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Abstract

The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and 

metastasis but also has profound effects on therapeutic efficacy. In the case of microenvironment-

mediated resistance this can involve an intrinsic response, including the co-option of pre-existing 

structural elements and signaling networks, or an adaptive response of the tumor stroma following 

the therapeutic insult. Alternatively, in other contexts, the TME has a multifaceted ability to 

enhance therapeutic efficacy. This review examines recent advances in our understanding of the 

contribution of the TME during cancer therapy and discusses key concepts that may be amenable 

to therapeutic intervention.
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The TME orchestrates tumorigenesis and malignant progression

While cancer was long considered a disease defined and driven by genomic instability, 

chromosomal alterations, and genetic mutations [1], the influence of nonmalignant, stromal 

cells of the TME is now widely appreciated [2,3]. Tumors are complex tissues comprising 

not only malignant cells but also genetically stable stromal cells [4], including endothelial 

cells, fibroblasts, and immune cells among many others (Figure 1), in addition to the 

extracellular matrix (ECM) they produce. As in healthy organs, the various cellular 

compartments of the TME are not mere bystanders, but instead critically regulate 

tumorigenesis [5]. This extends not only to tumor initiation, malignant progression, and 

metastasis but importantly also to response to therapy. Moreover, the realization that distinct 

stromal cell types in different contexts can exhibit tumor-promoting or opposing tumoricidal 

capacities has further complicated our understanding of cancer biology. While the role of the 

TME during tumorigenesis has recently been reviewed in detail elsewhere [2,3], this review 

focuses on how the TME regulates therapeutic response, a field that has been rapidly 

expanding in recent years. As in the context of malignant progression, the TME exhibits a 

multifaceted ability to influence therapeutic outcome in either a positive or a negative 

manner. Harnessing this expanding knowledge to improve therapeutic response or even to 
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develop new treatment options through normalization and re-education of the TME is 

increasingly within reach. The recent clinical success of immune checkpoint inhibitors 

serves as an illustrative example of this goal. A brief overview of the major components of 

the TME highlighted in Box 1 provides the necessary background to introduce the reader to 

the different concepts contributing to both TME-intrinsic and -acquired/adaptive resistance 

with regard to traditional anticancer therapies, molecularly targeted therapies, and agents 

targeted against the TME itself, which are summarized in Box 2.

Box 1

Major components of the TME

Vasculature

The formation of blood vessels during malignant progression is a critical tumor property 

acquired at an early stage of tumorigenesis [174] and is therefore considered to be a 

hallmark of cancer [1]. The activation of this ‘angiogenic switch’ not only is essential for 

adequate supply of the tumor with nutrients and oxygen, to allow growth beyond a 

certain size, but also facilitates subsequent metastatic spread. Compared with normal 

blood vessels which display a highly organized architecture, the vasculature within a 

tumor typically exhibits anatomical, structural, and functional properties such as aberrant 

recruitment of pericytes, increased vascular permeability, and turbulent blood flow [175]. 

Although angiogenesis can be driven by various molecules, VEGF-A is often considered 

to be the prototypical angiogenic factor in malignant disease. Accordingly, its expression 

is inversely correlated with overall survival in various cancers [176–178]. While tumor 

cells are major contributors of VEGF-A, TME cells represent additional sources [179].

CAFs

CAFs constitute a large proportion of the non-epithelial or stromal cells within the tumor. 

CAFs are considered to be functionally distinct from normal fibroblasts, which can 

inhibit malignant transformation [180,181], as they can support progression of 

premalignant lesions in prostate cancer [182] and enhance metastasis in breast cancer 

[180]. However, CAFs can have tumor-suppressive functions in pancreatic ductal 

adenocarcinoma [34,35]. CAFs are stimulated to proliferate by growth factors and 

cytokines such as TGF-β, FGF-2, and PDGF that are abundant in the TME [183,184]. 

Following activation, CAFs become a major source of secreted growth factors, including 

VEGF-A, which promotes angiogenesis and vascular permeability [179]. Additionally, 

CAFs produce proinflammatory factors that drive leukocyte infiltration [185].

Inflammatory cells

Cells of the innate immune system not only provide an essential nonspecific defense 

against pathogens but also regulate tissue home-ostasis and wound healing [2]. Their 

physiological functions therefore predispose them to play a major role in the 

inflammatory reactions that occur in cancers [5]. Accordingly, many of the immune cells 

within the TME are of myeloid origin and are either tissue resident or recruited by cancer 

cells from the BM and the spleen to enhance their survival, growth, invasion, and 

dissemination [186]. Tumor cells can be nurtured by TAMs through a plethora of signals 
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[187]. Notable examples include a paracrine loop involving EGF/CSF-1 signaling 

between TAMs and tumor cells [188–190] and the activation of WNT signaling in TAMs 

[191,192]. Furthermore, TAMs constitute a major source of proteases, such as cysteine 

cathepsins, that drive cancer progression [193] via regulation of angiogenesis and tumor 

growth [194]. Similarly, TAM-secreted MMPs not only degrade the ECM [195,196], but 

also increase the availability of ECM-bound factors such as VEGF-A [197].

Extracellular matrix

ECM is produced by all of the cell types within the TME, resulting in an intricate fiber 

network that not only provides structural support but also integrates local signals and 

regulates cellular movement, proliferation, and differentiation [84]. While collagens and 

fibronectin provide mechanical strength, proteoglycans contribute growth factor and 

cytokine-binding properties [198]. TME-associated ECM is fundamentally different from 

that of the normal tissue stroma [199] and serves as a guiding scaffold for chemotaxis and 

tumor cell invasion [200]. Paradoxically, increased ECM synthesis [201] and pronounced 

crosslinking of collagen fibers in the malignant stroma further enable tumor cell invasion 

[202]. Deregulation of collagen crosslinking also results in alterations of the 

biomechanical properties of the ECM, significantly increasing tissue rigidity [199,203]. 

Finally, desmoplastic tumor stroma constitutes a physical barrier for drug delivery and 

influences the architecture of the tumor vasculature [30].

Box 2

Therapeutic approaches to treating malignancies

Chemotherapy

Conventional chemotherapy, first introduced into the clinic during the 1940s in the form 

of DNA-alkylating agents and antimetabolites [204], has since been expanded to 

encompass a wide variety of drug classes and combinations thereof and still constitutes 

the mainstay of many systemic drug regimens in solid and hematological malignancies. 

Chemotherapy is often combined with local therapeutic interventions such as surgery and 

RT in either the adjuvant or neoadjuvant setting. The mechanism of action of many 

cytotoxic drugs results from their ability to perturb biological pathways that are required 

for a cell to progress through the cell cycle and maintain its genomic integrity. The major 

downside of this mode of action is its inability to distinguish between malignant and 

normal cells, leading to severe systemic short- and long-term side effects. This extends 

not only to healthy, nonaffected tissues but also to the TME within the tumor. For 

instance, exposure to chemotherapy leads to a general tissue-damage response that 

triggers an influx of inflammatory cells into the TME, which can further drive resistance 

[106,107].

