial behaviors may

involve the combination of a fast oscillatory drive signal controlled by a brainstem CRG,

and slower amplitude and set-point modulation controlled by one or more independent

mechanisms. These inputs may converge on brainstem motoneurons or on specific pre-

motoneurons, such as those located outside the CPG, and those in superior

colliculus36, 63, 99, 112.
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Role of sensation in orofacial actions

Although basic rhythmic motor patterns are controlled by CPGs, they must be modulated or

even initiated by external stimuli. Sensory inputs can mediate “reflex” motor outputs. More

than 20 types of mono-synaptic and oligosynaptic orofacial reflexes have been identified

and studied113. These hard-wired circuits allow sensory inputs to coordinate the actions of

multiple muscles to produce stereotyped behaviors, and thus constitute the lowest level of

orofacial control.

Let us first consider whisking: At a reflex level, vibrissa contact with an object activates a

brainstem-mediated positive feedback circuit, causing the vibrissa to “follow through” with

the whisk and apply pressure to activate mechanoreceptors37. On longer time scales, contact

can cause a decrease in vibrissa velocity to increase the time in which the vibrissa remains in

contact with the object114. These vibrissa reflexes may serve to enhance the animal’s ability

to identify and characterize external tactile stimuli in the environment.

Let us next consider the swallowing process: through the movements of jaw and tongue

muscles, a food or liquid bolus is formed and then transferred to the back of the mouth to

reach the pharynx. The pharyngeal muscles transport the bolus further down to the

esophagus, and at the same time laryngeal muscles close the airway. Finally, laryngeal

muscles carry out peristaltic transport of the bolus through the esophagus. During these

processes, different muscles are activated in a sequential manner81, 115–117. Sequential

activation of different sensory afferents by the moving food bolus can trigger sequential

sensorimotor reflexes, which are thought to play an important role in the transitions between

the different ingestive motor patterns. In addition to sensory-triggered reflexes, the rates and

patterns of jaw and tongue movement depend on trigeminal sensory feedback118, which

reports the qualities of the food or liquid being ingested13, 119. This modulation is thought to

be mediated by primary sensory proprioceptors in Vmes which monitor resistance to the

force applied by the jaw120.

In contrast to primary sensory neurons, we have only begun to discover which interneurons

in the brainstem mediate sensory modulation of orofacial motor activities. Recently, several

groups of vibrissa pre-motoneurons in the brainstem trigeminal complex were identified

using deficient rabies-mediated monosynaptic tracing36. These neurons likely receive direct

sensory inputs and thus are candidates to mediate various di-synaptic “sensory input-

interneuron-motoneuron” circuits that may modulate whisking, e.g., foveal whisking and

whisking reflexes. It is important to note, however, that sensory modulation of rhythmic

behaviors needs not necessarily be di-synaptic. For example, neurons located in Gi and

LPGi (Fig 3c) are known to respond to sensory stimuli even though sensory afferents do not

directly project to these regions. Furthermore, many motor cortical neurons were found to

project to these regions in various tracing experiments36, 67, 96 and therefore these neurons

are candidates for integrating both top-down and sensory inputs.
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Concluding remarks and future directions

Orofacial actions and behaviors are mediated by a number of specific circuits in the

brainstem. The common features of these circuits suggest some tantalizing organizational

principles of the brainstem jungle of neural networks. Specifically, the brainstem reticular

formation, and in particular the IRt, appears to contain CPGs and multifunctional neurons

for various orofacial movements. Nonetheless, conclusive evidence for the exact locations

and cell types comprising CPGs and CRGs and for most of the orofacial movements is still

lacking. Future studies which can identify such cell populations will provide a window into

some of the most robust and fundamental computations performed in the nervous system.

We began by proposing three candidate computational mechanisms that could underlie the

coordination among different orofacial actions (Fig 1), and presented evidence that the

brainstem neural circuits mediating these actions use each of these mechanisms in some

form or another. However, much work is needed to clarify the specific populations of cells

that carry out these functions. The respiratory CPG that is comprised of neurons in the pre-

BötC makes extensive projections throughout the IRt and could mediate resetting of

rhythmic orofacial movements; however, direct anatomical and functional evidence for

inputs from pre-BötC neurons to each group of CPG neurons for orofacial actions remains to

be acquired. Another unsolved question is to identify key groups of neurons that mediate the

gating and amplitude control of different orofacial actions. Specifically, how much of this

regulation is mediated by such "top down" versus “lateral” interations (Fig 1)? In the cases

of whisking and chewing, neurons located in LPGi are good candidates to link motor

cortical inputs to motoneurons and perhaps to pre-motor CPG neurons. Precise functional

manipulations of different pre-motoneuron and interneuron populations, such as LPGi, and

examination of their synaptic inputs and outputs will help determine whether they are the

“gate keepers” for episodic orofacial movements. Finally, the details of sensory inputs that

mediate feedback, feedforward, or reflex control of motoneuron activities, including the

coordination of multiple groups of motoneurons in complex orofacial behaviors, are

currently lacking. Modern genetic and circuit analysis tools will be crucial to the above

studies. Evidence of particular groups of neurons with specific circuit functions is likely to

come from studies in which molecularly- defined cell populations in the medulla121 can be

targeted and manipulated in vivo. Such manipulations have already proven invaluable in

parsing other motor circuits in the spinal cord122–124.

