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) Abstract

() Widespread interest in the diffusion of information thrbugocial networks has produced a large number of Social Digsamodels. A
O majority of them use theoretical hypothesis to explainrtiiifusion mechanisms while the few empirically based omesrage out their
(/) measures over many messages of different content. Our ieaipiesearch tracking the step-by-step email propagatfoan invariable viral
. marketing message delves into the content impact and heaveied new and striking features. The topology and dynauwfithe propagation
cascades display patterns not inherited from the email ar&sacarrying the message. Their disconnected, low tigitgittree-like cascades
« == present positive correlation between their nodes proitybd forward the message and the average number of neighibey target and show
increased participants’ involvement as the propagatidhsplength grows. Such patterns not described before, micaged by any of the
>’existing models of information diffusion, can be explairigarticipants make their pass-along decisions baseduehigon local knowledge
< of their network neighbors affinity with the message cont& prove the plausibility of such mechanism through a z¢glj agent-based
&model that replicates thaffinity Pathsobserved in real information diffusion cascades.

‘;l Key words: Word-of-Mouth, Viral Marketing, Information Diffusion, &ial Networks, Complex Systems
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() 1. Introduction and Background ity in values, thoughts or preferences. The dynamic natéire o
CY)_ the information diffusion, the poor understanding of thenan
L) | The discovery of quantitative laws in the collective preper behavior causes and the fact that the agents interacti&as ta
O ties of large numbers of people, for example the birth andhdea Place in the thick of complex social networks, made the Socia
rates or crime frequencies, was one of the factors pushimg tHPynamics problem largely untractable for a long time.
- ' development of statistics and led scientists and philosopto The appearance of new social phenomena related to the In-
— call for some quantitative understanding on how such peecisternet (Social Media, Collaborative Filtering, Social Gaxy...)
'>2 regularities stem from the apparently erratic behaviomali-i  whose interactions can be captured in large databases and th
+ viduals. Hobbes, Laplace, Comte, Stuart Mill and many athertendency of social scientists to move toward the formutatio
(O shared, to a different extent, this line of thought (Ballp2D  of simplified models and their quantitative analysis, hask-u
The question to investigate was how the interactions betweeered in an era of scientific research in the field of Social Dy-
social agents create order in their behavior from an imjtial namics (Lazer et al., 2009). Several key questions have been
disordered state. The basic premise was that agents’ ezpeatposed: What favors the homogenization process? What linder
interactions should make people more similar since therinfo it? What are the fundamental interaction mechanisms fioster
mation exchanges involved led to higher degrees of homegenehe adoption of innovations, the spreading of rumors, tie ev
lution towards a dominant opinion or the emergence of trends
and fashions?
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with large real networks limited theoretical advancemémtee  tent and are unable to discriminate the propagation of iddal
construction of population average diffusion models based contentitems. As a result, none of them could study the impac
master or differential equations. Those models were inigéne of the information content on the diffusion processes. @hil
borrowed from mathematical epidemiology (Hethcote, 2000}he lack of insight into the content impact would be expected
since it was assumed that information would propagateikest| of past century information diffusion research, its abseimc
diseases do. However information diffusion research haplgle more recent literature can only be explained because paspag
evolved since step-by-step tracking of interactions tgtoelec-  tion data at the individual level, being usually proprigthe-
tronic media made detailed diffusion data plentiful (altbh  cause of its economic value or usage restrictions, is kegun
not necessarily accessible or easy to gather). tight wraps and results very hard to obtain.

The development of the science of complex systems and Our research addresses such shortcoming. Unlike the works
advancements in the computerized treatment of Social Netited that study information propagation through the aggre
work Analysis methods have spurred the emergence of a “newéffect of propagating messages of varying content, ouckeich
science of networks (Watts, 2004) which provides more rothe precise paths of a viral marketing campaign fixed and in-
bust tools for the scientific treatment of social dynamias-pr variable message as it spread through an email social networ
cesses. As a result scientists realized that informatioeesiing  The message content remained identical through the prepaga
mechanisms vary with the type of information which spawnedion. This allowed us to scrutinize the individuals’ reacis
a rush to develop the appropriate model for each. Accordto a particular message instead of just averaged out bahavio
ing to their algorithmic approach those models can be categmver diverse information items. By discriminating all fact
rized as population-average or network-based. The pdpnfat impacting the participants’ spreading patterns from the-me
average models assume fully-mixed or homogeneous substratage content we were able to detect the effects produced by
networks and describe the agents’ social dynamic behatior a@he latter. We found that the message diffusion cascadégeevo
the aggregate level through differential or master equatio through a branching process that presents some chartcteris
Examples of those are the seminal “two-step influence modeland unique patterns unexamined until now although some lit-
of information diffusion by Katz and Lazarsfeld (1955), the erature (Leskovec et al., 2007; Watts and Peretti, 2007) has
rumor diffusion model of Daley and Kendall (1965), the in- shown an inkling of them. We noticed a steady increase in the
novations adoption model of Bass (1969), its stochastie verspreaders’ activity parameters as the message gets dadber i
sion by Niu (2002), the minority spreading opinion formatio propagation cascades. This surprising pattern can not be ob
model of Galam (2002), the innovation diffusion model with served in empirical experiments collecting propagaticia aé
influentials and imitators of Van den Bulte and Joshi (2007) o varying content messages. It can be explained if the cascade
the percolation-based product lifecycle model of Frenkead.e  growth stems from a mechanism based on the affinity between
(2008). On the other hand, network-based models include thine message content and the preferences of those recdiving i
influence of the underlying social network topology by way of and not on the receiving node neighbors’ status or on the un-
agent-based stochastic algorithms. Some examples of theem aderlying social network structure used in many of the curren
the classic innovation adoption “threshold model” of Gnegte  models. We test and validate that hypothesis through astyli
ter (1978), the model of diffusion of technological inndeas  agent-based propagation model. The rest of the articlega-or
with upgrading costs of Guardiola et al. (2002), the fads andhized as follows: First we describe the data obtained from ou
fashion formation model of Bettencourt (2002), models an th empirical research on real viral marketing campaigns aed th
impact of the structural characteristics of a network oroiraa  control parameters of their messages propagation. Seaend,
tions diffusion (Jackson and Yariv, 2005; Liu et al., 20@Bg  present our findings on the structure and growth patternssof t
stochastic model for opinion formation of Sznajd-WeronQ20 information cascades. Third we introduce the message tgffini
or the network variant of the Daley-Kendall rumor model by propagation model and compare its predictions with the empi
Nekovee et al. (2007). ical results. The article ends with our conclusions.