Surgery and RT

Both surgery and ionizing radiation are major cornerstones of most cancer treatment 

approaches. While these modalities are inherently aimed at local control they result in 

local and systemic effects that encompass the TME [205,206]. Especially in surgery, the 

physiological wound-healing response mechanisms exhibit a considerable degree of 
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similarity to the TME [207,208]. A plethora of proliferative and angiogenic factors, many 

of which originate in the stromal compartment, are found to be altered in the serum of 

patients after surgery [209]. Consequently, it has been postulated that the wound’s 

response contributes to the progression of minimal residual disease and distant, dormant 

micrometastases after surgery [210–212].

RT has profound consequences on the TME, beyond its direct cytotoxic effects on the 

tumor cells [206], that can ultimately alter therapeutic responses. Experimental studies 

show a significant difference between the radiosensitivity of GBM cells in vitro versus in 
vivo that can be attributed to the TME [213]. Due to the fact that sufficient oxygenation is 

a major determinant of radiosensitivity, this observation is inherently connected to the 

physical nature of the tumor vasculature in vivo.

Oncogene-targeted therapy

An increasing understanding of the genetic alterations that drive cancer has led to a new 

era of ‘targeted’ therapeutic agents. The prototype for this concept is imatinib mesylate, 

an inhibitor of the fusion tyrosine kinase protein BCR–ABL [214]. For the first time, an 

oncogenic driver could be targeted with specificity and striking efficacy. This proof of 

concept spurred the development of a broad range of TKIs. However, the notion of 

targeted therapy includes not only inhibitors in the form of small molecules but also 

therapeutic antibodies.

One paradigmatic example of these two strategies is the family of di-/oligomeric human 

EGFRs (HERs). EGFR (HER1/ErbB1) is constitutively activated due to a mutation in a 

small subset of non-small-cell lung cancers (NSCLCs), which forms the rationale for 

treatment with EGFR inhibitors such as erlotinib [215] in these patients. Furthermore, a 

large proportion of NSCLC and CRC cases exhibit increased EGFR expression. In CRC, 

the addition of the EGFR-specific antibodies cetuximab or panitumumab confers a 

clinical benefit [216]. However, reliable predictive biomarkers that identify patients most 

likely to benefit from this therapy are not equally well established across different tumor 

types [217]. Modulation of EGFR activity by and within the TME through the provision 

of alternative EGFR ligands might account for the therapeutic effect observed in EGFR-

negative cases [218,219].

Recently, new TKIs have entered the spotlight. One notable example is vemurafinib, 

which inhibits BRAF, a member of the ERK protein kinase pathway that is frequently 

mutated in malignant melanoma [220]. While vemurafinib can have an impressive initial 

response rate [221], this is overshadowed by the emergence of secondary resistance in 

most cases. There is increasing evidence that the TME contributes in part to this 

phenomenon [102,104].

TME-targeted therapy

VEGF-A is a major driver of tumor angiogenesis and therefore the VEGF-A-neutralizing 

antibody bevacizumab can be considered as the first approved therapeutic agent that 

perturbs a key axis of tumor cell–TME crosstalk (Figure 1). Bevacizumab is effective in 

metastatic CRC and NSCLC when combined with conventional chemotherapy [222,223]. 

A similar efficacy was observed with several multi-kinase TKIs (e.g., sorafenib, 
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sunitinib), which target VEGFR2 and other RTKs and are approved for multiple cancer 

types including advanced renal carcinoma.

Currently the most advanced approach to therapeutically utilize the antitumor activity 

within the TME is the blockade of immune checkpoints. This concept has recently had 

considerable clinical success in patients with advanced malignant melanoma. Both the 

inhibition of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) with the antibody 

ipilimumab [224] and the blockade of the programmed death 1 (PD1) receptor via the 

antibody nivolumab resulted in increased overall survival [225] (Figure 1). This effect 

appears to be even more pronounced when the two therapeutic agents are combined 

[226]. Phase III trials investigating whether this can be translated to other malignancies 

such as lung and renal cancer are currently under way. Another promising approach is the 

reprogramming rather than depletion of TAMs via CSF-1R inhibition (Figure 1). The 

feasibility of this concept was recently demonstrated in mouse models of GBM [162] and 

PDA [163] and it will now be critical to investigate whether this reprogramming can be 

similarly achieved in patients.

Therapeutic response is significantly influenced by the TME

Although an increasing number of cancers can be treated successfully if detected at an early 

stage, the presence of disseminated disease or recurrence of the primary tumor still confers a 

poor patient prognosis [6,7]. This is due in part to the current paucity of effective therapeutic 

options in this setting [8]. An initial response to treatment is often followed by disease 

progression, which, accompanied by a diminution of therapeutic options, ultimately leads to 

treatment failure and death from recurrent or metastatic disease [9]. Intriguingly, at least 

some of the traits that promote metastasis appear to be intertwined with resistance to 

chemotherapy [10–12]. In line with a tumor cell-centric view, this lack of a sustained 

treatment response has been largely attributed to either intrinsic or acquired therapeutic 

resistance of the malignant cells via a plethora of mechanisms including increased drug 

efflux, drug inactivation, altered DNA repair machinery, dysregulation or alteration of the 

drug targets, upregulation of growth factor and survival signaling, and evasion of apoptosis 

[8,13]. These mechanisms appear to be partially fueled by a pre-existing intratumoral 

heterogeneity that supports the outgrowth of resistant clones [14].

In addition to tumor cell-intrinsic mechanisms, an increasing number of examples of TME-

mediated resistance have been reported, representing an alternative means to interfere with 

therapeutic efficacy. Early seminal work by Teicher et al. elegantly linked the development 

of resistance to chemotherapy in vivo to interactions with the host’s normal tissues [15]. The 

discrepancy they observed between the in vitro efficacy of and in vivo resistance to a panel 

of various chemotherapies has subsequently been confirmed and extended by numerous 

studies [16,17], providing many examples of where TME-mediated resistance may be at 

play. However, there are also instances where radiotherapy (RT) and certain chemotherapies 

require an active immune cell response for optimal efficacy, as in the case of ‘immunogenic 

cell death’ [18]. Interestingly, a simple quantification of the tumor-to-stroma ratio in breast 

and colon cancers predicts worse clinical outcome in patients undergoing adjuvant 

chemotherapy as an independent variable [19,20]. Furthermore, analysis of stromal gene 
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expression in various cancers not only yielded tumor type-specific prognostic benefit [21,22] 

but also exhibited predictive value regarding response to neoadjuvant chemotherapy [23]. 

Thus, analysis of the TME could convey significant clinical information to aid in the 

evaluation of treatment options.

TME-mediated therapeutic resistance can be broadly separated into two types. Inherent or 

intrinsic resistance is present before drug or RT exposure and is therefore evident without 

any selective pressure. This type of resistance is based on the multitude of pre-existing 

reciprocal interactions between tumor cells and the surrounding TME. This is in contrast to 

tumor cell-intrinsic resistance, which is due to existing genetic alterations within the 

biochemical or molecular target [8]. Acquired TME resistance, by contrast, evolves in 

response to the effects of therapy and is defined by an adaptive host response to therapeutic 

perturbation. This can result in pronounced changes in the microenvironment and the 

emergence of new tumor–TME dialogs operating at the local and/or systemic level.

