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Abstract

Understanding whether and how the places where people live, work, and play are associated with 

health behaviors and health is essential to understanding the social determinants of health. 

However, social-spatial data which link a person and their attributes to a geographic location (e.g., 

home address) create potential confidentiality risks. Despite the growing body of literature 

describing approaches to protect individual confidentiality when utilizing social-spatial data, peer-

reviewed manuscripts displaying identifiable individual point data or quasi-identifiers (attributes 

associated with the individual or disease that narrow identification) in maps persist, suggesting that 

knowledge has not been effectively translated into public health research practices. Using sexual 

and reproductive health as a case study, we explore the extent to which maps appearing in recent 

peer-reviewed publications risk participant confidentiality. Our scoping review of sexual and 

reproductive health literature published and indexed in PubMed between January 1, 2013 and 

September 1, 2015 identified 45 manuscripts displaying participant data in maps as points or 

small-population geographic units, spanning 26 journals and representing studies conducted in 20 

countries. Notably, 56% (13/23) of publications presenting point data on maps either did not 
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describe approaches used to mask data or masked data inadequately. Furthermore, 18% (4/22) of 

publications displaying data using small-population geographic units included at least two quasi-

identifiers. These findings highlight the need for heightened education for researchers, reviewers, 

and editorial teams. We aim to provide readers with a primer on key confidentiality considerations 

when utilizing linked social-spatial data for visualizing results. Given the widespread availability 

of place-based data and the ease of creating maps, it is critically important to raise awareness on 

when social-spatial data constitute protected health information, best practices for masking 

geographic identifiers, and methods of balancing disclosure risk and scientific utility. We conclude 

with recommendations to support the preservation of confidentiality when disseminating results.
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Introduction

Understanding whether and how the places where people live, work, and play are associated 

with health behaviors and outcomes is an essential underpinning of public health, as 

evidenced by the early work of John Snow (Snow, 1855) during the London cholera 

epidemic and the growing current interest in using geospatial data in public health research 

(e.g., Cooper et al., 2014; Diez-Roux, 2000; Law et al., 2004). The relative ease of using 

geographic information system (GIS) software (see Glossary of Key Terms, Figure 1), 

combined with the availability of individual-level population data (“microdata”) have 

significantly expanded opportunities for public health researchers to explore relationships of 

place to health, and to visualize results using maps (Brownstein et al., 2006a; Chang et al., 

2009; A. J. Curtis et al., 2006; Lozano-Fuentes et al., 2008; Palmer et al., 2013; Ruggles, 

2014). The growing presence of datasets that link spatial information such as individual 

home address to individual attributes such as gender, race, or behaviors (“linked social-

spatial data”) facilitates this evolving research agenda. For people studying and intervening 

in sexual health, linked social-spatial data provide unique insight into etiologic patterns of 

disease (e.g., identifying spatial patterns of sexually-transmitted infections [STIs]), 

prevention planning (e.g., using space and time sampling methodologies to identify venues 

where high risk sexual and drug-use behaviors occur), and resource allocation (e.g., 

prioritization of HIV/AIDS funding to geographic areas with high prevalence of HIV 

infection).

While linked social-spatial data have clear benefits for public health research and 

interventions, their collection and use create potential risks (Wartenberg & Thompson, 

2010). In 2006, a series of articles brought attention to the widespread publication of maps 

including unmasked individual-level point data (e.g., points representing the latitude and 

longitude of an individual’s home), demonstrating the relative ease and troubling accuracy 

through which these points could be reverse coded to physical addresses (Brownstein et al., 

2006a; Brownstein et al., 2006b; A. J. Curtis et al., 2006). Kounadi and Leitner 

demonstrated that between 2005 and 2012, the number of published articles including maps 
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with unmasked individual point data in 19 GIScience and geography journals increased, 

potentially revealing more than 68,000 home addresses (Kounadi & Leitner, 2014).