However, this profusion of theoretical models was mainly
justified by plausibility arguments and Social Dynamics mod 2 \Word-Of-Mouth diffusion research
els based on empirical data are still scarce. A few exampées a
the referral networks study of Vilpponen et al. (2006) which We tracked and measured the
found that the structure of electronic communication nekso
is different from that of the traditional interpersonal aoomi-
cation ones, the chain-letter diffusion research of Libawell

'word-of-mouth” diffusion
of viral marketing campaigns ran in eleven European markets
which offered incentives to current subscribers of an IT eom

any online newsletter to promote new subscriptions thnou
and Kleinberg (2008) whose strikingly long and narrow sgrea pany P P g

. : . S . recommendation emails to friends and colleagues. The cam-
ing chains were attributed to a new mechanism involving asyn

h . tthe f q h q . paigns were entirely web based: banner ads, emails, search e
chronous response times of the forwarders or t e study on Irg'ines and the company homepage drove participants into the
formation diffusion through blogs of Gomez-Rodriguez et al

2010) which found oh i the bl campaign site. In it, participants accessed a referral forrag-
( ) whic ound a core periphery structure in the blogojgier themselves and enter the addresses of those to whgm the
sphere news diffusion network. Nevertheless, all thesdiestu

Id onl h . ¢ ith ; recommended subscribing the newsletter. The submission of
could only trace the propagation of messages with varyimg o i form triggered a personalized, but otherwise idehties-



email was the winning one. Subscription to the newslettes wa
not required to participate in the prize draw. Campaignsman
France 11,758 3,247 524 7,987 8593 3248 139 €achcountrylocallanguage butwere identical otherwdsend
tical message, incentive, eligibility rules, lottery maaism,
campaign duration, web user interface and tracking presess
Spain 5260 855 505 3,900 4,454 843 122 Thjs homogeneity of data ensured that behavioral diffezenc
Nordic 2,509 530 176 1,803 2,004 524 34 between countries were not caused by the campaigns executio
UK+NL 2111 521 107 1483 1618 518 o5 but due to the market specifics. It also validates the arsabfsi
country aggregated results.

Market N Ny Ny Np Arcs CasC  Smax

DE+AT 7,943 1,760 567 5616 6,239 1,750 146

Italy 1,602 323 108 1,171 1,324 319 41

All markets 31,183 7,225 2,002 21,956 24,207 7,188 146 2.1. Campaigns propagation data set

Table 1 . .
Campaigns propagation data set:Count of Total NodesN), Seed Nodes Spurred by the campaign sponsor web site and exogenous

(Ns), Viral Nodes (W), Passive NodesNp), Total directed links Arcs), online advertising, a total of 7,225 individuals initiate@éssage
and Total of Independent CascadeSagc) measured on the campaigns diffusion cascades which grew through viral pass-alongetri
propaggtior_l networksmax is the largest cascade size by its_ number of nodes.by 2,002 secondary spreaders. Thus, the viral offeringhtedc
Quantities |nAI_I markets may not add up tq the sum of their column because another 21,956 passive nodes who did not forward it further.
network partition removes inter-country links. The numisérSeed Nodes . .

(Ns) may not coincide with that of cascades due to cascades mgength one All'in all, 31,183 individuals of whom 9,227 were spreaders,
another during the propagation or because, sometimes, caMgzde can not  received the viral message. Thus 77% of the individuals re-
be identified (for example in the case of recommendatiorprecity between  ceived the message through the endogenous viral propagatio
two nodes). Results in some countries are aggregated indgemaous markets  mechanism. The€ascades Networkesulting of the message

for statistical significance. Nordic includes DK, FI, NO aBé&. diffusion constitutes a directed graph with 7.188 indepm!md

ommendation message with a link to the campaign registratiocascades whose nodes represent participants linked b@724,2
form. The link customized URL was appended with codes g directed arcs representing the recommendation emails.aie c
lowing to uniquely trace clicks on it to sender and addreséee S€€d Nodel\s) the individuals who spontaneously initiate rec-

the corresponding email. The form checked email addree;sesf_ommendat'On cascades from the campaign site without hav-

syntax correctness and to prevent self recommendation-Co N9 receéived a recommendation message from others/mald
ies in the participants’ email client prevented sendingtiplet ~ N0des(Nv) those who forward a previously received message.