Ultimately, the protective effect of the TME on tumor cells can lead to persistent residual 

disease that further increases the risk of recurrence [17]. Therefore, deciphering this 

complex network and introducing targeted perturbations will be critical for improving 

therapeutic efficacy and ultimately patient survival. However, it is essential to emphasize 

that these effects are organ, context, and stage dependent, as the TME can also confer a 

beneficial effect on treatment response. This concept has been demonstrated both in drug 

screens that incorporate the tumor stroma [16] and in many studies revealing the importance 

of various immune cell types in modulating therapeutic efficacy (reviewed in [18]).

In the following sections we discuss intrinsic and acquired responses of the TME to 

traditional, cancer cell-targeted, and microenvironment-targeted therapies.

Effects of pre-existing TME properties on therapeutic efficacy

The intrinsic mechanisms through which the TME modulates drug response involve pre-

existing properties of the tumor including a chaotic, frequently inefficient vascular supply, 

elevated interstitial fluid pressure (IFP), a pronounced desmoplastic stroma, increased tissue 

rigidity, and the presence of niches within the tumor that protect cancer cells from 

therapeutic insults. As several of these parameters have been previously reviewed [24–28], 

we only briefly summarize these topics in the context of drug delivery in the TME and focus 

in more depth on newly emerging areas of TME-mediated intrinsic resistance including the 

role of protective niches (Figure 2).

Drug delivery, vascular remodeling, and drug escape are modulated by the TME

An abnormal tumor vasculature, increased IFP, and altered ECM constitute major obstacles 

that prevent che-motherapeutic drugs from effectively penetrating tumor tissue (Figure 2A). 

One tumor type in which these properties have been investigated in depth is pancreatic 

ductal adenocarcinoma (PDA), in which a desmoplastic tumor stroma driven by hedgehog 

(Hh) signaling is a hallmark feature [29]. In a genetically engineered PDA mouse model, 

various strategies to improve chemotherapy delivery have been explored, including 

inhibition of Hh signaling [30] and the exogenous introduction of hyaluronidase to 
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enzymatically degrade hyaluronic acid in the ECM [31]. However, recent Phase II clinical 

trials combining gemcitabine with the Hh inhibitor saridegib failed to demonstrate a clinical 

benefit in PDA [32]. It therefore remains to be seen whether a recently described tumor-

suppressive effect of activated Hh signaling in PDA, via downregulation of integrin 

expression and transforming growth factor beta (TGF-β) activity that in turn diminishes 

stromal myofibroblast activation, might account for this observation [33]. Two recent studies 

reported the tumor-suppressive effects of cancer-associated fibroblasts (CAFs) and a Hh-

driven stroma in PDA [34,35], again demonstrating the often dichotomous roles of cells in 

the TME as discussed above.

Drug delivery into the tumor can also be influenced by vessel functionality and vascular 

leakage [36]. This was elegantly demonstrated by live imaging in a mouse mammary cancer 

model where vascular permeability, which was highest in intermediate tumor stages, 

facilitated doxorubicin penetration [37]. When matrix metalloproteinase (MMP) 9 was 

deleted in the host stroma, vascular leakage was dramatically increased, resulting in 

improved doxorubicin delivery into the tumor. A counterpoint to these observations is the 

phenomenon of vessel normalization, in which vessel density and morphology along with 

pericyte and basement membrane coverage are normalized, resulting in decreased vascular 

leakiness and enhanced drug delivery [28,38,39]. These findings highlight the complex 

interplay between intra- and extravascular factors during drug delivery. Angiogenesis 

inhibitors, such as the anti-vascular endothelial growth factor (VEGF)-A antibody 

bevacizumab, are thought to act in part through normalization of the tumor vasculature 

[28,40] (Figure 1). Recent preclinical studies have also shown that immunotherapy efficacy 

can be enhanced in combination with vessel-normalization strategies [41]. The clinical 

experience that angiogenesis inhibitors exert their greatest benefit in combination with 

conventional cytotoxic drugs in certain cancers supports their use within multimodal 

treatment regimens [42,43]. However, this is often accompanied by the rapid emergence of 

resistance [43], which is discussed in the following section on acquired resistance in the 

TME.

Equally as important as drug delivery into the tumor is the rate of clearance of 

chemotherapeutic agents by the malignant cells. For instance, integrin ‘outside-in’ signaling 

via the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) 

signaling pathway upregulates the multidrug resistance protein ATP-binding cassette, 

subfamily C (CFTR/MRP), member 1 (ABCC1) in T-cell leukemias, which then actively 

expels doxorubicin [44]. Tumor-associated macrophages (TAMs) have been shown to 

mediate gemcitabine resistance in PDA by upregulating cytidine deaminase, the enzyme that 

metabolizes gemcitabine to its inactive form, in the tumor cells [45].

Another mechanism by which drug availability can be altered is through the expulsion of 

cytostatic drugs from tumor cells via extracellular vesicles (EVs) [46,47] and the horizontal 

transfer of multidrug efflux transporters by EVs [48]. Tumor cell-derived EVs can also act as 

decoys for therapeutic antibodies such as rituximab [49] and trastuzumab [50]. Recent data 

additionally implicates stromal–tumor EV transfer in promoting chemoresistance. For 

example, endothelial cell (EC)-derived EVs conferred increased resistance of breast and 

ovarian cancer cells to doxorubicin and paclitaxel [51]. It has recently been demonstrated 
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that stromal exosomes, which are rich in non-coding RNA, elicit a signal transducer and 

activator of transcription (STAT) 1 response mediated by the pattern recognition receptor 

retinoic acid-inducible gene 1 (RIG-1) in basal-like breast cancer cells. This augments 

juxtracrine Notch 3 signaling, which ultimately expands tumor-initiating cells (TICs) that 

are known to exhibit increased resistance to chemotherapy [52]. Interestingly, EVs also exert 

a protective effect on nonmalignant populations within the TME: prostate cancer cell-

derived EVs blunted apoptosis of fibroblasts following treatment with actinomycin D in an 

ERK-dependent manner [53]. In a similar fashion, EVs carrying TGF-β from injured 

epithelial kidney cells led to fibroblast activation that ultimately resulted in fibrosis, a 

process that closely mirrors the tumor stroma [54]. Exchange of cellular contents can also 

occur via tunneling nanotubes, as recently demonstrated for the transfer of mitochondria 

between ECs and cancer cells, which led to doxorubicin resistance [55].

Taken together, these representative examples not only provide substantial evidence for a 

protective effect of the tumor stroma via direct regulation of drug accessibility and turnover, 

but also highlight the intricate interactions within the TME that go beyond simple bystander 

effects.

Protective niches in the TME confer survival signals

Several cellular niches exist within tumors, including the perivascular niche and the bone 

marrow (BM) niche, which are critical for supporting cancer stem cells (CSCs)/TICs [56]. 

While CSCs/TICs have been postulated to be inherently therapy resistant [57], it is now 

becoming apparent that pre-existing niches can also confer protective signals non-cell 

autonomously in the face of therapeutic intervention, enabling a subset of cells to survive 

and thus reestablish a malignant tumor (Figure 2B). Here we discuss examples of both 

soluble factor- and ECM-mediated intrinsic resistance to various therapies in different TME 

niches and how these niches can be altered to support adaptive resistance as a result of 

therapeutic intervention.