Collectively, these findings underscore that despite growing literature raising the alarm about 

potential confidentiality breaches, as well as development of new methods for geomasking 

spatial data (e.g., Allshouse et al., 2010; Bader et al., 2016; Gutmann et al., 2008; Hampton 

et al., 2010; Kounadi et al., 2013; Kounadi & Leitner, 2015; Krumm, 2007; Seidl et al., 

2015; VanWey et al., 2005), many public health researchers remain unaware of the potential 

risks and evolving solutions to help mitigate these risks. Our failure to effectively translate 

existing knowledge into practice may be due in part to the evolving intersection of two fields 

of inquiry (e.g., geography and public health). Discourse about geo-privacy as well as 

discussion of methods for effective geomasking have been concentrated largely in 

geography/GIScience and in highly specialized and/or technical journals (e.g., International 

Journal of Health Geographics, Statistics in Medicine). However, geocoding, mapping, and 

spatial analytic methodologies have simultaneously diffused to non-geographically trained 

investigators in public health. Given the rapid advances in technology, the absence of 

uniform guidelines for using linked social-spatial data for social and behavioral health 

research, and an absence of modules on linked social-spatial data in core training platforms 

for public health researchers (e.g., Human Subjects Protections, Good Clinical Practices), it 

is critically important that we raise awareness and educate investigators who may not 

otherwise be familiar with past work (Gutmann et al., 2008; National Research Council 

(U.S.). Panel on Confidentiality Issues Arising from the Integration of Remotely Sensed and 

Self-Identifying Data., 2007; VanWey et al., 2005).

The aim of this paper is to bridge the critical gap between knowledge and practice by 

providing readers with a primer on key considerations for protecting participant 

confidentiality when disseminating study results generated from linked social-spatial data, 

including guidance on when geospatial data constitute protected health information (PHI) 

and current best practices for masking geographic identifiers. Using sexual and reproductive 

health, a field in which researchers routinely collect data on stigmatizing behaviors and 

health outcomes, as a case study, we characterize the extent to which peer-reviewed 

literature published and indexed in PubMed between January 1, 2013 and September 1, 2015 

risks participant confidentiality by presenting maps with 1) unmasked point data or 2) small-

population area-based geographic units that include additional demographic information 

associated with the individual or disease helping to narrow identification (“quasi-

identifiers”). Geospatial data can be uniquely identifying when combined with quasi-

identifiers (El Emam et al., 2010; Kounadi et al., 2013; Sweeney, 2000, 2002; VanWey et al., 

2005). However, to our knowledge, no previous studies have assessed the extent to which 

maps in peer-reviewed publications risk participant confidentiality by including quasi-

identifiers when presenting results using small-population area-based geographic units. In 

contrast to Kounadi and Leitner’s review, we did not restrict this review to journals that 

specialize in GIScience and did not limit our review to maps that present participant data 

using points or trajectories. We conclude with recommendations to support the preservation 

of participant confidentiality when disseminating study results generated from linked social-

spatial data.
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Defining Linked Social-Spatial Data

Understanding when geospatial units constitute PHI is critical to discussions of maintaining 

confidentiality of linked social-spatial data for public health research (Nass et al., 2009). For 

the purposes of our analysis, we utilize the Health Insurance Portability and Accountability 

Act (HIPPA) Privacy Rule definition of PHI. We have selected this definition because it 

provides a clear, minimum standard of what constitutes PHI and many researchers exploring 

the social determinants of health in the United States (U.S.) are likely to draw data or work 

for agencies considered covered entities (e.g., designated health care groups, organizations, 

or businesses). However, the definition of PHI may vary based on additional institutional and 

funder regulations, and state and country guidelines (e.g., Boulos et al., 2009; El Emam et 

al., 2015a; Lovett et al., 2008; Yarmohammadian et al., 2010). We urge researchers using 

linking social-spatial data to determine the specific requirements for their own research.