recommendations to the same addfeasd improved the user Table 1 presen_ts the summary data s_et Of. the campaigns mes-
experience by pre-filling the sender’s profile in subseqaest ~ S89€ prqpa_gatlo_?n Unsuccessful emails, disconnected nodes,
sions. Additionally, the campaign web server registereicha t nodes with invalid or undeliverable email addresses, |@oEs

stamp for each of the process steps (subscription, recodemen multiple referrals between same nodes were discardednia co

tions, referral link clicks) and removed from records redes ~ Pliance with the sponsor rigorous policy, all personal infe-
to undeliverable email addresses tion was codified and masked to guarantee the participants’

. ) .. privacy protection.
The incentive offered to recommenders was the possibility

of winning laptop computers in a lottery to be held at the eind o .
the campaign period. Aside from the obvious goal of increas?-2- Cascades Network structural metrics
ing participation, the incentive mission was twofold: Hirs
discourage indiscriminate referrals to prevent spamniikey- Here we examine differences and similarities between the
behavior and, secondly, ensure legal cover for the tracking Cascades Networtopology and that of the reported email net-
sender-receiver data. To accomplish such requiremeriigipar works through which they propagate. Table 2 showsGhse-
pation in the lottery was limited to the so-called succdssfu  cades Networlstructural parameters measured without con-
ferrals defined as the recommendation emails whose retgpiensidering links direction. The cumulative distribution ftfion
clicked on the coded URL included on them. Thus, the mordc.d.f) of the undirected network total degreés a power-law
referral emails sent to recipients opening them and vigitiie ~ P(k) ~ k~#8 whose significant probability of very connected
campaign site, the higher the sender’s winning odds. More imnodes evidences higher heterogeneity than the expondetial
portantly, both sender and receiver of any successfulrafer gree distributions found in some email networks (Guimeed.e
drawn in the lottery were entitled to receive the lotteryzpri  2003; Newman et al., 2002). However, their heterogeneity is
Terms and conditions, accessible from all web site pages arl@ss marked than that of the email network studied by Ebel
referral emails, specified that participation in the lotienplied €t al. (2002) whose power-law degree distribution (p.dffgx-
the sender’s and receiver’s approval of the campaign regist ponenty = 1.81 is fatter tailed. Additionally, email networks
tion of their email transaction details as this was necgssar present positive correlations between the nodes degréthet e
ensure that both parties could receive the prize if thegrraf ~ €nd of an edge, a property called degree assortativity arsd me
sured, according to Newman (2002), by the Pearson cowalati

2 However, participants with cookies disabled could sendtipial referrals
to the same person. Thus 183 referrals (0.76% of total) wseadied 3 The time dynamics of the message diffusion is covered on arappaper



Market k Ok Knn C Gand 7 Omax

France 1.46 1.594 3.99 0.0000 0.00012 2.164 8
DE+AT 1.57 2.027 5.59 0.0049 0.00020 2.671 7
Spain 1.69 2.383 7.17 0.0054 0.00032 3.287 9
Nordic 1.60 1.575 4.07 0.0077 0.00064 2.243 5
UK+NL 1.53 1.364 3.43 0.0112 0.00073 2.026 5
Italy 1.65 1.918 5.22 0.0234 0.00103 2.229 6
All markets 1.55 1.868 4.97 0.0048 0.00005 2.671 9

Table 2

Cascades Network Structural Metrics: k (total degree) is the average of in-
or out-links of a nodegy its standard deviatiorkn, the mean of the nearest
neighbors average total degré®the Clustering coefficientCrang = k/N the
corresponding value for an equivalent random netwéttke average shortest
path length between reachable nodes (links consideredeatetl) andymax
the maximum number of steps in directed propagation paths.

coefficient. For example, the degree correlation coefftcien
the email network of Guimera et al. (2003) gg = +0.188,
indication of a correlated network. The equivalent for Gees-
cades Networlo, = —0.001 shows total uncorrelation. Besides,

in networks with skewed node degree distributions and degre
correlations, such as the email networks, the average cenne

tivity of the networkk is typically lower than that of the near-
est neighbors of a node,. For_exgmple in the Guimera et al.
(2003) email network, the ratie,/k is approximately 2. Such

phenomenon is responsible for the first neighbors of a nodg004 Guimeraetal. an ,
nt@e nature of th&€€ascades Networthat, split in many discon-

having in average more contacts than such node or, quoti

Feld (1991), for the fact that “your friends always have more

friends than you do.” Interestingly, this feature is morerkea
in the Cascades Netwonkvhosek,, to k ratio ranges from 2.24
in UK+NL to 4.24 in Spain.