The perivascular niche (PVN), comprising ECs and pericytes, provides an ideal 

‘microenvironment within the microenvironment’ for cancer cells to resist therapeutic 

insults. To date, this has been most widely shown in brain tumors, which possess a 

particularly rich PVN comprising multiple cell types that constitute the blood–brain barrier: 

astrocytes and often microglia in addition to ECs and pericytes [58–62]. In preclinical 

models of medulloblastoma, for example, CSCs located within the PVN survive irradiation 

through several mechanisms including enhanced phosphatidylinositide 3-kinase (PI3K)/v-

akt murine thymoma viral oncogene homolog 1 (Akt) signaling [63] or via Yes-associated 

protein (YAP) expression, which drives insulin-like growth factor 2 (IGF2)/Akt activation 

[64]. This allows tumor cells to enter mitosis with persistent DNA strand breaks and thus 

contributes to radio-resistance.

It is now becoming evident that PVN-mediated signals can have similarly potent effects in 

organs other than the brain. PVNs for CSCs have been reported in multiple tumor types 

including breast, head and neck, and melanoma [65–67] and thus it will be interesting to 

determine whether PVN factors similarly modulate therapeutic resistance in these organs. In 

several different mouse models, including B16 melanoma, EC-specific deletion of focal-
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adhesion kinase (FAK) was recently shown to sensitize tumors to RT and various 

chemotherapies, including doxorubicin, due to loss of EC-derived protective cytokines. 

Interestingly, the authors also studied lymphoma patients and found that low FAK 

expression in blood vessels at the time of diagnosis correlated with a better response to 

doxorubicin [68]. Recently, EC-secreted paracrine factors, termed angiocrine factors, that 

have potent roles in liver regeneration and fibrosis have been identified [69]. Related 

angiocrine factors were shown to promote chemoresistance in B-cell lymphoma via a 

paracrine signaling loop in which lymphoma cells cocultured with ECs induced fibroblast 

growth factor (FGF)-4 expression, leading to activation of FGF receptor 1 (FGFR1) 

signaling and induction of Jagged 1 in ECs. Consequently, they showed that EC-specific 

deletion of FGFR1 or Jagged 1 in vivo resulted in enhanced sensitivity of lymphoma-

initiating cells to doxorubicin [70], supporting consideration of inhibitors targeting these 

pathways as a means to enhance chemotherapy efficacy. Therefore, the link between CSC 

maintenance or the induction of ‘stemness’ by protective niches within the TME and the 

resulting resistance to therapy, as suggested by several of these studies, warrants further 

investigation.

Intimate interactions between cancer cells and stromal cells that substantially influence 

therapeutic outcome have similarly been reported for niches in the BM microenvironment, 

which can comprise mesenchymal cells, ECs, macrophages, osteoblasts, fibroblasts, and 

other stromal cell types [71–73]. This is the case for hematological malignancies that 

develop in the BM [74,75] such as acute myeloid leukemia (AML), acute lymphoblastic 

leukemia (ALL), and multiple myeloma (MM), and cancers that metastasize to bone. A 

paracrine interleukin (IL)-6 axis between the BM stroma and MM cells contributes to 

chemotherapy resistance via STAT3-mediated protection from apoptosis [76]. Stromal IL-6 

expression has also been demonstrated in solid tumors such as gastric, lung, and colon 

cancer [77–79]. In colorectal cancer (CRC), depleting stromal IL-6 showed greater 

antitumor effects than targeting tumor cell-derived IL-6. However, recent Phase II trials of 

the anti-IL-6 antibody siltuximab failed to demonstrate substantial clinical benefits in newly 

diagnosed or relapsed/refractory MM [80,81]. Likewise, in advanced ovarian cancer or renal 

cancer the use of siltuximab as a single agent predominantly facilitated disease stabilization 

[82,83]. It therefore remains to be seen whether this therapeutic approach in combination 

with conventional chemotherapy might provide more beneficial results in solid cancers.

The ECM is an essential component that maintains both primary and metastatic niches in 

cancer [84,85]. However, interactions between cancer cells and the various components of 

the ECM go far beyond simple structural support. For example, adhesion of malignant cells 

to ECM substrates restores cellular polarization of breast cancer cells, which results in 

resistance to apoptosis on treatment with etoposide [86]. The mechanism of this cell 

adhesion-mediated drug resistance (CAM-DR) relies on integrin binding to ECM 

constituents such as collagen, fibronectin, and laminin [11,84,85]. The protective effects of 

integrin–ECM binding result not only from the upregulation of multidrug resistance 

transporters [44] but also from the downstream activation of FAK, PI3K/AKT, STAT3, and 

nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling, all of 

which exhibit antiapoptotic properties [11,87]. While this has been most extensively studied 

in the context of the BM niche in hematological malignancies, it has also been observed in 
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breast, lung, and pancreatic cancer [24]. Moreover, the protective effect of integrin ligation 

extends beyond chemotherapeutic agents; it is also involved in mediating resistance to 

radiotherapy [88–90] and oncogene-targeting therapies such as small-molecule [91–93] and 

antibody-based receptor tyrosine kinase (RTK) inhibition [94], which can be attributed to 

bypassing of the targeted pathways.

Paracrine signaling loops in the TME

Classical paracrine signaling loops between different cell types in the TME have been shown 

to mediate therapeutic resistance (Figure 2C). These studies typically have either 

investigated well-known factors using candidate-based approaches or, more recently, 

expanded to large-scale unbiased screens. One prototypic example of the former approach 

involves chemokine stromal derived factor (SDF)-1, which is produced by BM stromal cells, 

and its cognate receptor chemokine (C-X-C motif) receptor 4 (CXCR4), which is expressed 

on cancer cells [95]. SDF-1 protects AML cells from apoptosis induced by the nucleotide 

analog cytarabine [96]. Treatment with the CXCR4 inhibitor AMD3465, an analog of the 

FDA-approved drug plerixafor (Figure 1), blocked stromal SDF1-induced activation of the 

prosurvival AKT and ERK signaling pathways in AML [97]. A similar antiapoptotic 

mechanism has been observed in vitro for small-cell lung cancer [98], which has a 

predisposition for bone metastasis. Outside the BM niche, recruitment of circulating BM-

derived mesenchymal stem cells (BMMSCs) into solid tumors has been described in 

preclinical models of breast and lung cancer [99]. Therefore, it is tempting to speculate that 

these BMMSCs could constitute a local source for SDF-1 in solid tumors that similarly 

modulates therapeutic response [100].

Interestingly, cytokine-mediated protection can circumvent targeting of RTK-mediated 

signaling pathways, even in kinase-addicted cancers. In AML cells with fetal liver tyrosine 

kinase-3 (FLT3) gene mutations, coculture with stromal cells significantly diminished the 

antileukemic effects of the FLT3-targeting inhibitor sorafenib, while CXCR4 inhibition 

reversed this effect in a preclinical animal model [97]. In another example, AKT inhibitors 

effectively override stroma-associated cytoprotection of FLT3-mutated AML cells [101]. 

Soluble RTK ligands can thus rescue kinase-addicted tumor cell lines from targeted tyrosine 

kinase inhibitor (TKI) therapies due to a convergence at the level of downstream signaling 

targets [102]. Combined with the observation that stromal CAF-like cells can attenuate 

endothelial growth factor (EGF) receptor (EGFR) inhibition at the RTK or downstream level 

in prostate cancer or lung cancer cells, respectively [103], a substantial body of evidence 

indicates the TME as a source for these alternative activators. Accordingly, hepatocyte 

growth factor (HGF) was shown to be a stroma-derived factor that mediates resistance to 

BRAF inhibition in V600E BRAF mutant melanoma [102,104], as well as HER2 inhibition 

in HER2+ breast cancer [102] and EGFR inhibition in triple-negative breast cancer [105].

