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Electrons in graphene, behaving as massless relativistic Dirac particles, provide a new perspective
on the relation between condensed matter and high-energy physics. We discuss atomic collapse,
a novel state of superheavy atoms stripped of their discrete energy levels, which are transformed
into resonant states. Charge impurities in graphene provide a convenient condensed matter system
in which this effect can be explored. Relativistic dynamics also manifests itself in another system,
graphene p-n junctions. We show how the transport problem in the presence of magnetic field can
be solved with the help of a Lorentz transformation, and use it to investigate magnetotransport in
p-n junctions. Finally, we review recent proposal to use Fabry-Pérot resonances in p-n-p structures
as a vehicle to investigate Klein scattering, another hallmark phenomenon of relativistic dynamics.

I. INTRODUCTION

The unique properties of graphene, a single atomic
layer of carbon [1], attract a lot of attention and inter-
est from researchers from diverse fields. What makes
this material special is its transport characteristics, such
as high mobility and tunable carrier density, which of-
fer new exciting opportunities for nanoelectronics [2]. At
the same time, charge carriers in graphene exhibit many
unusual properties, posing interesting questions of fun-
damental interest [3].

Undoped graphene is a semimetal in the solid state
nomenclature, with conduction and valence bands joined
together at the Fermi points, which are the symmetry
points of the Brillouin zone known as K and K ′. Near
these points, the conduction band has linear dispersion,
which can be modeled by the Dirac equation. Charge
carriers in graphene are thus described as massless rela-
tivistic fermions, with an effective “speed of light” v ≈
106m/s, which is about 300 times less than c, the speed
of light in vacuum.

This description in terms of massless Dirac particles
leads to an interesting analogy between the physics of
graphene and that of high-energy relativistic particles,
offering a possibility to observe quantum-relativistic phe-
nomena in condensed matter experiments. Various inter-
esting phenomena associated with relativistic fermions,
such as the half-integer quantum Hall effect [4,5], Klein
tunneling [6,7] and scattering[8,9], atomic collapse [10,
11,12], gauge fields and topological defects[13,14], can be
translated directly into transport properties of graphene.

Compared to other two-dimensional electron systems,
the linear dispersion in graphene, ε = ±v|p|, leads to
much higher quantization energies. This is the case,
for example, for the quantized energies of Landau lev-
els. The Dirac Hamiltonian in a uniform magnetic field
yields εn = ±v

√
2eh̄Bn, n = 0, 1, 2..., with an interlevel

spacing that can exceed 1000K in a field of about 6 Tesla.
As a result, quantized Hall transport in graphene can be

observed at room temperature [15].
The “Diracness” of charge carriers plays a fundamental

role in determining the electronic properties of graphene
[3]. In terms of the wavefunction amplitudes on the A
and B sublattices of the carbon honeycomb lattice, ψ =
(ψA, ψB), the Hamiltonian takes the form [16]

HK(K′) = ζ

(

0 vp−
vp+ 0

)

, p± = p1 ± ip2 (1)

where ζ = +1(−1) for the point K(K ′). Starting with
the Schrödinger equation ih̄∂tψ = Hψ, and multiplying
it by the matrix σz , we can write it in the canonical form
of a relativistic Dirac equation for a free particle

γµ∂µψ = 0, xµ = (vt, x1, x2). (2)

The 2× 2 matrices γµ satisfy the anticommutation rela-
tions {γµ, γν} = gµν , where gµν is the metric tensor.
The analogy with special relativity extends to prob-

lems involving coupling of electrons to external electric
or magnetic fields. Rewriting the Schrödinger equation
ih̄∂tψ = [H(p− ea) + eϕ]ψ in the form (2) yields the
Dirac equation in a background electromagnetic field,

γµ(h̄∂µ − eaµ)ψ = 0, aµ = (v−1ϕ, a1, a2). (3)

The potentials describe external fields E = −∇ϕ and
B = ∇ × a, pointing in-plane and out-of-plane, respec-
tively, which can be either static or dynamical. The anal-
ogy with 2 + 1 Quantum Electrodynamics (QED), man-
ifest in Eq.(3), helps to establish connections between
various problems involving electrons in graphene with
analogous problems in QED, described by the relativistic
Dirac equation.
One aspect of the relation with QED which is particu-

larly intriguing is the large value of the dimensionless cou-
pling strength, the analog of the fundamental fine struc-
ture constant for electrons in graphene. Indeed, since
c/v ≈ 300, we have

α =
e2

h̄vκ
=
c

v
× e2

h̄c κ
=

300

137κ
≈ 2.19

κ
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where the dielectric constant κ, describing the cumulative
effect of screening by the substrate and intrinsic screening
in graphene, typically can take values between 3 and 10
[17]. The large value of the fine structure constant, α ∼ 1,
makes the QED-like physics in graphene even more rich
and interesting than in “natural” QED systems.