Another difference between thi@ascades Networknd the
email networks through which they propagate lies in thaintr
sitivity, a property typical of acquaintance networks wéigr
two individuals with a common friend are more likely than av-
erage to know each other. TRaustering coefficient Cdefined
as the fraction of all triangles found in the network relatte
the total number of triads measures the transitivity. Table
shows that ou€ascades Networksith a Clustering coefficient
C = 4.8 x 102 for the graph ofAll markets are highly intran-
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Fig. 1. Tree-like Propagation CascadesThe viral messages diffusion graph
of our campaigns consists of disconnected cascades asnihishiserved in
Spain. Its 7 generations and 122 nodes stem from the nodiedaBeedand
grow through secondary propagation driven\isal NodesA, B and C which
constitute 50% of generation 1. Nodes color-coded by theirdegree. The
nodes at the end of each path are inactive (out-degree i3 aabdo not
intervene in the analysis of Section 3.1 which refers to sadith non-zero
in- and out-degree (th&iral Node3. Notice the tree-like structure devoid
of closed paths or triangle (= 0). The average total degree of this tree is

k=1.984 and its largest undirected path (diamettg 13.

“
7

)

The last distinctive property of email networks, tBenall
World or low average shortest path length (Boccaletti et al.,
2006), although seemingly present sirice 2.67 (Table 2) and
lower than that of email networkgmai ~ 3.5 (Eckmann et al.,

, 2003) is not comparable with thosaalue

nected components, limits paths calculation to reachadibs p
of nodes which necessarily yields lower values. The digtidim

of those cascades sizg),(like the total degree, is a very skewed
power-law whose c.d.f. exponentys= 1.35. With largest cas-
cade sizesnax= 146 nodes, mean siZe=4.33, andogs = 5.27,

the cascade in Fig. 1 is 25 times more likely to appear in our
campaigns than in percolation through a random network

In consequence, the vir@lascades Networtopology lacks
all the four key features of email networks (fat tailed node
degree distribution, nodes degree correlations, higheling
and theSmall Worldproperty) and can not be formally char-
acterized as a social network. This is quite logical sina th
viral propagation cascades of diffusion processes far Satn

sitive yet ten times more transitive than an equivalentcamd Uration, such as ours, overlay just sections of the undgglyi

network of the same size and connectivity. In any case, a ver§Mail network and, as a result, can only unveil a small portio

low value compared to the rangz[0.15 - 0.60] found in so- of it. Paraphrasing Liben-Nowell and Kleinberg (2008) irith

cial or email networks (Newman and Park, 2003). Proballist Study of chain-letters propagation, it is as if “the progres
the viral messages had a type of stroboscopic effect setwing

briefly light up the structure of the global email network.h-U
fortunately, not having any details on the topology of theag¢m
petwork substrate, we can not judge the extent of its inflaenc
on theCascades Networtopology.

considerations show the logic of such feature: sinceGhs-
cades Networlpercolates its underlying email network only
partially, the dyadic closure that builds clustering in themer

must be just a fraction of the one in the latter. As a result ou

campaigns viral diffusion cascades, like the one in Fig.ré, a
almost pure trees.

4 A triad is a group of three nodes connected by two links

5 The tail of the cascade size distribution in large randomvasis near the
transition to the giant component goes r§s~ s%/2 (Albert and Barabasi,
2002) and the probability of a cascade of size 122.i8.1 x 10°6.



scribe this growth process at the population level: thesafem-

Market A . T, v SEM Ry 5 s %Dev . . .
S tioned Fanout Coefficient, and the messagEransmissibility

France 0062 221 250 0.1023 0.154 362 361 -0.22 A defined as the fraction of the touched nodes that become

DE+AT 0092 248 3.06 01155 0281 454 445 -204 Secondary spreaders. ThHiensmissibilityresults from data in

Table 1 as
Ny
= 2
NN 2)
and both parameters combine to yield the Basic Reproductive

NumberRy or average number of secondary recommendations
All markets 0.083 2.51 2.96 0.065 0.246 4.34 4.33 -0.30 produced by reached nodes as

Spain 0.115 3.16 3.45 0.1909 0.400 6.24 6.23 -0.20
Nordic 0.089 2.82 291 0.1836 0.259 4.79 481 +0.31 )
UK+NL 0.067 2.49 2.87 0.2398 0.236 4.08 4.09 +0.15
Italy 0.084 2.87 2.80 0.2301 0.236 5.02 4.76 -5.20

Table 3 Ro=ATy )
Cascades growth dynamic parameters:Transmissibility (A), Fanout Co- . ] ] ) ] . )
efficients of Seed(fs) and Viral (f,) nodes, Standard error of theiral This number is widely used in mathematical epidemiology

Nodes Fanout coefficienfr, SEM), Basic Reproductive Number for sec- (Hethcote, 2000) to determine the moment when a disease out-

ondary spreaderdRf) and average Cascad_e siz oy market as measured break becomes a self-sustaining epidemic. ThuRyif 1 the

in the campaigns. In the last two columss is the average Cascade size . e .7 N

predicted by the Galton-Watson Branching model Eqg. (4) aride% the spreadlng process rea(,:hes mpplng-pomt an elusive goal

deviation of that prediction from the actual measurements. that none of our campaigns attained. Table 3 presents tipe pro
agation dynamic parameters and cascades averagedafineir

2.3. Cascades Network Dynamic Parameters campaigns and their predicted valsefor the infinite propa-
gation limit given by the Galton-Watson Branching model as