The rich physiology of orofacial movements affords us the opportunity to delineate the

various brainstem neural circuits that generate the diverse motor programs and coordinate

motor sequences. Ultimately, such studies will lead to the identification of a set of

generalizable “neural modules” for building motor control programs. Different basic motor

actions can be created by assembling the defined basic “modules” using different

configurations. We suggest that coordinated and complex behaviors can be generated by

linking these basic actions into a hierarchy with a bus-like architecture in which signals from

the breathing CPG in the pre-BötC are projected to different "modules", including premotor

nuclei that lie across the brainstem reticular formation (Fig 3d).
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BOX 1. Anatomy of the brainstem sensory neurons, motoneurons, and
general sensory feedback circuits

Vth Ganglion (VG): contains trigeminal sensory neurons that detect and transmit

somatosensory stimuli from the face and mouth to the brainstem. Neurons in VG have

extensive collateral projections to the brainstem trigeminal complex that span the entire

rostral-caudal axis of the hindbrain (Fig 3a).

Trigeminal mesencephalic nucleus (Vmes): contains proprioceptive sensory neurons

that innervate muscle spindles of the jaw muscles as well as periodontal ligaments (Fig

3a). Vmes neurons project directly to cranial motoneurons (mainly trigeminal) to provide

monosynaptic proprioceptive feedback to these motoneurons.

Brainstem trigeminal complex: receives VG sensory inputs (the blue-shaded area in Fig

3a). This complex has traditionally been divided into four subnuclei: caudalis (SpC),

interpolaris (SpI), oralis (SpO), and principalis (PrV). Sub-populations of neurons within

each of the four subnulcei are believed to relay the sensory feedback information onto

motoneurons36–38.

Nucleus tractus solitarii (NTS, or solitary nucleus): receives inputs from taste-related

sensory afferents (Fig 3a). Interneurons in NTS relay taste information to hypoglossal

nucleus, as well as to the medullary reticular formation, to regulate reflexive oromotor

behaviors3940.

Motoneurons that control orofacial behaviors are located in four main nuclei: the

trigeminal (V), facial (VII), ambiguus (NA, which give rise to IXth and Xth cranial

nerves), and hypoglossal (XII) motor nuclei that span the pons and medulla (Fig 3b).

V motoneurons innervate jaw muscles, such as the masseter, that break down food

during chewing.

VII motoneurons control multiple groups of muscles on the face, including muscles that

drive whisking and sniffing actions41.

XII motoneurons innervate tongue muscles such as those used for licking.

NA motoneurons supply muscles involved in swallowing and vocalization (through the

IXth and Xth cranial nerve).
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BOX 2 Summary of the locations of brainstem pre-motoneurons and their
target motoneurons

Intermediate reticular formation (IRt) contains large numbers of putative pre-

motoneurons for different cranial motoneuron pools, with neurons at different dorsal-

ventral and rostral-caudal positions in the IRt providing inputs to different

motoneurons36, 59, 6038 (Fig 3c).

Pre-Bötzinger (pre-BötC), Bötzinger complex, parafacial respiratory group (pFRG)
contains small number of neurons pre-synaptic to VII and XII motoneurons36,20, 58 (Fig

3c).

Parvocellular reticular formation (PCRt), as well as the caudally located medullary

reticular formation, contains pre-motoneurons for different cranial motoneuron pools. In

particular, a large number of neurons in the rostral PCRt were found to be presynaptic to

V motoneurons62 (Fig 3c).

Gigantocellular (Gi) and lateral paragigantocellular (LPGi) reticular formation was

reported to contain sparsely labeled pre-motoneurons for V, VII, and XII motoneurons in

various tracing studies (Fig 3c).

Other sources of pre-motor inputs not shown in Fig 3c: Pre-motoneurons were

observed in nuclei receiving the corresponding sensory afferent inputs, i.e., in Vmes,

NTS, the brainstem trigeminal complex. All motoneurons receive varying extents of

inputs from the superior colliculus, the Kolliker-Fuse and/or parabrachial area, and the

midbrain reticular formation near the red nucleus. Motor cortex provides limited and very

sparse direct presynaptic inputs onto cranial motoneurons36, 63, with the exception of the

vocal motoneurons, located in the ambiguus nucleus, which may receive more extensive

direct cortical inputs64.
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Highlights

1. Mammalian face and mouth contain sophisticated motor plants that produce

diverse orofacial behaviors.