Several recent high-throughput screens involving complex matrices of numerous cancer cell 

lines from various organ sites and molecular subtypes, panels of distinct stromal cell lines, 

and a broad range of different drugs have demonstrated both the extent and the potency of 

stromal effects on drug response, which appear to be most pronounced in the context of 

targeted therapies [75,102,104]. Critically, as shown in these screens, stromal cells are not 
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always mediators of resistance; in several cases they can sensitize to therapy [16]. These 

types of large-scale approach have underscored the importance of the TME in modulating 

therapeutic response to chemotherapeutics and targeted agents, yet remain relatively simple 

coculture platforms that may not fully recapitulate the in vivo TME. In this regard, 

increasingly sophisticated modeling approaches are becoming more accessible to address 

these questions, as summarized in Box 3.

Box 3

Model systems for investigating TME-mediated resistance

While cancer drug screening assays were historically performed using transplantable 

tumor models, this approach has been superseded by tumor cell culture systems in recent 

decades [227] (Figure I). This tumor cell-focused approach has considerable advantages 

such as large scale, reproducibility, and time efficiency; however, one significant 

downside is the loss of information about the TME. Recently, several studies that 

incorporate 2D coculture with stromal cells in their screens have uncovered an important 

contribution of the TME to therapeutic response [75,102,104]. Nonetheless, these 

systems are still far from fully recapitulating the complex spatial and temporal 

composition of a tumor and its TME. It has been demonstrated that sophisticated 3D 

culture systems result in significant cytoskeletal reorganization, appropriate cellular 

polarity, and the generation of hypoxic gradients [24,228,229], which in turn alter 

chemoresistance [230]. This can be further expanded to multicellular direct [231] and 

indirect [232] coculture systems. Another level of complexity can be achieved by using 

organotypic normal tissue slice-culture systems that allow the investigation of 

microenvironmental interactions and vessel co-option during tumor colonization 

[233,234]. In a similar fashion, tumor explants can be studied as slice cultures [235,236]. 

One main advantage of these in vitro and ex vivo systems is that they are easily amenable 

to therapeutic intervention and accurate measurement of therapeutic efficacy. Moreover, 

specialized imaging techniques such as fluorescence recovery after photobleaching 

(FRAP) and Förster resonance energy transfer (FRET) [229] can be incorporated to 

analyze the downstream signaling cascades.

Highly sophisticated imaging techniques in animal models, including confocal [37,237] 

and intravital multiphoton microscopy [238], allow one to unravel tumor–stroma 

dynamics that potently impact therapeutic responses. Advanced approaches that combine 

these imaging modalities with various markers and reporters allow investigators to 

monitor tumor progression, the TME, and the success or failure of anticancer therapy 

with remarkable spatial and temporal resolution in vivo [239]. However, the tumor model 

needs to be chosen carefully, as the response to therapy differs greatly not only between 

orthotopically and subcutaneously transplanted tumors [240] but also between primary 

tumors and postsurgical metastases [241]. From a translational perspective, it could be 

that patient-derived xenografts (PDXs) will be developed into valuable models to study 

tumor–stromal interactions. Currently their usefulness is limited by loss of the human 

stromal compartment [242] and the necessity for immunodeficient recipient mice. 

However, the transplantation of PDX tumors into humanized tumor stroma [243] or the 
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utilization of mice with a transplanted, functional human immune system [244,245] is 

likely to circumvent some of these obstacles.

Figure I. 
Commonly used indirect and direct coculture techniques have yielded valuable 

information about the role of stromal cells during therapeutic interventions. These 

cocultures can be further extended to a 3D system to account for spatial relations within 

the tumor microenvironment (TME). Organotypic slice cultures allow recapitulation of 

the microenvironment of different organs in vitro, while ex vivo explants of tumors retain 

the original TME. For preclinical in vivo studies, orthotopic implantation of tumor cells 

permits the investigation of tumor cells within the appropriate organ-specific TME. The 

correlation between therapeutic response in the mouse model and clinical efficacy can 

potentially be increased when patient-derived xenografts (PDXs) are used. It is important 

to note that the experimental strategies presented here are neither exhaustive nor in a 

hierarchical order. They rather represent complementary approaches to investigate the 

role of the stroma in therapeutic response.

Together, the representative examples discussed here indicate the possibility that a cancer 

cell (sub)population that successfully co-opts cues from the TME will survive and expand 

under both conventional and targeted therapies. This interplay between the TME and the 

malignant cells can result from a pre-existing interaction but, equally importantly, can also 

be introduced by the TME response to a therapeutic intervention.

Therapy-induced responses and acquired resistance in the TME

In the previous section we discussed intrinsic, pre-existing niches and the physical properties 

of the TME that contribute to non-cell-autonomous therapeutic resistance. Here we focus on 

how the TME can also be significantly changed by therapeutic intervention and how this can 
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lead to acquired resistance (Figure 2). One paradigmatic example of TME alterations 

following therapy involves the response of the innate and adaptive immune system.

The immune response influences therapeutic outcome

The innate immune system is a crucial component of the altered TME after therapeutic 

intervention (Figure 2D). Macrophage infiltration, in response to paclitaxel-enhanced 

expression of colony-stimulating factor 1 (CSF-1) and IL-34, appears to be a major 

contributor to chemoresistance and immunosuppression [106]. Furthermore, in a mouse 

model of breast cancer, recruitment of chemokine (C-C motif) receptor 2 (CCR2)-expressing 

monocytic cells occurs following doxorubicin treatment, via stroma-derived CCL2 [37]. In 

turn, the presence of these CCR2-expressing cells contributes to suboptimal treatment 

response and tumor re-emergence. Likewise, treatment of murine breast cancers with various 

chemotherapies leads to increased TAM accumulation, which then enables cathepsin 

protease B- and S-mediated chemoresistance to paclitaxel, etoposide, and doxorubicin [107].

Macrophages also constitute an important link to the adaptive immune system. Their 

increased influx into recurrent tumors leads to a surge of regulatory T cells that is 

accompanied by impaired recruitment of CD8+ cytotoxic T cells [108]. Regulatory T cells 

also accumulate following RT, as do macrophages, and their transient ablation was shown to 

enhance RT efficacy in a mouse breast cancer model [109]. A similar observation has been 

made for myeloid-derived suppressor cells (MDSCs), which drive IL-1β-induced secretion 

of IL-17 by CD4+ T cells that leads to chemoprotection [110]. Interestingly, there is also 

evidence for a chemoprotective role of B cells involving the education of TAMs toward a 

tumor-supporting phenotype by the activation of the Fc receptor [111]. Accordingly, B cell 

depletion resulted in increased recruitment of CD8+ cells and an enhanced therapeutic 

response.