While the structure of the undirected cascades is weakly re- s
lated to that of the email network substrate, the flow of mesS = 1+ TRy Ro<1 4)
sages in th&€ascades Networis not (except for the substrate
network setting the boundary conditions) and fully depesmis wherers is the average number of messages ser@énd Nodes
the recommendation mechanism. To study it we will consideandRy the viral propagation Basic Reproductive Number. The
the distribution of recommendation emails sent by spresaoler last column in Table 3 shows the remarkable accuracy of the
the viral message which offers a better picture of the casad cascades average size predicted by the Galton-WatsonBranc
dynamics than the total node degreeonsidered so far be- ing model versus the empirical values.
cause 70% of the network nodes are inactive. This new vaxiabl
equivalent to the out-degree of the network nodes, is medsur 3. patterns of the information cascades growth
separately foilSeed Nodeand Viral Nodesand designated as

rs andry respgcnvely. .Wh'.le mos\‘ﬁrgl No_dessent justa f_ew Despite the Galton-Watson model statistically accurate de
recpmmendaﬂons asignificant fraction d|s_played avenriae scription of the distribution of cascades at a global leaale-
activity: thus for the ensemble afl markgts in our dataset, the tailed study of theCascades Networgrowth, reveals patterns
mean of the number of repqmmendauons senvigl Nodes indicating that viral messages spreading dynamics is qute
the so-calledranout Coefficientwasr, = 2.96 (see Table 3), . ,jiar Firstly, we present a node level analysis showing th
its standar(_:i deviatiod, = .41 and_the hlghest number of rec- . reation in the spreading activity of a node with thattsf i
o_mn_1en(_jat|ons sent_ by a single |nd|V|dua(ma>Q =72.lts active offspring down the message propagation tree. Ségond
distribution can be fitted to a fat tailed power-law of thenfior we conduct a generation level analysis on the probability of
Hap the nodes becoming active as a function of their ordinal po-
Plap(rv) = Btra (1)  sition in the message diffusion path which shows that viral
v messages diffusion propensity increases with distance fine
whose parameters for tdl markets network take the values Seed NodeBoth findings lead to a striking prediction corrob-
Hqp =116, 0 = 2.83 andB = 10.96 using Maximum Likeli-  orated by the measurements on our viral campaigns: The viral
hood Estimation. messages diffusion dynamic parameters at the populatieh le

We can visualize the cascades of a viral propagation proce$¥€ correlated, a fact that has not been observed in other so-
growing through successive layers, or generations, assnod&i@l dynamics processes such as innovations adoption,raimo

reached in one generation resend the message to nodes in §Rfeading or opinions propagation. Note that both findings a
next generation. The latter nodes constitute the off-gpdh incompatible with the assumptions in the Galton-Watsonehod

the earlier ones in an evolution of the propagation treesseho N Which the branching mechanism is homogeneous both at the

node-level dynamics is well described by the Galton-Watsor$ocial network level and within the cascades.

Branching modél (Harris, 2002). Two parameters fully de- the same probability distribution.

7 Defined by analogy to phase transitions in Physics as theegsdiaflection
6 A markovian model of a population where each individual imgmtiong point where propagation speed accelerates drasticalljpacomes unstopped
produces in generatiog+ 1 a random number of individuals extracted from so that the message propagation reaches a very large frafttbe audience.
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has sent. The slope of the linear regression(Tfann(rv) is

. +0.69 indicating strong out-degree correlation. The datak
ues of (Ty)ann range between 1 and 31.33, the mean of their
distribution is 2.48 and its standard deviation 2.08.

. This very peculiar feature of viral messages diffusion has
not been observed on any other type of propagation processes
in social networks. We can hypothesize two different exatan
i tions of it. One, the increased spreading activity of theévact
children of a node is a reflection of the out-degree correla-
tion present in the substrate email network. Lacking any dat
20l | on such network for our campaigns this hypothesis is impossi
© Active nodes only (r, > 1) ble to verify. Besides, the out-degree positive corretaiiothe

: : : : : substrate email network merely means that its nodes tend to
0 2 4 6 8 link to others of similar out-degree but does not by any means

h indicate that the number of recommendations made by active

Fig. 2. Active nodes correlated spreadingActive nearest neighbors average participants, hencg the Inte_reSt In participating in thapalgn,
out-degree(Ty)ann (circles) of active nodegr, > 1) in the campaigns as S.hOUId be a growing functhn of the number of recommend_a'
a function of their parents activity, in a base two logarithmic binning. tions made by their parent in the cascade. The other possible
The linear fit positive slope (0.69) shows correlation bemvéhe spreading — explanation, which we adopt, is that the intrinsic mechanis
activity of a node and that of its active offspring in the pagption tree: the Whereby participants in viral marketing Campaigns forwtel
more active a node is, the more active its nearest neighboasdrage are. . .

messages involves the sender selecting targets amongdhose
her contacts perceived to be the most receptive to the conten
of the message being passed-along. The iteration of these ta

he first distinci  the viral q get filtering decisions through several generations of send
The first distinctive pattern of the viral messagesscades g lead, in a process akin to targeted search, to focukag

Networkgrowth is the marked positive correlation of the spread—messagle on groups of individuals genuinely interested .on it

ing activity between/iral Nodesand their active off-spring. In Those, in turn, would also be in average more active tham thei

undirected networks, the nodes tOt‘:"I degree correlatigve® 5 astors. The fact that this mechanism has not been oblserve
by the conditional probabilit(k | k') of a node of degre&  ; wher types of information diffusion, such as referrat-ne

F.’O.i”“r‘g to a node 9f degree. This function is very noisy in works (Vilpponen et al., 2006), e-commerce recommendation
finite networks and is usually replaced by the average de/l_:jree (Leskovec et al., 2007) or email chain-letters (Liben-Nbwe
the nearest neighbors kfdegree nodefinn(k) = 3, KP(k | k) and Kleinberg, 2008) may indicate either that the phenomeno

(?Oﬁca:jett' Etdf"-hzoo% th{g”(k) ISan |ncrea5|ﬂg fun(;tlo_n _is specific of viral marketing messages or that those authors
of the degree the nodes tend to connect to others of Simi- 5,4y sis did not isolate the content factor.

lar connectivity and such network, called assortativepldiss
positive node total-degree correlations.