According to the Privacy Rule, PHI is defined as “individually identifiable health 

information transmitted or maintained by a covered entity or its business associates in any 

form or medium” (Office of Clinical Research, 2012). Common identifiers include name and 

birth date. Geographic subdivisions smaller than a state (e.g., county, city, precinct, postal 

code, census tract, street address, latitude and longitude) are considered identifiable when 

linked to individual level health information (e.g., any information related to past, present, or 

future physical or mental health, including behaviors and health care utilization). For 

example, census tracts are geographic units utilized by the U.S. Census Bureau which 

contain on average 4,000 persons (though some have more or many less) and are typically 

homogeneous with respect to population characteristics, economic status, and living 

conditions (Krieger et al., 2003b). A dataset that combines an individual’s census tract with 

behavioral data (e.g., frequency of unprotected sex in the past six months) represents 

identifiable linked social-spatial data, even if the individual’s name or exact address has 

been stripped from the dataset.

Data are considered de-identified in accordance with the HIPPA Privacy Rule if the data do 

not “identify an individual and if the covered entity has no reasonable basis to believe it can 

be used to identify an individual” (Office of Clinical Research, 2012). There are two 

approaches to de-identify geographic information using these guidelines: 1) removing or 

aggregating geographic identifiers to large-population area-based units; and 2) applying 

statistical or scientific principles to render information not individually identifiable 

(“geomasking”) by a person with “appropriate knowledge and experience” (Office of 

Clinical Research, 2012).

Disclosure risk and approaches to protecting individual confidentiality

Disclosure risk associated with visualizing linked social-spatial data depends on the 

geographic coverage of the data, whether and how geographic units and individuals were 

sampled, the availability of quasi-identifiers, the availability of previously generated datasets 

or maps, and the heterogeneity of individuals and sample clusters (A. Curtis et al., 2011; El 

Emam et al., 2011; El Emam et al., 2015b; VanWey et al., 2005). To date, there is no 

universal standard for “adequate confidentiality protection” or “acceptable risk” (VanWey et 
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al., 2005). Selecting an approach to reduce the probability of identifying individuals, while 

preserving the characteristics of the geographic data for valid inference depends in part on 

the nature of the data, acceptable confidentiality risk, and current and future use of the data 

(Armstrong et al., 1999; A. Curtis et al., 2011; El Emam et al., 2011; El Emam et al., 2015b; 

Kounadi & Leitner, 2015; Seidl et al., 2015; VanWey et al., 2005). For example, point data 

are more suitable for disease surveillance and outbreak investigation, but have a high risk of 

compromising individual identity if released publicly. In contrast, using area-based 

geographic units with larger population sizes may be less likely to compromise individual 

confidentiality (A. Curtis et al., 2011) and can be used to explore contextual associations of 

place and behavioral or disease outcomes (e.g., associations between living in high poverty 

areas and sexual risk behaviors), but are less sensitive to cluster detection and may fail to 

capture relationships that occur on a smaller geographic scale (Krieger et al., 2003a; Krieger 

et al., 2003b; Oakes & Kaufman, 2006). Table 1 provides an overview of several approaches 

to simultaneously preserve the confidentiality of individual records and the geographic 

attributes of the data (“geomasking”). Table 1 is based on a framework first presented by 

Armstrong and colleagues in 1999 (Armstrong et al., 1999), but has been expanded to 

include more recent adaptive geomasking and simulation techniques (Allshouse et al., 2010; 

Hampton et al., 2010; Wieland et al., 2008). For visual depiction of geomasking approaches, 

please see Kounadi and Leitner (Kounadi & Leitner, 2014) and Zandbergen (Zandbergen, 

2014).

Case Study: Visual presentation of unmasked point data in recent journal 

publications related to sexual and reproductive health

Scoping Review Methods

We conducted a scoping review of all articles published and indexed in PubMed between 

January 1, 2013 and September 1, 2015 using the search terms “(map OR mapping OR 

geographical OR geographic OR GIS OR geospatial OR spatial) AND (sexual health OR 

sexual behavior OR reproductive health OR HIV OR AIDS OR STI)” and filters “English” 

and “Humans” (Figure 2). A scoping review is designed to rapidly assess a large volume of 

literature in order to provide an overview of the type, extent, and quantity of research on a 

given topic (Arksey & O’Malley, 2005; Levac et al., 2010; Littell et al., 2008). We based key 

words on the methods utilized by Brownstein and colleagues (Brownstein et al., 2006a; 