The complexity of the immune system’s response to therapeutic intervention is underscored 

by contradicting observations that support a positive contribution of the immune system to 

improved chemotherapeutic efficacy (Figure 2H). Interestingly, apoptosis, long thought to be 

immunologically silent, has been shown to result in the production of proinflammatory 

cytokines such as IL-8 and CCL2 [112]. Furthermore, several chemotherapeutic agents, such 

as anthracyclines and platinum derivatives, are able to induce immunogenic cell death that 

culminates in the release of damage-associated molecular patterns (DAMPs) [113,114]. It 

has been proposed that these mechanisms ultimately improve the anticancer effects of 

chemotherapy through increased antigen-presenting ability of dendritic cells and a 

subsequent T cell response [115]. The latter has been linked to infiltration of innate IL-17-

producing γδ T cells that precedes the invasion of CD8+ T cells [116]. The importance of a 

robust CD8+ response is evident not only in the setting of conventional chemotherapy but 

also when mouse mammary tumor virus (MMTV)-neu transgenic mice were treated with the 

HER2 inhibitor lapatinib [117]. In the context of antibody-dependent cell-mediated 

cytotoxicity (ADCC), low-dose cyclophosphamide has been shown to promote macrophage-

mediated killing of antibody-targeted cells in the bone marrow. This is due to an acute 

secretory phenotype of the tumor cells after cyclophosphamide exposure that increases the 
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phagocytic capacity of macrophages through tumor necrosis factor (TNF)-α, VEGF, and 

CCL4 [118].

In summary, the available evidence indicates that the immune response can both support and 

obstruct therapeutic efficacy. Therefore, unraveling and exploiting this complexity continues 

to be a challenging task.

Reactions of the TME beyond the immune response influence therapeutic outcome

An important mechanism that contributes to the altered phenotype of the TME after 

therapeutic intervention is induction of the senescence-associated secretory phenotype 

(SASP) (Figure 2G). Originally linked to replicative and genotoxic stress, senescence 

induction is typically considered a tumor-suppressive mechanism due to the resulting growth 

arrest. However, in some circumstances the SASP can promote cancer progression [119]. In 

the context of therapy-induced changes, DNA-damaging agents such as doxorubicin and RT 

lead to SASP in various tumor types [120]. This is associated with the secretion of various 

cytokines, proteases, and growth factors including HGF, TGF-β, IL-6, and CCL2 [121–123]. 

As outlined above, several of these molecules can also dramatically alter therapeutic 

response. Furthermore, this phenomenon similarly occurs within non-transformed TME cells 

[124] and may even spread in a paracrine fashion [121]. Thus, SASP induction in the TME 

can have potentially pleiotropic effects on therapeutic response.

Besides SASP-associated growth factors and cytokines, other signaling molecules have also 

been implicated in the therapy-altered TME (Figure 2F). For example, both RT and 

chemotherapy lead to upregulation of wingless-type MMTV integration site family member 

16B (WNT16B) in CAFs, which then acts as a paracrine signal that attenuates the effects of 

anthracycline therapy in prostate cancer cells [125]. The upregulation of WNT16B is 

mediated via NF-κB, which in turn activates β-catenin-dependent WNT signaling in the 

cancer cells. The authors demonstrated a similar effect in breast cancer models. CAFs are 

similarly enriched in CRC during post-therapy tumor recurrence and exhibit upregulation of 

the cytokine IL-17A, which promotes the maintenance of TICs via NF-κB activation [126].

The BM also constitutes a rich source of cells of varying progeny beyond myeloid cell 

populations that are mobilized and recruited to the TME in response to therapeutic insult. 

For instance, BMMSCs have been identified as a source of novel chemoprotective factors: 

secreted polyunsaturated fatty acids [127]. While apparently only cisplatin-based therapy 

was capable of inducing their release, these fatty acids were able to confer resistance to 

various agents and even act on a systemic level.

Marked increases in BM-derived circulating endothelial progenitors (CEPs) in preclinical 

models and patient samples have been reported following the administration of various 

chemotherapies including taxanes, doxorubicin, and 5-fluorouracil (5-FU) [128]. In a mouse 

lung cancer model, the elevated CEPs were subsequently recruited to the tumor and 

treatment with antibodies targeting VEGF receptor 2 (VEGFR2) or SDF-1 abrogated this 

accumulation and increased chemotherapeutic efficacy. Interestingly, this synergy did not 

occur when gemcitabine was used in the combination treatment. Again, this highlights the 
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varying response patterns of the TME between different tumor types to distinct therapeutic 

interventions.

With regard to TME-mediated resistance to antiangiogenic therapies, the role of non-VEGF 

angiogenic pathways such as FGF or SDF-1 as possible escape mechanisms is increasingly 

appreciated [129,130]. Several cell populations within the TME are able to counteract anti-

VEGF therapies: CD11b+Gr1+ MDSCs and CEPs both contribute to antiangiogenic 

resistance [128,131,132]. Interestingly, in the case of MDSCs, this did not predict resistance 

to conventional chemotherapy [128] and was due to the nonconventional mediator of 

angiogenesis Bv8 [133]. Subsequent studies showed that murine lymphomas refractory to 

anti-VEGF therapy cause CAFs to secrete platelet-derived growth factor (PDGF)-C, which 

stimulates EC migration independent of myeloid cell infiltration [134]. Another illustrative 

example is the paracrine signaling network between T helper type 17 cells (Th17), the TME, 

and immature myeloid cells or MDSCs. Tumor-infiltrating TH17 cells induce the expression 

of granulocyte CSF (G-CSF) in the stromal compartment via IL-17. This in turn attracts 

MDSCs, which driveanti-VEGF-A resistance [135].

In the case of the commonly used non-hypofractionated RT, hypoxia-inducible factor 1 

(HIF-1) induction in the tumor cells leads to increased VEGF-A and SDF-1 expression 

[136]. While the former directly promotes EC recovery [137], the latter attracts BM-derived 

myeloid monocytic cells that contribute to vasculogenesis and tumor regrowth [138,139]. 

Interestingly, upregulation of CSF-1 in irradiated prostate cancers represents an alternative 

means to increase myeloid cell numbers after RT [140]. Taken together, the angiogenic 

network exhibits an impressive degree of plasticity involving numerous cell types within the 

TME that affect the outcome of both antiangiogenic and RT-based therapies. While VEGF-A 

inhibition in combination with RT and chemotherapy in glioblastoma (GBM) demonstrated 

increased progression-free survival [141,142], CSF-1 receptor (CSF-1R) inhibition 

combined with RT is currently being evaluated in Phase II clinical trials.

Finally, various therapeutic interventions can alter the TME at the level of the various niches 

(Figure 2E) discussed in the section on intrinsic resistance. For example, in a murine model 

of Burkitt’s lymphoma, DNA-damaging agents induced the secretion of IL-6 and tissue 

inhibitor of metalloproteinases 1 (TIMP-1) from ECs in the thymus [143]. This resulted in 

specific protection of lymphoma cells in the thymus but not other lymphoid organs and 

served as a reservoir of cancer cells that subsequently fueled tumor relapse. Consistently, the 

increased tumor load in the thymus following doxorubicin administration was blunted in 

IL-6-deficient mice. A recent study in a mouse model of leukemia showed that a BM niche 

is created by ALL cells when physiological BM niches have been destroyed due to leukemic 

dissemination, in response to cytarabine and daunorubicin which are frontline 

chemotherapies used to treat ALL patients. This leukemia-induced niche evolves in response 

to therapeutic intervention and withdrawal [144]. Mesenchymal cells, recruited by leukemia 

cell-secreted CCL3, were found to be the major components that built a therapy-induced 

niche and evolved from Nestin+ cells to α smooth muscle actin (α-SMA)+ cells under the 

influence of TGF-β and ultimately developed into fiber residues. The authors also identified 

furin-cleaved growth differentiation factor (GDF15) as the effector molecule provided by the 

niche to activate TGF-βII and confer chemoprotection and correspondingly found that 
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blocking GDF15 or furin enhanced chemotherapy sensitivity. Other examples of niches that 

either serve as a ‘safe haven’ from therapeutic intervention or contribute to metastatic escape 

include a lymphatic vessel niche in melanoma that promotes survival and enrichment of 

CD133+ TICs following dacarbazine treatment [145] and a TME stem cell ‘unit’ that is 

altered by RT and subsequently confers radioresistance on glioma cells [146].