As a cautionary remark we note that, while the anal-
ogy with 2 + 1 QED is valid for coupling to arbitrary
external fields, and is indeed useful in a variety of prob-
lems, it does not extend to the dynamical EM field caused
by charges in graphene. The basic reason for this differ-
ence is the three-dimensional character of such EM fields,
which originate on the charges in graphene, but spread
out in the entire space outside the graphene plane. Hence
the problem of electron interactions in graphene requires
insights which are outside the realm of 2 + 1 QED [e.g.,
see Refs.[18,19,20] and references therein].

In this article we review some of the recent work on
graphene motivated by analogy with QED, focusing on
the phenomena familiar from relativitic quantum me-
chanics and on their connection to electronic transport.

In Sec. II we shall discuss the problem of atomic col-
lapse, in which the large value of α is crucial. Atomic col-
lapse is a phenomenon discovered theoretically in atomic
physics, and predicted to occur in heavy atoms, hav-
ing nuclear charge Z >∼ 170. Because such large val-
ues of Z are not realized in any of the known elements,
this phenomenon has not been experimentally observed.
As we shall see, in graphene the condition for collapse,
Z >∼ α−1 ∼ 1, is much easier to realize. In particular,
collapse can occur for the electronic states near charge
impurities, with critical charge as low as Zc = 2 [10,11].

In Sec. III we consider another system for which the
connection with relativistic dynamics turns out to be
fruitful: graphene p-n junctions. We show that trans-
port in a p-n junction in the presence of a magnetic field
can be understood with the help of a Lorentz transfor-
mation, which is a symmetry of the Dirac equation (3).
This transformation, in which the velocity v replaces the
speed of light, can be used to eliminate either the mag-
netic field or the electric field, whichever is weaker. We
compare this method to other approaches, and use it to
find the field-dependent conductance of the system [8].

Next, in Sec. IV, we discuss transport in p-n-p struc-
tures. We focus on the ballistic regime, in which conduc-
tance exhibits Fabry-Pérot (FP) resonances due to inter-
ference of electron waves reflected from two p-n bound-
aries. This system is convenient for investigating the
Klein scattering phenomenon, which is a manifestation
of chirality conservation in the dynamics of relativistic
Dirac particles. In particular, because the reflection coef-
ficient vanishes for normally incident particles, the back-
reflection amplitude, an analytic function of the incidence
angle, changes sign at normal incidence. This sign change
contributes a π phase shift to the FP interference, which
can be revealed by a half-a-period shift of FP fringes in-
duced by a relatively weak magnetic field [9]. These pre-
dictions are in agreement with recent experiment [21].

II. ATOMIC COLLAPSE AND

SUPERCRITICAL CHARGE IMPURITIES

As we mentioned above, graphene offers an opportu-
nity to observe the behavior of relativistic particles in
very strong fields, a regime which is very difficult to
achieve in high-energy experiments because of the small
value of the fine structure constant. This is exemplified
by an interesting phenomenon, which will be discussed
in this section, the collapse of a Dirac particle moving in
a 1/r potential.

To gain some intuition about this problem, let us start
by recalling the explanation of stability of the hydro-
gen atom in the framework of Bohr’s quantum theory.
Atomic stability results from quantum zero-point mo-
tion of an electron which prevents it from falling on
the nucleus. Indeed, starting from the nonrelativistic
Schrödinger equation, and estimating the kinetic energy
of an electron as Ekin = h̄2/2mρ2, where ρ is the charac-
teristic radius of electron wavefunction, we can write the
total energy as

E(ρ) =
h̄2

2mρ2
− Ze2

ρ
, (4)

where Z is nuclear charge. As a function of ρ, the energy
(4) is dominated by the positive kinetic energy term at
small ρ, and by the negative Coulomb term at large ρ,
giving rise to a minimum at ρ0 = h̄2/(Ze2m), the Bohr’s
radius. The latter quantity determines the size of an
atom.

The effects of quantum zero-point motion which pre-
vent an electron from falling onto the nucleus are less
powerful in the relativistic regime. In this case, the bal-
ance between kinetic and potential energy becomes more
delicate, because the kinetic energy ε = cp ∼ ch̄/ρ scales
in the same way as the Coulomb energy. To see this
more clearly, let us extend the reasoning used in (4) to
a relativistic electron, described by the kinetic energy
ε(p) =

√

(cp)2 + (mc2)2. Estimating p ∼ h̄/ρ, we again
seak to minimize the sum of the kinetic and potential
energies:

E(ρ) =

√

(

ch̄

ρ

)2

+ (mc2)2 − Ze2

ρ
. (5)

Looking for extrema of this function, we find an equa-
tion

√

1 + (mc/h̄)2ρ2 = h̄c/Ze2, which has a solution
only when Z < h̄c/e2 ≈ 137. At higher values of Z the
effective potential (5) is a monotonic function varying be-
tween E = mc2 at ρ = ∞ and E = −∞ at ρ = 0. Thus
there is no stable solution for a hydrogenic atom at large
nuclear charge.