Brownstein et al., 2006b), but included additional content-specific key words in order to 

limit the search to content areas related to sexual and reproductive health. We first excluded 

articles that were not relevant to the review based on the title and abstract (e.g., laboratory/

molecular science, fields unrelated to sexual and reproductive health [e.g., brain science, 

audiology], reviews and commentaries). Secondly, all remaining articles were inspected to 

determine whether they included maps. For articles including maps, we reviewed the 

methods, results, and figures to determine whether the maps displayed linked social-spatial 

data, and if so, the unit at which data were presented. For maps presenting data as points or 

geographic units with average population sizes ≤30,000, we further reviewed the methods, 

results, and figures to determine if additional quasi-identifiers were presented, and for point 

data, whether and how the data were masked. For articles presenting point data, we also 

researched the data source in order to identify whether the authors utilized secondary 
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datasets in which geographic identifiers were masked by the data custodian prior to release. 

We selected 30,000 as a cut-off because past studies have successfully identified individuals 

from publically-available datasets including postal code information (Sweeney, 2002), and 

the average size of a U.S. postal code is 30,000. We categorized articles that presented maps 

as follows:

1. Maps did not display linked social-spatial data: Articles in this category 

included maps that did not present linked social-spatial data, such as maps 

for reference purposes only (e.g., map of country where research was 

conducted) or maps that presented locations of non-human subjects (e.g., 

HIV testing clinics), or microdata on individuals only (e.g., data obtained 

from U.S. Census).

2. Data aggregated to units with average populations larger than 30,000 

people: Articles in this category included maps displaying linked social-

spatial data at an aggregated unit with an average population size greater 

than 30,000 people and were unlikely to risk individual participant 

confidentiality.

3. Data aggregated to units with average populations ≤30,000 people: 

Articles falling in this category included maps displaying linked social-

spatial data at an aggregated unit with an average population size ≤30,000 

people that could be used as a proxy for a neighborhood or community or 

could risk individual confidentiality in the presence of quasi-identifiers.

4. Point data: Articles in this category included maps that presented point 

data representing home addresses or individual trajectories associated with 

confidential individual-level information. This category was further 

subdivided as follows:

a. Masked data included maps that presented point data and 

either included information on whether or how the points 

were masked or utilized datasets that were masked by the 

data custodian prior to release for secondary data analyses.

b. Insufficiently masked point data: In reviewing articles in 

the “masked’ category, we determined that a number of 

manuscripts described masking data points included in 

maps, but subsequently included sufficient information in 

the methods, results, or maps for the authors to question 

whether participant confidentiality was adequately 

protected (e.g., presence of multiple quasi-identifiers, 

assigning points to the nearest intersection of two streets 

and providing street-level maps).

c. Unmasked or no masking information included maps that 

presented point data and did not include information on 

whether or how the points were masked. This classification 
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is consistent with past reviews (Brownstein et al., 2006b; 

Kounadi & Leitner, 2014).

All manuscripts were reviewed and categorized as described above by DFH. During this 

process, manuscripts that could not be clearly categorized were discussed and categorized 

based on consensus by DFH, SAM, and MRK. All manuscripts categorized as 

“insufficiently masked point data” were reviewed and categorized based on consensus by 

DFH, SAM, and MRK. As a final step, a random selection of 20 (43%) manuscripts 

displaying point data or data aggregated to units with average populations ≤30,000 people 

was reviewed and categorized by MRK. This categorization was compared with the primary 

coder (DFH) and discrepancies discussed. Final intercoder reliability was 95%.

Scoping Review Results

As outlined in Figure 2, our review of 1,171 manuscripts published and indexed in PubMed 

between January 1, 2013 and September 1, 2015 identified 151 manuscripts related to sexual 

and reproductive health including maps. Of these 151 manuscripts, 73 (48%) included maps 

that did not display linked social-spatial data and 33 (22%) displayed data at a geographic 

unit with an average population size greater than 30,000. Forty-five manuscripts (30%) 

presented linked social-spatial data in maps using geographic units with average population 

sizes ≤30,000 or points. These 45 studies were published in 26 journals and represent data 

from 20 countries.