Therapy-induced changes in differentiation and activation of TME cells

Altered differentiation represents another cell-intrinsic mechanism for cancer cells to 

develop resistance; for example, via epithelial–mesenchymal transition (EMT) [8,147]. 

There have been several recent studies revealing how the TME can also influence this 

process in a paracrine manner, including examples of how alterations to the polarization 

state of TME cells can influence therapeutic outcome. A fascinating case of cancer cell 

dedifferentiation was recently uncovered in a melanoma mouse model following adoptive 

cell transfer (ACT), which resulted in loss of melanocytic antigens and the subsequent 

development of ACT resistance [148]. Interestingly, this phenomenon was driven by an 

inflammatory response in the TME: specifically, TNF-α released by tumor-infiltrating T 

cells and macrophages that mediated the dedifferentiation. The authors therefore propose 

that ACT for melanoma, which is currently targeted toward melanocytic antigens, be 

expanded to simultaneously target tumor-specific mutated non-melanocytic antigens, thus 

ensuring broad recognition of both differentiated and dedifferentiated melanoma cells.

TME-produced cytokines such as NF-κB and TNF-α have also been shown to promote 

mesenchymal differentiation in GBM, resulting in enhanced radioresistance [149]. 

Macrophages/microglia were enriched in pockets within the tumor that were positive for 

mesenchymal markers, suggesting a potential link between TAMs and changes in cancer cell 

differentiation. Macrophages themselves can also be altered by distinct therapies including 

platinum-based agents, which induce an M2/alternatively activated state in vitro [150], and 

low-dose irradiation that promotes an iNOS+ M1 phenotype [151]. In the case of M1-

polarized macrophages, this RT-induced change in polarization toward an 

immunosuppressive state allows the recruitment of cytotoxic T cells in the tumor and 

thereby enhances immunotherapy efficacy in animal models [151].

Together, these examples illustrate the diversity of therapies that can induce altered 

polarization states within the TME and changes in cancer cell differentiation. As this effect 

is often reversible, this indicates numerous potential targets that could be used in 

combination with, or following, standard therapeutic interventions.

Concluding remarks

The number of mechanisms by which cancers can develop resistance to various therapeutic 

interventions inevitably increases as our arsenal of anticancer treatments expands. We can 

clearly now add TME-mediated resistance to this list and, as indicated by the representative 

examples we have highlighted here, these mechanisms of resistance are similarly diverse in 

their nature. While there are an increasing number of TME-targeted approaches to 

circumvent resistance (Figure 1), there are also evident challenges in considering how to 

translate this knowledge to the clinic.
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One obstacle is our currently limited understanding of the underlying mechanisms through 

which some these therapeutic interventions affect distinct subpopulations within the TME. 

This is especially evident for the potential immunomodulatory effects of conventional 

chemotherapeutic agents (Figure 1), which remain poorly understood and thus cannot be 

utilized to their full potential.

Another challenge is to fully understand and ultimately target microenvironmental 

contributions to therapeutic response. It is clear that the stromal and immune composition of 

tumors is complex and highly dynamic and we currently only have a limited perspective on 

these alterations in certain human tumors, such as through the analysis of stromal gene 

expression in breast cancer [21] and the recent ‘immune landscaping’ in CRC [152]. These 

types of immune cell analysis are being extended to other tumor types through the 

‘Immunoscore’, the prognostic value of which is currently being evaluated [153], but 

information on stromal cells such as fibroblasts, ECs, and organ-specific TME cell types is 

not currently being captured in these large-scale approaches. Thus, where possible, 

comprehensive landscaping of the entire TME before and after therapeutic intervention 

would significantly enhance these efforts.

Alternative strategies available at present include using computational deconvolution of gene 

expression data from whole-tumor samples from patients to capture gene signatures of 

stromal and immune cells [154]. Advanced bioinformatics tools that can discern 

subpopulations in complex tissues [155,156] and identify factors that could be targeted 

concomitantly in tumor cells and the TME [157] may provide new insights into potential 

‘double-hit’ therapeutic strategies. Similarly, profiling the RTK ligands present in the 

TME(for example, via ELISA of tumor biopsies, represents another attractive approach, 

given their potent roles in mediating resistance [102,104]. These examples serve as a 

reminder that complementary technological approaches will be required to dissect the TME 

response to therapy that relies in part on physiological tissue-specific survival pathways.

It is also critical to remember that the TME plays a multifaceted role and can exhibit 

tumoricidal capacities, often through interplay with the immune system. A recent study 

revealed a surprising, tumor-promoting effect of CAF depletion in PDA [34]. Taken together 

with the observation that the tumor stroma can also enhance therapeutic efficacy [16,104] 

and the examples discussed here where immune cells are required for optimal therapeutic 

response, it is reasonable to propose that re-education of the TME rather than elimination of 

an entire cellular compartment will be substantially more beneficial [3,158–163] (Figure 1).

The idea of re-education raises a currently unmet need: how to translate the ‘activation state’ 

of the TME, which encompasses the cellular and molecular composition of the TME and can 

be envisioned as an intricate and dynamic network, into predictive biomarkers. This applies 

to both conventional cytotoxic and targeted therapeutic interventions. Initial studies that have 

highlighted the ability of tumor stroma-related gene signatures to predict therapeutic 

response to chemotherapy demonstrate that this is a feasible concept [23,164]. However, the 

fact that putative markers are very likely not dichotomous variables, but rather gradual and 

multivariable, make this a challenging task. This difficulty is illustrated by the current lack 

of a definite predictive biomarker for anti-VEGF therapies, although this treatment modality 
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has been in use for many years [165]. Nonetheless, there is a critical need to integrate these 

questions into future trial designs to ultimately confer clinical benefit and shield patients 

from unnecessary harm. Achieving this objective will thus be a major goal in the coming 

years and will necessitate a close dialog between investigators working on the TME and 

clinical oncologists (Box 4).

Box 4

Emerging areas in TME-mediated resistance: the microbiome and the 
metabolome

In this review, we focus on how different cellular and extracellular components of the 

TME can profoundly impact therapeutic response and outcome. However, it is becoming 

increasingly evident that bacteria in the host can modulate the TME to influence the 

initiation and progression of cancers in the gastrointestinal (GI) tract [246]. Moreover, 

there are examples in which the gut microbiota can promote disease progression in other 

organ sites, including the liver [247] and breast [248,249]. Thus, the microbiome is 

emerging as a major player in many diseases including cancer, obesity, and metabolic 

syndromes and is likely to influence both local and systemic therapeutic response. Two 

recent studies showed that the response to chemotherapy or immunotherapy could be 

negatively impacted by the use of broad-spectrum antibiotics that disrupted the intestinal 

microbiota [250,251]. Cyclophosphamide chemotherapy, which has immune-modulating 

properties, was found to increase intestinal permeability resulting in an altered bacterial 

composition in the gut and the entry of certain Gram-positive bacteria into the spleen and 

lymph nodes [251]. Interestingly, cyclophosphamide converted naïve CD4+ T cells in 

these organs to Th17 cells, which contributed to the immune response against the tumor. 