The difference between the high and low values of Z
can be also seen directly in the exact solution of the Dirac
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FIG. 1: a) Energy levels of superheavy atoms obtained from
Dirac equation for Coulomb potential −Ze2/r, plotted as a
function of ζ = Zα, where Z is nuclear charge, and α = e2/h̄c
is the fine structure constant. Energy is in the units of mc2.
(b) Energy levels for Coulomb potential regularized on the
nuclear radius. As Z increases, the discrete levels approach
the continuum of negative-energy states and dive into it one
by one at supercritical Z > 170 (from Ref.[23]).

equation for a hydrogenic atom,

En,j = mc2






1 +

(Zα)2
(

n− |j|+
√

j2 − (Zα)2
)2







−1/2

,

(6)
with the quantum numbers n = 1, 2..., j = ±1,±2...,
and α = e2/h̄c ≈ 1/137. The expression under the square
root becomes negative when Zα > 1, rendering the eigen-
values (6) with j = ±1 complex-valued. The unphysical
complex energies indicate an intrinsic problem arising in
the Dirac equation at supercritical Z > α−1.
Mathematically speaking, this behavior can be under-

stood as an effect of the 1/r singularity of the Coulomb
potential, making the Dirac operator non-Hermitian and
leading to the breakdown of the Dirac equation. One
could replace the 1/r potential by a regularized poten-
tial, rounded on a characteristic nuclear radius, which can
be achieved by using a suitable nuclear form factor [22].
However, it was found that, after the 1/r singularity is
eliminated and the Dirac equation becomes well defined
as a mathematical problem, the anomalous behavior at
large Z persists.
This problem was analyzed half a century ago [22,23],

and it was predicted that in superheavy atoms with
Z > 170 relativistic effects lead to a reconstruction of
the Dirac vacuum. As the nuclear charge Z increases, it
was found that the energies of discrete states approach
the negative energy continuum, ε < −mc2, and then dive
into it, one after another (see Fig.1). After entering the
continuum, discrete states turn into resonances with a
finite lifetime, which can be described as resonant (or,
quasistationary) states with complex energies.
The finite lifetime of electronic states, which indicates

an instability of superheavy atoms, puts a natural limit
on the extent of the periodic table of elements. As such,
the prediction of this phenomenon caused a lot of inter-
est and excitement. Experiments on heavy-ion collisions
probing this collapse have been suggested and attempted

[24]; however, the results were ambiguous and difficult to
interpret.
Graphene offers a completely new perspective on the

problem of supercritical atoms, with charged impurities
providing a natural realization of the Coulomb poten-
tial. Charge carriers in graphene, which are described
by a massless Dirac equation, mimic Dirac electrons in
the ultrarelativistic regime, ε ≫ mc2. In this case, an
analysis of the balance between the zero-point motion
and Coulomb attraction similar to that leading to Eq.(5)
yields

E(ρ) =
h̄v

ρ
− Ze2

ρ
=
h̄v − Ze2

ρ
. (7)

For Z > α−1 = h̄v/e2, the energy can be driven to arbi-
trarily large negative values by letting the radius ρ tend
to 0; thus we find a break-down or “collapse” of ultra-
relativistic atoms in the supercritical regime Z > α−1.
Due to the low value of the “speed of light” v, the critical
charge in graphene is of the order of one [10]. This makes
charged impurities in graphene a very convenient system
for experimental investigation of this phenomenon.
Electronic states near a charged impurity are described

by the two-dimensional Dirac-Kepler problem

h̄v

(

0 −i∂x − ∂y
−i∂x + ∂y 0

)

ψ =

[

ε− Ze2

κρ

]

ψ. (8)

Properties of the solutions of Eq.(8) depend on the di-
mensionless parameter β = Ze2/h̄vκ, exhibiting two dif-
ferent regimes. For |β| < 1/2, the behavior of states
is consistent with scattering on a weak potential. For
|β| > 1/2, there is an abrupt reconstruction of the Dirac
vacuum around the 1/r potential, which leads to the for-
mation of resonant states lying in the continuum. These
states can be understood as discrete electronic states,
broadened into resonances by their coupling to the con-
tinuum of hole states [11]. Comparing this behavior
to the predictions for superheavy atoms [22,23], we can
identify these two regimes with

no collapse (|β| < 1/2) and collapse (|β| > 1/2). (9)

Note the critical value 1/2 instead of 1 found in three
dimensions.
The formation of resonances can be understood using

scattering states of the Dirac-Kepler problem. Using po-
lar coordinates, x + iy = ρeiϕ, the general solution of
Eq.(8) can be written as a sum of cylindrical waves with
different angular quantum numbers [10]

ψ(ρ, ϕ) =

(

w(ρ) + v(ρ)
[w(ρ) − v(ρ)]eiϕ

)