Twenty-three manuscripts displayed maps with linked social-spatial point data. Of these 23 

manuscripts, 10 (43%) manuscripts presented masked point data: six utilized secondary 

datasets masked by the data custodian prior to release (i.e., DHS Program Demographic and 

Health Surveys), two displayed data in the absence of geographic references, and two stated 

data were “anonymized” but did not provide sufficient information for us to further assess 

masking. Thirteen manuscripts (56%) displayed maps with linked social-spatial point data 

that either did not include details on whether or how data were masked (n=8) or were 

insufficiently masked based on the methods described (n=5). For example within the 

“insufficiently masked” category, one manuscript noted that household points had been 

randomly moved a distance likely to locate the point within the same neighborhood/nearby 

properties. Another masked residential addresses by displaying point data for individuals in 

a small statistical area centroid, but displayed these points in a series of maps allowing the 

reader to determine not only the statistical area, but also the race, ethnicity, gender, and 

sexual orientation of the individual. A third manuscript displayed point data within a well-

demarcated community. Although the author did not include specific geographic references 

in the text or map, previous publications utilizing the same dataset presented aerial photos, 

allowing us to identify the community and even specific households identified in the figure. 

These 13 manuscripts, published in 9 different journals and representing data from five 

countries, represent potential confidentiality breaches of 14,581 study individuals, the 

majority of which reported highly stigmatized behaviors (e.g., men who have sex with men 

[MSM], “high risk” sexual behaviors, or illicit drug use) or health conditions (e.g., HIV 

infection, tuberculosis). Notably, 7 of these 13 studies utilized data from U.S. populations.
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Twenty two manuscripts displayed spatial data using geographic units with average 

population sizes ≤30,000. Four (18%) of the manuscripts in this category provided at least 

two additional quasi-identifiers (e.g., race, ethnicity, gender, sexual orientation, etc.) on the 

map or in the manuscript text. Depending on the area’s sociodemographic composition, 

these manuscripts potentially compromised the confidentiality of up to 668 individuals. 

Representing data from three countries, these four studies were published in four journals. 

Two of these four studies utilized data from U.S. populations.

Discussion

Our scoping review identified 17 manuscripts related to sexual and reproductive health 

published and indexed in PubMed between January 1, 2013 and September 1, 2015 

presenting insufficiently masked point data or small-population geographic units with quasi-

identifiers or did not include details on whether or how data were masked, potentially 

compromising the confidentiality of study participants. Similar to Kounadi and Leitner, we 

found that over half of manuscripts including maps with point data presented point data that 

were either unmasked or did not include details on whether or how data were masked 

(Kounadi & Leitner, 2014). Notably, our review identified 45 publications including maps 

representing point data or small-population areal units. These manuscripts spanned 26 

different journals and included data from 20 countries, underscoring the 1) broad use and 

publication of linked social-spatial data to explore the social determinants of health and 2) 

urgent need to ensure that researchers utilizing these data are well-versed on confidentiality 

considerations associated with using linked social-spatial data and approaches to mitigate 

these risks. Notably, the vast majority of studies presenting unmasked or insufficiently 

masked point data were based on U.S. populations. It is likely that our review, which does 

not extend to products not subject to the rigor of peer-review (e.g., reports, presentations), 

underestimates the extent to which presented maps compromise individual confidentiality.

The potential for harm associated with confidentiality breaches is particularly salient for 

individuals associated with stigmatizing behaviors (e.g., injection drug use) or conditions 

(e.g., HIV infection). Despite the growing body of literature describing approaches to 

preserving individual confidentiality when utilizing linked social-spatial data —and multiple 

layers of review by authors, reviewers, and editorial staff required prior to publication— 

peer-reviewed manuscripts which display identifiable individual point data or include quasi-

identifiers in maps persist. These transgressions violate a fundamental ethical obligation to 

protect individual confidentiality and may be due in part to a lack of uniform guidelines and 

rapid advances in technology (Chang et al., 2009).