6.0 |

(rV )ann

40

3.1. Correlated spreading of active nodes

) o ) 3.2. Diffusion acceleration with path length
However the active nodes network is directed and instead

one should study its out-degree correlation defined as the te The second characteristic of viral spreading dvnamics an-
dency of nodes to connect with others that have similar out- P g cy P

degrees to themselves. Its formal metric is dlie-assortativity pears when measuring the probability of the nodes becoming

coefficienf but considering throughout only the active nodesac'['ve spreaders as a function of their position in the propa

throughout a simplified analysis of the average out-degfee cg::wonaitr?]i' -I;z:jvz itrr\]f:)ar?eslg]tli?)sr:?/U:Imﬁgirr‘gigxmrgeslgri?;
the active nearest neighbor§y)ann of nodes of out-degree paigns g P 9

ry > 1 presented in Fig. 2 suffices to prove that, in terms of thethe |nd!V|duaIs location in the message propagatlon pAEh
. . : shown in Table 4 for théll markets data g increases steadily
number of recommendations sent in our campaigns, the more

active a node is the more prolific in average its progeny is. W(\%’:]'th the ggnergtlonp((gg\g)b: 0.908) V\.”th parallel growth of

studied the out-degree spreading pattern of active nodesrin e Reproductive Number by generation

campaigns $eed Nodesxcluded) and found that the activity Ng+1

of a node () correlates with that of its active nearest neigh-Rg = Ag(Tv)g = N—g (5)

bors. Such correlation implies that the average numbermf re

ommendations sent by the active nearest neighbors of a nodéereNy is the total number of individuals reached at genera-

(Tv)ann grows with the number of recommendatiapsthat it~ tion g. Besides, there is a growth trend {a)g, theFanoutby
generation which is visible in our campaigns (Table 4) whose

5 A convoluted combination of the probability distributions a fink going | 0111ali0 through generationt$y)g,1/(fv)g positively cor-

out of a node of out-degree,, of a link goinginto a node of out-degree relates with the_ ger.]eratlon number 0.4). Those p_rOpertIeS

r/ and the joint probability of links to go from a node of out-degr, to ~ Of messages diffusion were detected, but not studied, bysWat

another of out-degreg, (Piraveenan et al., 2009) and Peretti (2007) or Leskovec et al. (2007) as shown in Fig. 3
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g Ny Py (Nv)g  Ag (Wg Ry SEM --0-- Katrina relief
1 18032 07527 1,398 00775 2891 0224 0.0056 10 o SN o
2 4,042 0.1687 393 0.0972 3.239 0.315 0.0120 ~v-e-Commerce LY
3 1273 00531 139  0.1092 2784 0.304 0.0228 oo I I
4 387  0.0162 40 0.1034 3.150 0.326 0.0621 o6} 1
5 126  0.0053 20 0.1587 3.550 0564 01804
6 71 0.0030 8 0.1127 2125 0.239 0.0612 041 i
7 17 0.0007 3 0.1765 2.000 0.353 0.1765 02l 1
8 6 0.0003 1 0.1667 4.000 0.667 0.0
9 4 0.0002 0 0.0 0.0 00 N/A 0.0

g
Table 4 Fig. 3. Diffusion acceleration with path length: Reproductive Number by

Distribution of nodes by generation: Distribution of the nodes touched by
the viral message diffusion in the graphAif markets by ordinal numbeg

of the position in their diffusion path (generatioly is the number of nodes
in generationg and Py the probability of a node belonging to generation
g>1. (Ny)g is the number ofviral Nodesby generationAq the probability
of nodes in generatiog becoming spreaders arfdy)y the average number

generationRy in viral messages propagation. Solid circles with errorsbar
correspond to our IT newsletter campaign. Other data setse(ror bars
available): Oxygen Network advocacy portal collecting teiwtions for hur-
ricane Katrina relief (squares); Tide Coldwater campaign&n energy-ef-
ficient washing detergent (empty circles); StopTheNRA, ppeal for gun
control launched by the father of a Columbine shootingsimicfupward

of recommendations sent by nodes in generatjaand Ry the Reproductive
Number by generation witBEM its standard error.

triangles) per Watts and Peretti (2007); referrals in esoemte (downward
triangles) per Leskovec et al. (2007).