ρs−1/2ei(m−1/2)ϕeikρ

(10)

where s =
√

m2 − β2, k = −ε/h̄v, and m is a half-
integer angular quantum number. Here w and v are
the amplitudes of the incoming and outgoing cylindrical
waves, satisfying a hypergeometric equation. Solutions
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FIG. 2: (A) The dependence of the scattering phases δm on
energy ε = −h̄v/k, shown for several subcritical and super-
critical values of β = Ze2/h̄v (from Ref.[10]). For subcritical
β, the phases δm have no energy dependence (black line). For
supercritical β, the phases acquire energy dependence, which
becomes stronger as |β| increases. For β < − 1

2
(Coulomb

attraction), the kinks in δm(k), indicate formation of reso-
nant states with complex energies, Re ε < 0, corresponding to
Breit-Wigner resonances in scattering. For β > 1

2
(Coulomb

repulsion), the dependence δm vs. log k is approximately lin-
ear, exhibiting no kinks. (B) The transport cross-section,
Eq.(11), shown as a function of β for several energy values.
Note the Fano-shaped resonances at negative β < − 1

2
, ap-

pearing due to resonant states (kinks in (A)), and oscillations
at β > 1

2
, resulting from the energy-dependent δm.

of this equation, combined with a boundary condition
at short distances, can be used to construct scattering
states. A “zigzag” boundary condition was used in [10],
with ψ2(ρ) = 0 at the radius ρ = r0 on the order of
carbon atom spacing. Other boundary conditions yield
similar behavior.
Scattering phases δm(k), obtained from the asymptotic

ratio v/w = e2iδm(k)+2ikρ (kρ≫ 1), exhibit very different
behavior in the two regimes (9), illustrated in Fig.2. The
resonant states with complex energies, formed at β <
− 1

2 , appear as kinks in the dependence δm vs. k.
The resonant states should manifest themselves exper-

imentally via various transport properties. In particular,
the transport scattering cross-section

σtr =
4

k

∞
∑

m=0

sin2(δm+1 − δm), (11)

exhibits a resonant structure which is shown in Fig.2B.
In contrast, in the subcritical regime |β| < 1

2 the differ-
ences δm+1 − δm are energy-independent, which makes
the cross-section scale as 1/k with a slight asymmetry in
the prefactor for positive and negative β values, which

FIG. 3: (a) Local density of states (12) calculated at a fixed
distance ρ = 103r0 from the charged impurity, where r0 is a
short-distance parameter of the order of carbon lattice spacing
(from Ref.[10]). Peaks in the LDOS, which appear at super-
critical β and move to more negative energies at increasing
|β|, correspond to the resonant states. (b) Spatial map of
the density of states, shown for several values of β, with res-
onances marked by white arrows (from Ref.[11]). Note that
the spatial width of the resonances decreases at they move
to lower energies, ∆ρ ∝ 1/|ε|, while the linewidth increases,
γ ∝ |ε|. The oscillatory structure at positive energies repre-
sents standing waves with maxima at kρ ≈ (n+ 1

2
)π, similar

to those studied in carbon nanotubes [26]. Energy is given in
the units of ε0 = 10−3h̄v/r0 ≈ 30mV for r0 = 0.2 nm.

was discussed in [25].
The most direct signature of resonant states, however,

can be seen in the local density of states (LDOS),

ν(ε, ρ) =
4

πh̄v

∑

m

|ψ(k, ρ)|2 (12)

where ψ(k, ρ) are the scattering states (10). This quan-
tity can be directly measured by energy-resolved scan-
ning tunneling spectroscopy probes.
The energy dependence, Eq.(12), calculated at a fixed

distance from the charged impurity, is illustrated in Fig.3.
Overall, the LDOS is an approximately linear function
of energy, with oscillations at positive energies and sharp
resonances at negative energies, which appear at super-
critical β. The resonances, which occupy a spatial region
of size ρ ≈ h̄v/|ε| near a charged impurity, provide a
clear signature of atomic collapse accessible with scan-
ning probe techniques.
To estimate the critical value of impurity charge Zc =

1/2α, we need to find α = e2/h̄vκ taking into account
screening. Screening due to the dielectric substrate with
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dielectric constant ε is described by κ = (ε+1)/2. More
interesting, however, is the intrinsic screening due to po-
larization of the graphene Fermi sea. Using random-
phase approximation (RPA) for the dielectric function
of undoped graphene, κRPA ≈ 5, and ignoring the effect
of dielectric substrate, we find that Z = 1 is subcritical,
while Z = 2 is supercritical [10]. This conclusion is in
agreement with recent work [27] which analyzes screen-
ing of charged impurity as polarization of Dirac vacuum
in a strong Coulomb field (see also Refs. [20,28]).
It was noted in Ref. [10] that linear screening breaks