Our discussion of the confidentiality considerations surrounding the use of linked social-

spatial data to explore the social determinants of sexual health follows the long debated 

challenge of how best to balance individual interests and the health of the public 

(Wartenberg & Thompson, 2010). The tension between preserving confidentiality while also 

ensuring scientific utility is evident when considering linked social-spatial data. Approaches 

are needed which simultaneously protect individual confidentiality while also maintaining 

spatial attributes of the data. We have a commitment to individuals involved in research to 

protect their data. However, disseminating study results is not only critical to advancing 
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science, but also maximizes value from public dollars spent on research and demonstrates 

respect for an individual’s time and efforts. Good stewardship is a key factor in ensuring 

these data continue to be collected and made available. Several manuscripts identified in our 

review attempted to mask individual point data, but did so inadequately or incompletely 

described efforts taken. Given the confidentiality risks associated with publishing point data 

on maps, even when geomasked, researchers should have clear justification for the added 

value of presenting data at this level (Brownstein et al., 2006a; Brownstein et al., 2006b; A. 

J. Curtis et al., 2006; Kounadi & Leitner, 2014). In many instances it may be possible for 

investigators to use point data or small areal units in analysis, but present summaries of their 

results as cluster statistics, aggregated maps, or tabular data, thus limiting the public 

dissemination of the PHI used in analysis. Decisions about whether to include maps, and the 

spatial unit if included, should be based on confidentiality and social harm considerations 

(including potential stigmatization of communities) as well as scientific utility. For example, 

although visually appealing, presenting point data or small areal units may not provide any 

additional information beyond what is already provided in study tables or results (e.g., 

cluster statistics). Alternatively, patterns or spatial distribution of data may be presented 

using other formats, such as aggregating point data to large-population areal units or 

presenting data in the absence of all geographic context. For an example of presenting data 

in the absence of all geographic context, see Chamie and colleagues (Chamie et al., 2015). 

However, even when presenting alternative formats, unintended consequences should be 

considered. For example, releasing or displaying HIV prevalence rates by smaller area-based 

units or mapping areas where “high risk” groups congregate may help HIV service 

organizations identify how best to allocate limited resources (Lorway & Khan, 2014). In 

contrast, this same information may result in marginalization of neighborhoods and labeling 

of its inhabitants as “high risk”. Notably, venue-mapping may risk social harms, particularly 

if maps display venues where congregants engage in illegal or highly stigmatized behaviors 

(e.g., MSM venues in countries where homosexuality is illegal). Decisions on whether and 

how to display spatial data visually, including whether maps should made available only 

through restricted access, should be made and implemented by teams with sufficient 

expertise in the analytic methods being applied, regulations, and the topic area.

We aim to increase awareness and inform future dialogue so that researchers, editors, and 

other public health professionals can make informed decisions on how best to disseminate 

findings. Based on the results of our scoping review and review of current best practices, we 

recommend the following:

1. Develop and include a module about utilizing spatial data as a standard 

component of Human Subjects Training for all professional in the field, 

including research and editorial staff. The Collaborative Institutional 

Training Initiative (CITI Program) provides peer-reviewed web-based 

Human Subjects Training for academic, government, and commercial 

organizations globally and is utilized by numerous organizations likely to 

engage in place-based human subjects research (Collaborative Institutional 

Training Initiative). Given the broad reach of this organization, the use of 

peer-review, and the established record in providing Human Subjects 

Training, CITI represents a likely institution to lead this effort.
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2. Include modules on confidentiality and stigma considerations in GIS 

tutorials and in academic coursework. This manuscript, including the 

citations included herein, draws upon both seminal and emerging work in 

this field and is intended to serve as a reference on confidentiality and 

stigma considerations when utilizing social-spatial data. The GIS&T Body 

of Knowledge (http://www.aag.org/bok/), a free online reference 

presenting a variety of topics relevant to GIScience may also serve as an 

additional resource (Ahearn et al., 2013; DiBiase et al., 2007).