along with our Ca_mpalgns“measurements. As l_)ef(,),re, we poslqode Sincey 41 AgPy = A one obtains the important expres-
that such pattern is due to “preferential forwarding,” de€iras . - 9 . A
, . . . sionATy = 1—Py(1) which means that fok andry to increase
the spreaders’ propensity of passing a message prefdhettia . )
: . . simultaneously one must reduce the probabHyl) of find-
neighbors they presume to have more interest, or affinityt.fo : ! ) .
) . . L ing nodes in the first generation or, equivalently, grow lemg
Such mechanism results in an increase of the recipienteprop . .
. cascades. Thus, a growirdg yields longer paths and causes
sity to pass the message along. As a consequence, the messdge X
a®parallel growth ofy. Our campaigns show that the average

follows network paths such that tAeansmissibilitypy genera- hortest path lengtt¥) of the diffusion cascades and the dy-

tion Ag increases as the propagation progresses. We denominateo ZoN
Affinity Pathsto the chains of individuals with similar or in- hamic parameters are strongly correlatpdt[ry) = 0.88 and

: o : (¢]A) = 0.89. An increase of th@ransmissibilityA grows
creasing affinity for the message. They imply some knowledg e paths length and the average number of recommendations
by message spreaders of their immediate neighbors indeeest P 9 9

local awareness with global impact that leads to a diffeckrsts madery as _weII. Plo_ttlng the (_jynam|c parameters for various
markets (Fig. 4) their correlation was found to be very gjron

of propagation than that of other Social Dynamics processes . bearson coefficiemt(A [Ty) — 0.92. The values of and

Its consciously driven spreading mechanism causes message ! .
to progress through paths presenting the homohpyoper- . by country from Table 3 fit to the decreasing exponerfial
(7)

ties typical of social networks (McPherson et al., 2001)isTh  _ 1+b(1— efc)\)
. Jdvo—
phenomenon has been observed in the web where, according
to Singla and Richardson (2008) “there is correlation betwe which for A < 1, and through a MacLaurin series expansion
preferences and behavior of an individual and those of stherof e turns intory = 1+ak (a= bc). One can consider the
in its immediate circle”. slopea of this “response line” as the message “fitness” with
respect to each market. The exponential decrease forAaige

Eq. (7) is due to the substrate network nodes clusteringtwhic

3.3. Dynamic Parameters correlation
limits propagation through saturation and finite size ¢ffec

As a result of the previous two properties the parameters  In principle this correlation between Fanout Coefficiend an
andr, are correlated. Let us consider the relationship betweeiiransmissibility should invalidate the Galton-Watson mlod
the Fanout Coefficienand the generation parameters in Table 4used in Section 2.3, because that model assumes that those pa
rameters are uncorrelated. However, this is not the case sin
Ty = 2g-2Ng - 1-Ry(1) most of the participants in the campaign appear at very low
Yg-1AgNg  3g-1AdRy generation numbers and thus the phenomena observed here is
wherePy(1) = N1/ 4-1Ng = NeTs/(N — Ns) is the probabil-

only a significant correction affecting a small fraction afrp
ity of an individual to have received the message fro®ezd

(6)

ticipants.

9 The tendency of individuals to associate and bond with sinthers. 10y intercept set to 1 since, — 1 asA — 0 because fit is on active nodes.



26k - - Lnearst g — Susceptible (SNode has not received the message
' Exponential fit P ] — Informed (I} Node is propagating the message

4 — Refractory (R) Node does not spread the message anymore

Unlike the SIR model, MAM does not use a global proba-
bility for the nodes states transitions. Instead, they dSiem
the aggregate decisions that result from the interplay &etw
] the nodes pass-along propensity and the message “fithess” to
4 diffuse. Drawn from a continuous probability density fuoat
] p(a), the Affinity &, € [0,1] of a node represents its propen-
8 sity to engage in spreading the message. The message fitness
1 to trigger the node activations is represented by thAdinity
Threshold A € [0,1], the lowesta, value for which such mes-
006 007 008 009 010 0411 o012 sage can push the node into timéormedstate: low threshold

2 messages are capable of activating more nodes and are, as a

_ _ ‘ ‘ result, forwarded more often than high threshold ones. The p
IFlg. 4. Dynamic P_arameters Correlatl_on:_ (_3_0rre|at|0n between the_p_opu- cess starts by turning a random fraction of the substrateankt
ation level dynamic parametefiransmissibility(1) and Fanout Coefficient oo i1 thanformedstate while leaving all otherSuscep-
(ry) of our viral campaigns in different markets. Dotted linethi linear fit . . >
toTy=1+aA with a= 2248 andR? = 0.843. Solid line is the exponential tible. From that point onwards the following rules govern the
fit to ry = 1+b(1—e ) with b= 3.82, c=8.44 andR? = 0.818. Markets ~ Stochastic propagation:

position towards the rightmost side of this “response limaficates a higher . .
affinity of the audience with the campaign message. Numbespoéading (I) SusceptlblmOdes touched by the message becdme

(active) nodes shown under market name. formedif their Affinityis higher than the message thresh-
old (an > Ar) andRefractoryotherwise while, if touched,
4. The Message Affinity Model (MAM) Informedor Refractorynodes stay unchanged.