down in the supercritical case, for undoped graphene.
The reason is that the vacuum polarization in the pres-
ence of supercritcal 1/r potential, found from the solu-
tion of the noninteracting problem which we considered
above, has a 1/r2 profile. This leads to a log divergence
of the polarization charge, and thus to overscreening, un-
less the effects of interaction within the polarization cloud
are taken into account. It was shown with the help of a
renormalization group argument that the true value of
polarization charge is −(Z − Zc), i.e. the polarization
cloud compensates the excess part of the impurity charge
and brings it down to the critical value.
The profile of the induced polarization can be found

approximately for e2/h̄v ≪ 1 [10], and also for e2/h̄v ≫ 1
[29]. The effective potential, resulting from adding a con-
tribution of polarization charge to the bare 1/r potential,
deviates from Coulomb potential, and thus the above so-
lution of the Dirac-Kepler problem strictly speaking is
not applicable. Still, the qualitative picture described
above, with resonant states appearing in the Dirac con-
tinuum at Z > Zc remains valid even in the nonlinear
screening regime.

III. LORENTZ TRANSFORMATION AND

COLLIMATED TRANSMISSION IN P-N

JUNCTIONS.

A basic property of massless Dirac particles is conser-
vation of chirality, defined as the projection of pseudospin
on the velocity vector. Conserved chirality leads to unim-
peded tunneling through arbitrarily high barriers (the so-
called Klein phenomenon) [34]; particles with conserved
chirality, incident normally on a barrier, exhibit perfect
transmission and zero reflection [6,7]. The Klein effect al-
lows electrons to leak out of any trap [38,39], and makes
electrostatic confinement in graphene more difficult than,
e.g., in gated semiconductor systems. Klein transmission
is also an essential part of theoretical understanding of
transport in systems such as graphene p-n junctions [3].
The range of angles in which transmission can occur

depends on the microscopic details of a potential bar-
rier [6]. For smooth barriers, such as those in which the
potential varies on a scale large compared to the Fermi
wavelength, perfect transmission is restricted to a narrow
range of angles. This is the case for p-n junctions created
by electrostatic gates, which are typically placed few tens

of nanometers above graphene plane [35,36,37].
Collimated transmission in such systems can be ana-

lyzed by replacing the externally imposed electrostatic
field in the region where Klein tunneling occurs by a uni-
form in-plane electric field [7]. For massless Dirac par-
ticles moving in a uniform in-plane electric field E ‖ x,
the transmission coefficient, as a function of electron mo-
mentum projection on the p-n interface, is given by

t(py) = e−λp2
y , λ = πv/h̄|eE| (13)

The range of py in which transmission can occur becomes
very narrow for small E, i.e. for smooth potentials.
What happens to the collimated Klein transmission

(13) in the presence of a magnetic field? The Dirac
equation (3), describing an electron in graphene in the
presence of external fields, exhibits two qualitatively dif-
ferent regimes, depending on the relative strength of the
E and B fields. For weak magnetic fields, |B| < |E|/v,
the picture of collimated transmission described in Ref.[7]
remains essentially unchanged, with perfect transmission
occurring for the incidence angle which is a function of
magnetic field,

θ0 = arcsin(vB/E), t(θ0) = 1. (14)

In contrast, at stronger magnetic field, v|B| > |E|, elec-
tronic states are described by quantized Landau levels
with position-dependent energies [30]. In this regime, in
a clean system, transport can occur only perpendicular
to the electric field.
There are several ways to understand the origin of the

two regimes. Perhaps most easily and elegantly, it can
be seen by employing Lorentz invariance of the equa-
tions of motion, Eq.(3), with respect to Lorentz trans-
formations in which the graphene dispersion velocity v
plays the role of the speed of light. There is a basic
fact, established in special relativity, that for perpendic-
ular electric and magnetic fields, a Lorentz boost can
be performed such that in the moving frame one of the
fields vanishes, while the other field remains nonzero, ex-
periencing Lorentz contraction. The field which can be
eliminated by such Lorentz boost is the weaker of the
two. Thus, for v|B| < |E|, one can eliminate the mag-
netic field by performing a boost to a moving frame with
velocity u = v2B/E. For v|B| > |E|, the electric field
can be eliminated by a boost with velocity u = E/B. In
the first case, with B zero and E nonzero in the moving
frame, we have a situation identical to that studied in
Ref.[7]. In the second case, with E = 0 in the moving
frame, and B finite, electronic states are derived from
quantized Landau levels.
It may be useful to point out that the situation with

nonrelativistic, Galilean transformations is quite differ-
ent. In the presence of perpendicular electric and mag-
netic fields, a Galilean transformation can be used to
eliminate E by performing a boost in the moving frame
with velocity u = E/B. It is not possible, however, to
eliminate magnetic field by a Galilean transformation.
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Given this property of Galilean transformations, one
may be suspicious about drawing conclusions from
pseudo-Lorentz transformations, which appear to be a
kind of mathematical trick, rather than a genuine sym-
metry of the system. To relieve this concern, we now
present another argument leading to the two regimes,
which does not rely on Lorentz invariance (following a
suggestion by F. D. M. Haldane).
Let us consider classical trajectories of a charged parti-

cle with kinetic energy ε(p), which is moving in the fields
E and B. This problem can be described by canonical
equations of motion with a Hamiltonian