2. Brainstem contains key neural circuits that drive and coordinate different cranial

motoneurons to produce various orofacial actions.

3. All orofacial actions are coordinated with breathing.

4. Three major neural computational mechanisms coordinating orofacial actions

are discussed.
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Figure 1. Schematic of the possible circuit arrangements for execution of different actions using
a shared motor plant
Muscles M1 and M2 can both be used in different temporal patterns in two different actions,

A and A’. Possible circuit interactions include: (1) CPGs interact and coordinate each other,

(2) higher order centers (D) gate, or “select” separate CPGs, and (3) peripheral feedback into

a CPG alters the phase relationship between the muscles. Additionally, various

neuromodulators may act on either the CPGs themselves or their outputs to affect their

frequency or amplitude.
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Figure 2. Coordination between breathing and other rhythmic orofacial actions
(a) An isolated brainstem preparation in which rhythmic bursts of fictive motor activity were

induced via bath application of NMDA (left). Hypoglossal and phrenic motor outputs were

monitored electrophysiologically via the XIIth cranial rootlet and the 5th cervical rootlet,

respectively (black traces, right). The integrated activity of the XIIth rootlet is shown in

green. Phrenic bursts are reported to reset the phase of the faster hypoglossal rhythm.

Adapted from15, 125.
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(b) Simultaneous monitoring of licking (green) and breathing (black) in an alert rat (left and

middle) show that the actions are coordinated (right). The occurrence of a lick is dependent

on the phase of the respiratory cycle. Adapted from16.

(c) Simultaneous monitoring of whisking (red) and breathing (black) in an alert rat (left and

middle) show that the actions are coordinated (right). Protraction and inspiration are upward.

Inspiration is synchronous with protraction on each cycle (top middle) during sniffing but

only with a fraction of the cycles during basal respiration (bottom middle), as intervening

whisks occur. Rasters of inspiration onset (black) and protraction onset (red) times relative

to the onset of inspiration for individual breath are ordered by the duration of the breath

(right). At high respiratory rates, whisking and breathing show a 1:1 temporal relationship,

while at lower breathing rates there are additional, intervening whisks between each breath.

Adapted from20.

(d) Simultaneous monitoring of chewing (orange), swallowing (purple), and breathing

(black) in an alert rabbit (left and middle) reveal the nature of their coordination. While

breathing and chewing appear to be asynchronous, swallowing affects both rhythms. The

occurrence of a swallowing movement delays subsequent breathing and chewing cycles.

Adapted from25.
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Figure 3. Anatomy of neural circuits involved in generating and coordinating orofacial actions
(a) Three-dimensional reconstruction of the pons and medulla, which contain regions that

receive primary somatosensory inputs. Cutaneous inputs from the face innervate the

trigeminal sensory nuclei (blue). Proprioceptive innervation of the jaw muscles arises from

cells in the trigeminal mesencephalic nucleus (pink). Gustatory inputs from the tongue

innervate the solitary nucleus (NTS). The structure is shown in the sagittal (left), horizontal

(middle) and frontal (right planes). Light transparent structures correspond to the motor

nuclei in panel b.
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(b) The same reconstruction as in panel a, showing the pools of cranial motoneurons that

control the jaws (orange), face (red), airway (yellow), and tongue (green). Conventions are

as in panel a. Light transparent structures correspond to the sensory nuclei in panel a.

(c) The same reconstruction as in panels a and b, showing the approximate locations of

known premotor nuclei to each of the motoneuron pools in panel a. Premotor nuclei are

color coded according to the primary motor nucleus that they innervate. The brainstem is

shown in the sagittal (left) and frontal (right) planes. Breathing-related regions are shown in

black. Abbreviations are as follows: parvocellular reticular formation (PCRt), caudal/rostral

ventral respiratory groups (cVRG and rVRG, respectively), hypoglossal/vibrissa/trigeminal

intermediate reticular formation (hIRt, vIRt, tIRt, respectively), preBotzinger complex (Pre-

BotC), parafacial respiratory group (pFRG), gigantocellular reticular formation (Gi), lateral

paragigantocellular reticular formation (LPGi), and dorsal principal trigeminal nucleus

(dPrV).

(d) The same reconstruction as in panels a–c, highlighting the locations of the putative

neuronal oscillators (marked as “~”) that generate breathing (black), whisking (red), licking

(green) and chewing (orange). Conventions are as in panels a–c. The location of the

chewing oscillator remains unresolved.
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