This beneficial effect could be blocked by antibiotic treatment or by using germ-free 

mice, demonstrating the critical role of these bacterial species in promoting the 

cyclophosphamide response. Iida et al. also examined immunotherapies in their study and 

found an impaired antitumor response in animals pretreated with antibiotics, which they 

attributed to decreased TNF production by tumor-infiltrating myeloid cells. Together, 

these studies demonstrated that the microbiome can have a potent effect on the efficacy of 

distinct therapies through interactions with different immune cell types in the TME.

Given that gut microbiota can be profoundly disrupted by chemotherapy and radiotherapy 

[252], often resulting in a substantial decrease in microbial diversity, strategies to restore 

microbial balance could have a profound impact not only on the health of the patient but 

also on therapeutic response. ‘Beneficial’ bacteria have been shown to stimulate host 

immune cells (regulatory CD4+CD25+ lymphocytes) to suppress mammary cancer in 

mice [253], raising the intriguing possibility that altering the microbiome could similarly 

be considered as a novel strategy to circumvent TME-mediated therapeutic resistance in 

GI malignancies and possibly other organs.

Another previously underappreciated layer of complexity that needs to be incorporated 

into the multifaceted network of tumor–TME interactions is the role of the metabolome 

[254,255]. There are emerging data demonstrating a ‘reverse’ Warburg effect beyond the 

malignant cells; that is, anabolic, aerobic glycolysis occurring in the tumor stroma that 
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provides the metabolite lactate to tumor cells [256]. Interestingly, the metabolic 

reprogramming of CAFs within the TME appears to be linked to their production of 

tumor-promoting IL-6 and TGF-β [257]. Initial preclinical studies aimed at disrupting 

the synergistic metabolism between tumor compartments proved to be feasible and thus 

might constitute a promising avenue to pursue [258,259].

As indicated by these examples, and the emergence of additional important stromal cell 

types in the TME including adipocytes and nerves [3], the complexity of the TME 

extends far beyond the local environment to involve a multitude of systemic interactions 

within the host. Thus, targeting the TME in the context of evading or overcoming therapy 

resistance will increasingly require a sophisticated understanding of the physiology of the 

patient.
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Figure 1. Major constituents of the tumor microenvironment (TME) and TME-targeted 
therapies
The TME comprises various cell types that modulate treatment response and are putative 

candidates for therapeutic intervention. The tumor vasculature can be targeted with various 

drugs such as the vascular endothelial growth factor (VEGF)-A antibody bevacizumab, the 

multitarget receptor tyrosine kinase (RTK) inhibitors sunitinib and sorafenib, and the decoy 

VEGF receptor aflibercept. Inflammatory pathway activation can be inhibited by the 

interleukin-6 (IL-6) antibody siltuximab [79] or the pan-JAK inhibitor ruxolitinib [166]. 

Cancer-associated fibroblasts are activated by multiple growth factors and cytokines within 

the TME and in turn acquire a proinflammatory phenotype and become a major source of 

soluble mediators that drive angiogenesis and enhance tumor cell survival. The immune cell 

compartment within the TME exhibits extraordinary plasticity: tumor-associated 

macrophages (TAMs) and myeloid derived suppressor cells (MDSCs) orchestrate an 

immunosuppressive and protective phenotype that extends to T cells, T regulatory (Treg) 

cells and B cells. Repolarization or re-education of macrophages or other myeloid cells can 

be achieved by colony-stimulating factor 1 receptor (CSF-1R) inhibition (for example, 

BLZ945) [162] or agonistic CD40 antibodies that activate antigen-presenting cells (e.g., 

dendritic cells) to process and present tumor-associated antigens to local cytotoxic T 

lymphocytes [158,167]. This immune landscape within the tumor can be sculpted by 

inhibition of critical cytokine axes such as CSF-1R and/or KIT (PLX3397) [168], 

chemokine (C-X-C motif) receptor (CXCR) 4 (plerixafor), and CXCR2 (S-265610) [169]. 

The chemotherapeutic agent trabectedin has been proposed to selectively deplete monocytes 

and/or macrophages [170]. Both gemcitabine and 5-fluorourocil (5-FU) have been shown to 

deplete MDSCs [171,172]. Platinum-based cytostatic drugs can not only alter macrophage 

polarization but also induce increased antigen-presenting ability of dendritic cells. The 

blockade of immune checkpoints is another promising avenue of therapeutic intervention. 

This can be achieved through blockade of cytotoxic T lymphocyte-associated antigen 4 

(CTLA-4) (ipilimumab) or the programmed death 1 (PD1) receptor (nivolumab). Finally, 
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several extracellular properties also shape the therapeutic response, such as high interstitial 

fluid pressure and changes in the composition of the extracellular matrix (ECM). Albumin-

bound nab-paclitaxel has been postulated to disrupt the stromal composition [173]. FDA-

approved drugs are indicated in italics while agents in preclinical or clinical trials are non-

italicized.
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Figure 2. Intrinsic and acquired contributions of the tumor microenvironment (TME) to 
therapeutic response
The TME alters therapeutic efficacy through both intrinsic traits and properties acquired 

after exposure to therapy. This applies to chemotherapy (CTX), radiotherapy (RTX), and 

targeted therapies (TTX). The intrinsic properties of the TME that modulate therapeutic 

response include: (A) the alteration of drug delivery and clearance; (B) the utilization of pre-

existing protective niches within the bone marrow (BM) and central nervous system (CNS) 

to shield malignant cells from therapeutic insult; and (C) the co-option of prewired paracrine 

signaling loops within the stroma to counteract therapeutic interventions. (D) In response to 

therapy the TME can orchestrate a protective immune response that is defined by a plethora 

of multidirectional interactions between different immune cell populations. (E) Furthermore, 

therapeutic interventions can lead to the emergence of newly created protective niches 

within the TME that function as safe havens. (F) In addition, paracrine bypass signaling 

pathways can override the effects of both conventional and targeted therapies, while (G) the 

senescence-associated secretory phenotype (SASP) can dramatically change the signaling 

equilibrium within the TME toward a therapy-attenuating state. (H) However, the TME can 

also substantially augment therapeutic efficacy by several mechanisms that ultimately result 

in an increased immunological response. This can result from immunogenic cell death (ICD) 

of tumor cells that activates antigen-presenting dendritic cells and cytotoxic T cells, 

promotion of increased antibody-dependent cell-mediated cytotoxicity (ADCC) by 

macrophages through cyclophosphamide, and the reprogramming of macrophages by low-
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dose radiation to facilitate normalization of the tumor vasculature and recruitment of 

cytotoxic T cells. Mechanisms that attenuate the therapeutic response are highlighted in red; 

therapy-ameliorating effects are marked in green. Arrow-headed lines indicate a positive or 

activating connection and bar-headed lines illustrate an antagonizing function.
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