H(p, r) = ε(p)− eEx, p = p̃− eA, A = (0, Bx),

where we have chosen the gauge so that the vector po-
tential is parallel to the vector vd = E × B/B2, which
defines classical drift velocity. With this choice of A, and
taking into account conservation of the component of mo-
mentum p̃2 perpendicular to vd, it is straightforward to
write an equation for particle trajectory in momentum
space, given by the energy integral

ε(p)− vd.p = ε0,

where we used the relation p2 = p̃2 − eBx to express x
through p2, absorbing constant p̃2 in ε0. In the case of
massless Dirac particles, with the kinetic energy ε(p) =
±v|p|, we can write the trajectory in polar coordinates
in momentum space as

p(θ) =
ε0

±v − vd cos θ

where θ is the angle measured relative to vd. This for-
mula is nothing else than an equation for conical sections,
familiar from the theory of planetary motion (an electron
is orbiting the Dirac point in a manner similar to a planet,
or a comet, orbiting the Sun). Depending on the relative
magnitude of v and vd, there are two cases,

vd = E/B > v (hyperbola), vd = E/B < v (ellipse),

which coincide with the two regimes identified using
Lorentz transformations. The trajectories are open for
vd > v, and closed for vd < v, corresponding, respec-
tively, to motion that originates at infinity and ends at
infinity, and to periodic cyclotron motion.
Now we proceed to analyze transmission in the regime

v|B| < |E|. As discussed above, we can eliminate B by a
Lorentz boost with rapidity β = −vB/E parallel to vd:

Λ =





γ 0 γβ
0 1 0
γβ 0 γ



 , γ =
1

√

1− β2
. (15)

In the new frame we have B′ = 0, E′ = E/γ.
Since B′ = 0, we can use Eq.(13), with E replaced

by E′, giving the transmission coefficient as a function

of momentum p′y parallel to vd. Expressing p′y and E′

through the quantities in the lab frame, we obtain

T (py) = e−λγ3(py+βε̃)2 , ε̃ = ε/v. (16)

Introducing the incidence angle, vpy = ε sin θ, we find
the value θ = arcsin(vB/E) for which the transmission
is perfect, in agreement with Eq.(14). The angular size
of transmitted beam is a function of B, such that the
beam becomes more collimated at higher B.
In passing between the moving and lab frames we used

the fact that the transmission coefficient, Eq.(16), is a
scalar with respect to Lorentz transformations, Eq.(15).
This is indeed true because transmission and reflection
at the p-n interface is interpreted in the same way by all
observers moving with velocity u ‖ vd.
The conductance can be found by integrating the

transmission (16) over py, which gives [8]

G(B) =

{

G0

(

1− B2/B2
0

)3/4
B < B0

0 B > B0

, (17)

where B0 = |E|/v = π/h̄|e|λ and G0 is the conductance
of a ballistic p-n junction at B = 0, proportional to the
length of the p-n interface, which was found in [7].
The critical field value B0 can be estimated from den-

sity profile in the p-n junction region, which can be found
from electrostatic simulation, as discussed in Refs.[17,31].
Using the relation n = k2F /π, we estimate the electric
field in the junction as eE ≈ 2h̄vkF /d = 2h̄v

√
πn/d,

where d is the width of the density step. This gives
B0 ≈ Φ0

√

n/π/d, where Φ0 = h/e is the flux quan-
tum. For n = 1012 cm−2 and d = 100 nm we estimate
B0 ≈ 2.3T.
Caution should be used when the result (17), describ-

ing the field dependence of conductance in the ballistic
regime, is applied to real systems, such as those stud-
ied in Refs.[31,32]. First, our derivation only accounts
for the current flowing through the entire cross-section
of the system, and not for, e.g., the edge currents. The
latter become important at strong fields, B > B0, when
the system enters the quantized Hall regime, giving a
contribution to conductance of the order of e2/h.
In addition, in studying a p-n junction in the presence

of disorder, one should account for net contribution of
disordered regions to total resistance. A series resistance
model was proposed in Ref.[33] to describe this situation.
However, the magnetic field dependence in the disorder-
dominated transport regime has not yet been analyzed.