3. Continue funder support for research to determine levels of privacy 

protection and scientific utility provided by geomasking, including 

acceptable confidentiality protections for dissemination by user and 

research stage. For example, the National Institutes of Health have 

demonstrated a commitment in this area, as evidenced by the Big Data to 

Knowledge (BD2K) Initiative (Margolis et al., 2014) and the 2016 

Conference on Geospatial Approaches to Cancer Control and Population 

Sciences (National Cancer Institute, 2016).

4. Establish uniform reporting requirements for presenting linked social-

spatial data, including (a) what geographic unit(s)/population size(s) of 

data may be presented; (b) guidelines for descriptions of methods used to 

protect individual confidentiality in publications; and (c) standard editorial 

procedures, including reviewer evaluative criteria, for ensuring published 

maps do not risk individual confidentiality. At minimum, any manuscript 

presenting social-spatial data using maps should be evaluated for potential 

confidentiality and stigma considerations by a peer-reviewer(s) with 

sufficient expertise in the topic area and methodology presented. However, 

evaluation of confidentiality considerations requires that authors report 

masking approaches as they would other aspects of their research (e.g., 

research design, analytic approaches). As noted previously, a number of 

the manuscripts in the “Unmasked or no masking information” category 

presented point data in maps but did not describe whether or how points 

were masked. It is possible that these authors took adequate precautions to 

protect participant confidentiality, but did not include this information in 

the manuscript due to word limitations, underscoring the need for editorial 

teams and reviewers to emphasize the value of this information. Of note, 

there may be circumstances when not fully describing masking methods is 

preferable (e.g., detailed description of masking facilitates reverse 

identification). In these instances, authors should state that they 

intentionally left masking procedures vague in order to protect participant 

confidentiality and potentially provide additional details upon request.

5. Expand CONSORT (Campbell et al., 2012) and TREND (Des Jarlais et 

al., 2004) reporting guidelines for randomized and non-randomized 

designs to include reporting of methodologies specific to linked social-

spatial data (e.g., geomasking). The use of standardized reporting 

improves the quality reporting of research in peer-reviewed publications 
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(Plint et al., 2006; Turner et al., 2012) and numerous high impact peer-

reviewed public health journals already endorse the use of CONSORT 

(e.g., The Lancet) and TREND (e.g., AIDS and Behavior).

The widespread availability of place-based data and the emerging nature of publicly 

available spatial data which capture activity spaces (e.g., point data collected from Twitter, 

geolocating phones using apps) will expand our ability to explore whether and how place 

contributes to the health of individuals and communities (Brownstein et al., 2006a; Chang et 

al., 2009; A. J. Curtis et al., 2006; Duncan et al., 2014; Lozano-Fuentes et al., 2008; Palmer 

et al., 2013). While these advances offer exciting research opportunities to improve the 

public’s health, these rapidly advancing technologies highlight the challenges associated 

with establishing guidelines for utilizing linked social-spatial data to explore the social 

determinants of health, and underscore the need for ongoing dialogue across key 

stakeholders (e.g., editors, public health professionals, data custodians, community-based 

organizations, communities) and leadership by professional organizations (e.g., International 

Committee of Medical Journal Editors, International AIDS Society, Association of 

American Geographers, International Union for the Scientific Study of Population) so as to 

preserve individual confidentiality and minimize group-level social harms while maximizing 

the benefit of this research for society at large.
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Research Highlights

• Using linked social-spatial data in sexual health research may risk 

confidentiality

• Over half of articles presenting point data on maps did not mask data 

adequately

• Several articles included maps with quasi-identifiers

• Publication of maps risking confidentiality occurs across a range of 

journals

• Findings highlight a need for heightened education for researchers and 

editors
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Figure 1. 
Glossary of key terms relevant to confidentiality considerations when visualizing results 

generated from linked social-spatial data
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Figure 2. 
Scoping review of publications related to the social determinants of sexual or reproductive 

health including identifiable linked social-spatial data published and indexed in PubMed 

between January 1, 2013 and September 1, 2015
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Table 1