IV. KLEIN SCATTERING AND FABRY-PÉROT

RESONANCES IN P-N-P STRUCTURES

Theoretically, Klein scattering is regarded as a funda-
mental mechanism of transport through potential barri-
ers and p-n junctions in graphene [6,7]. Until recently,
however, this theoretical picture was disconnected from
experiment. The manifestations of Klein scattering that
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FIG. 4: Transmission coefficient of p-n-p structure, obtained
from numerical solution of the Dirac equation with potential
U(x) = ax2 − ε, plotted as a function of the component of
electron momentum parallel to the p-n boundaries py and
potential depth ε. At zero magnetic field (a), transmission
exhibits fringes with a phase which is nearly independent of
py. At finite magnetic field (b), fringe contrast reverses its
sign on the parabola (black line), which marks the boundaries

of the interval (22) (from Ref.[9]). Here ε∗ = (ah̄2v2)1/3,
p∗ = ε∗/v.

have been discussed so far, such as collimated transmis-
sion which becomes perfect at normal incidence, can be
easily masked by scattering on disorder. Because disorder
is an integral part of any realistic system, these predic-
tions may be difficult to verify using existing transport
data.

Recently, however, another manifestation of the Klein
phenomenon in transport was discussed, which may of-
fer a more direct experimental signature [9]. The idea
is to refocus attention from Klein transmission to Klein
backreflection, which must vanish at normal incidence.
Since the reflection amplitude is a smooth function of in-
cidence angle θ, which vanishes at θ = 0, it must change
sign when θ varies from positive to negative values. Fur-
thermore, because the sign change translates into a π
phase shift of the reflection phase, it can be revealed by
Fabry-Pérot interference in a p-n-p structure.

The simplest regime to analyze is ballistic transport
through a p-n-p structure. Transmission through two
parallel p-n interfaces, which we label 1 and 2, can be
described by the Fabry-Pérot model,

T (py) =
t1t2

∣

∣1−√
r1r2ei∆θ

∣

∣

2 (18)

FIG. 5: Berry phase for periodic orbit of an electron bounc-
ing between p-n boundaries. As B increases, with p̃y kept
constant, the trajectory evolves from a skinny oval to a less
skinny oval. For typical p̃y the trajectory does not enclose
the origin at small B, giving zero Berry phase. At higher B,
when the origin is enclosed, the Berry phase equals π.

where t1(2) and r1(2) = 1− t1(2) are the transmission and
reflection coefficients for each interface. The phase ∆θ is
a sum of the WKB phase and the phases of the reflection
amplitudes,

∆θ =
2

h̄

∫ 2

1

px(x
′)dx′ +∆θ1 +∆θ2. (19)

Here ∆θ1(2) are the backreflection phases for the inter-
faces 1 and 2, exhibiting a π-jump at zero incidence angle.
One could argue that, since the incidence angles for

two parallel p-n interfaces are the same, the two π-jumps
cancel each other in the net phase ∆θ1+∆θ2, making the
interference in (18) insensitive to this effect. However, as
pointed out in Ref.[9], this cancellation can be eliminated
by applying a magnetic field, which curves electron tra-
jectories and makes the incidence angles unequal.
The effect of the magnetic field can be taken into ac-

count by using the vector potential A = (0, Bx). In this
gauge, the y-component of electron canonical momen-
tum (i.e. the component parallel to the p-n interfaces) is
conserved, and hence one can write the y-component of
electron kinetic momentum as

py(x) = p̃y − eBx, (20)

where the canonical momentum p̃y is a constant of mo-
tion that labels different scattering states. Using this
relation, and evaluating the transmission coefficients on
each interface x = x1(2) with the help of Eq.(13), we

find t1(2) = e−λp2
y
(x1(2)). From this, we obtain reflection

amplitudes

sgn
[

py(x1(2))
]

eiθreg(py)

√

1− e−λp2
y
(x1(2)), (21)

where we factored out the sign, responsible for the phase
jump, and a regular part of the phase eiθreg , as follows
from analyticity in py.
In the model used in Ref.[9], the gate potential was

described by a parabola U(x) = ax2−ε. In this case, ε >

0 creates p-n interfaces at x1(2) = ±
√

ε/a. Linearizing

U(x) near x1(2), we find the parameter λ = π
2 (aε)

−1/2.
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FIG. 6: Resistance of a p-n-p structure, obtained from trans-
mission, shown in Fig.4. FP interference fringes in resistance
as a function of potential depth ε exhibit half-a-period shift
when magnetic field is applied. The units for magnetic field
are B∗ = (h̄/e)(a/h̄v)2/3 (from Ref.[9]).

The sign jumps in expressions (21) occur when
py(x1(2)) = 0, where semiclassical electron trajectories
approach the boundaries 1 and 2 at normal incidence.
We can thus identify a range of values

eBx1 < p̃y < eBx2 (22)

for which the reflection amplitudes have opposite signs.
For these values of p̃y, the FP interference has a π phase
shift compared to what could be inferred from the WKB
phase.
Additional insight into the origin of the π phase shift

induced by magnetic field in FP interference is provided
by a Berry phase argument, which focuses on the proper-
ties of quasiclassical trajectories. There is an analogy be-
tween the Dirac Hamiltonian (1) and the Zeeman Hamil-
tonian of a spin 1/2 in a time varying magnetic field,
with the pseudospin, associated with A and B sublat-
tices, playing the role of spin. If particle motion is pe-
riodic, over each period the wave function gains a phase
given by a half of the solid angle swept by the effective
magnetic field beff(t) = vp(t). In the case of cyclotron
motion, this phase, combined together with the WKB
phase, was used to explain half-integer quantization of
Landau levels [40,41].
Here we apply a similar argument to the trajectory of

an electron bouncing between p-n boundaries. It is in-
structive to do the analysis in momentum space, focusing

on the evolution with increasing B. At small B, since py
is nearly constant (see Eq.(20)), the trajectory maps out
a skinny oval, shown in Fig.5. For typical values of p̃y
this oval does not enclose the origin, and thus the Berry
phase associated with it is zero. For larger B the oval
height increases, until eventually it encloses the origin.
At this point the Berry’s phase becomes equal to π.

This behavior can also be clearly seen in Fig.4, in
which the transmission coefficient, obtained from nu-
merical solution of the Dirac equation with potential
U(x) = ax2 − ε, is displayed. Transmission exhibits FP
interference fringes in the ε direction both at zero field
(panel a) and at finite field (panel b). In the latter case
the fringe contrast also exhibits sign reversal across the
black line. This line is the parabola py = ±eB

√

ε/a,
which marks the boundaries of the interval (22), and sep-
arates regions with opposite phase contrast.

Contrast reversal directly manifests itself in conduc-
tance, which can be found by integrating transmission
over py. Since the fringes in transmission are nearly
vertical (Fig.4), the integral over py yields an oscilla-
tory function of ε. As the B field increases, making
the region with inverted contrast wider, the oscillations
in conductance shift by approximately one half-period
(see Fig.6). The shift occurs in relatively weak fields
B ∼ B∗ = (h̄/e)(a/h̄v)2/3, which gives a few hundred of
milliTesla for realistic parameter values.

Fabry-Pérot oscillations in a ballistic p-n-p structure
were reported in recent experiment [21]. The behavior
of the FP fringe contrast under applied magnetic field is
reminiscent of that in Fig.6, with a shift of approximately
half-a-period observed in the fields of about 0.2 − 0.5T.
The data [21] also exhibits an interesting crossover be-
tween FP resonances at B = 0 to Shubnikov-deHaas os-
cillations at high B, which indicates that momentum-
conserving transport through the structure, which is
responsible for FP resonances, gives way to disorder-
dominated transport at high magnetic fields.

In summary, graphene is a fertile system in which many
interesting quantum-relativistic phenomena, or their con-
densed matter analogs, can be explored. As a material
amenable to various experimental techniques, graphene
offers new interesting connections between condensed
matter and high-energy physics.

We thank F. D. M. Haldane, P. Kim, A. K. Savchenko,
and A. Young for useful discussions.
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18 J. González, F. Guinea, and M. A. H. Vozmediano, Nucl.

Phys. B 424, 595 (1994).
19 D. T. Son, Phys. Rev. B 75, 235423 (2007)
20 R. R. Biswas, S. Sachdev, and D. T. Son, Phys. Rev. B76,

205122 (2007).
21 A. F. Young, P. Kim, arXiv:0808.0855
22 I. Pomeranchuk and Y. Smorodinsky, J. Phys. USSR 9, 97

(1945)
23 Y. B. Zeldovich and V. S. Popov, Usp. Fiz. Nauk 105, 403

(1971); Eng. trans.: Sov. Phys. Usp. 14, 673 (1972).
24 V. S. Popov, “Critical Charge in Quantum Electrodynam-

ics,” in: A. B. Migdal memorial volume, Yadernaya Fizika
64, 421 (2001) [Engl. transl: Physics of Atomic Nuclei 64,
367 (2001)]

25 D. S. Novikov, Phys. Rev. B 76, 245435 (2007)

26 M. Ouyang, J.-L. Huang, and C. M. Lieber, Phys. Rev.
Lett. 88, 066804 (2002).

27 I. S. Terekhov, A. I. Milstein, V. N. Kotov, and O. P.
Sushkov, Phys. Rev. Lett. 100, 076803 (2008)

28 V. N. Kotov, B. Uchoa, and A. H. Castro Neto, Phys. Rev.
B 78, 035119 (2008).

29 M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, Phys.
Rev. B76, 233402 (2007).

30 V. Lukose, R. Shankar, and G. Baskaran, Phys. Rev. Lett.
98, 116802 (2007).

31 R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W.
Horsell, F. Guinea, Nano Lett. 8 (7), 1995 (2008).

32 N. Stander, B. Huard, D. Goldhaber-Gordon,
arXiv:0806.2319

33 M. M. Fogler, L. I. Glazman, D. S. Novikov, B. I.
Shklovskii, Phys. Rev. B 77, 075420 (2008).

34 O. Klein, Z. Phys. 53, 157 (1929).
35 B. Huard et al., Phys. Rev. Lett. 98, 236803 (2007).
36 J. R. Williams, L. C. DiCarlo, C. M. Marcus, Science 317,

638 (2007).
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