Approaches to masking geographic identifiers based on the framework provided by Armstrong and Colleagues 

(Armstrong et al., 1999)

Approach Description Strengths Challenges

Record
Transformation

Records are aggregated across
covariate patterns, certain records
are suppressed, sampled or
multiplied by random noise

Limits individual re-identification Obscures spatial details needed
for spatial analyses (e.g., cluster
detection)
Results in missing data

Spatial
Aggregation

Data is summarized by spatial
units (e.g., assigned to an areal
unit polygon such as a census
tract)

Limits individual reidentifcation,
even at very small units (
A. Curtis et al., 2011)
Depending on unit, may
facilitate easier data
sharing/access

Obscures spatial details needed
for spatial analyses (e.g., cluster
detection) (Hampton et al., 2010)
Units may not correspond to
meaningful social or spatial
divisions (e.g., modifiable unit
problem) (Oakes & Kaufman, 2006)
Spatial units may not perform the
same for all outcomes (Krieger et al., 2002)

Point
Aggregation

Points which are in geographic
proximity are replaced by a
composite point (e.g., points are
clustered and assigned to an areal
unit centroid)

May allow for analyses that
require point data

Clustering techniques in and of
themselves are not benign and
may introduce error in spatial
analyses (e.g., inaccurate cluster
detection) (Hampton et al., 2010)

Affine
Transformation

Points are displaced by fixed
increments (translation), scaling
constants (scale), rotating each
point by a fixed angle around the
pivot point (rotation), or a
combination of the above
(concatenated)

Translation preserves overall
density, relative density, and
directional information
Techniques can be combined
to introduce more uncertainty

Displacement constants cannot be
shared
May not provide sufficient
anonymity (Wieland et al., 2008)
Spatial attributes of data
skewed/lost

Random
Perturbation

Displaces points by a random
increment and direction. Common
techniques include randomized
skew and Gaussian skew.

Displacement can be bounded
by geographic boundaries (e.g.,
within census tracts)
Introduction of random effects
may reduce re-identification
risks
Gaussian skew displacement
varies by population density
(e.g., points in rural areas are
displaced by greater distance
than urban areas) (Cassa et al., 2008)
Cluster detection superior to
aggregation (Hampton et al., 2010)

Does not preserve relative
locations and orientation of points
Randomized skew does not
account for underlying population
density
Points may be displaced a very
small distance from original point
Release of multiple, datasets
masked using Gaussian skew
may provide sufficient data for
reconstruction of original data
points (Cassa et al., 2008)
Gaussian skew displacement
parameters are user defined and
requires an understanding of
acceptable re-identification risk

Adaptive Techniques

Donut
Geomasking

More recent, adaptive geomasking
technique that displaces points
randomly by a minimum distance,
but less than a maximum distance
(Allshouse et al., 2010; Hampton 
et al., 2010)

Displacement can be bounded
by geographic boundaries (e.g.,
within census tracts)
Enhanced confidentiality
protections provided by
minimum displacement
parameters
Accounts for population density
Cluster detection superior to
aggregation (Hampton et al., 2010)

Displacement parameters are user
defined and requires an
understanding of acceptable re-
identification risk
Heterogeneous areas require
greater displacement (Allshouse et al., 2010)

Simulation Mathematical models (e.g., linear
programming, multiple 
imputation)
used to simulate new deidentified
latitude and longitude which
replace original data (Paiva et al., 
2014
;Wang & Reiter, 2012;
Wieland et al., 2008)

Displacement can be bounded
by geographic boundaries (e.g.,
within census tracts)
Preserves clusters
Moves point minimum specified
distance
Replaces participant
geographic data with simulated
data

Complex approaches that also
require point data
Displacement parameters are user
defined and requires an
understanding of acceptable re-
identification risk
Simulated data points coincide
with actual data
More recent approaches not
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Approach Description Strengths Challenges

evaluated extensively in practice
(Paiva et al., 2014; Wang & Reiter, 2012; 
Wieland et al., 2008)
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