(i) An Informed node n forwards a number of messages
The correlation between the messages propagation dynamic  (ry)n = (an— A7) x r, with r drawn from a PL distribu-
parameterd andry and the independence of the nodes spread- tion. The neighbors receiving those messages are

ing activity from the substrate email network they run upom a (a) those with highest, with probability (a, — Ar)
intriguing properties of the viral marketing diffusion pesses. (b) chosen randomly with probability-1 (an — Ar)
Watts and Dodds (2007) built a model proving that informa- . ,

(i) Informed nodes becomdrefractoryimmediately after

tion propagation can happen independently of the undeylyin X
social network structure and concluded that “large cacatle spreading the message and the process ends whier no
formednodes are left

influence are driven not by the influentials but by a critical
mass of easily influenced individuals.” However, their mMode The quantitya, — At embodies the interplay between the
does not explain the dynamic parameters correlation ndnthe participants interests and the message content. The chice
crease with the generation of the nodes propensity of beapmi Rule (ii) of the neighbors that will receive the message eepr
spreaders. We posit that both features are due to the fact theents the evaluatiomformednodes make, based on their lo-
the decisions of forwarding a viral message and of the numbetal knowledge, of their neighbors’ affinity. It implies tHatal

of neighbors to send it to, typically made in a single act bghea knowledge grows with théffinity. nodes of higha, are more
forwarding individual, are correlated and that such catieh  likely to choose targets with the highest propensity to [thes
emerges as a function only of their affinity with the conteint o message while those with logy, will mostly choose their tar-
the message being spread. gets randomlyAr may vary by individual but, without loss of

The agent-based Message Affinity Model (MAM) incorpo- generality, we take it constant including all variationgpi(a).

rates that mechanism by assigning to the substrate network
nodes a propensity value representing their affinity with th
message being forwarded. Furthermore, the model promagati
rules combine a variant of the states transition steps o6tRe

epidemic model on networks (Pastor-Satorras and Vespiignan Here we present the result of Monte Carlo simulations of vi-
2001) with the stochastic evolution of a pseudo-markottan ral messages propagation ran with the MAM model and show

Galton-Watson Branching model. At any step, the networkhat they replicate the patterns observed in real procesbes
nodes are in one of the following three states: simulations ran on two substrate networks with the same de-

gree distribution but different structure: the real emaitwork

of a Spanish university (Guimera et al., 2003) and a syitthet
; e configuration model network built with the Molloy and Reed

growth of the cascades at the average level but fails to grélé activity . .

correlations that appear in the evolution through germmati This is because method (Ca”a‘way etal, 2001)' They differ in thetuster-

the Galton-Watson model stochastic process is markoviaitewin reality, ing CoefﬁCien(Cemail =0.22 vs.Ceont = 0.014) and in the fa:Ct
one node’s activity depends on that of its parent. that the email network node degrees are correlated while the

4.1. MAM Simulation Results

11The Galton-Watson Branching model used in Section 2.3 explaell the
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Fig. 6. Correlations in MAM simulations. Main panel shows the correlation
between dynamic parameters for simulations on a real eratilark substrate
(boxes) and on an equivalent configuration model networkclés), both

simulations on themail (boxes) andConfig. (circles) networks with uniform ~ With uniform distribution of the nodesffinity of meana, = 0.28. Numbers
Affinity distribution of mearg, = 0.13 anda, = 0.17 respectively. Théffinity indicate the 'messagAfflmty Threshold(Ar) for each simulation. Fits are
Threshold A used in the simulations ranges from 0.6 to 0.97 to show the!® EQ. (7) with parameteremai = 2.36, Cemail = 5.06 and Rgma_il =0.993
asymptotic growth folRp ~ 1. Solid lines are not a fit but the predictions of @NdBeont = 2.44, Ceonf = 5.26 anngonf_: 0.976 for the respective network
Eg. (4). Inset: Curves collapse when plottings— 1) /fs againstRy showing substratelnset: Evolution of theTransmissibilityby generation Ag) for three

the viral propagation patterns independence of the subsiework topology. of the simulations Ar :_0‘69_ 0.75-0.81) run on _the email network (empty
symbols) compared with that of the real campaigns (fulllegk

Fig. 5. Cascades Network Average Cascade Siz&xpected average size
of viral cascades for different values of the Reproductivem¥er Ry in

configuration network ones are not. Their nodésnity, with  yes diverge ad grows because the email network clustering
correlation between nearest neighbors, was drawn from-a unind degree correlations accelerate saturation effectstatail
form distribution. TheCascades Networkesulting from the  propagation. The diffusion acceleration with path lengte-p
propagation of messages wikffinity Thresholdbetween 0.6  sented in Fig. 3 and typical of viral messages propagation is
and 0.97 were averaged over 15K cascades with 500 differenjsg properly replicated with MAM. The inset of Fig. 7 preten
allocations of the substrate nodeinity. the evolution of\g with g for simulations on the real email net-
The simulations generate graphs with a large number of digaork (dotted lines) alongside that of our empirical resultse
connected components that, like those in the real campaignstriking similarity of both up untilg =5 is quite significant.
feature distributions of Eq. (1) type for both their viraldes  The low number of active nodes left in the substrate network
activity P(ry) and cascades si®(s). The exponentg andys  beyond that point, renders the statistics of the resultsliznle.
of their power-laws are in the range 1 - 3 depending on the valThe same pattern (not shown) appears for simulations on the
ues of the model parameters nodsfinity (a,) and message configuration model network. The growth af can not pre-
Affinity ThresholdAt) used. Besides, the average cluster sizevent the propagation process ending. In factRgk 1, Aq is a
of the graphs obtained in the simulations follows closely th probability below unity applied at each subsequent geierat
branching model predictions as shown in Fig. 5. It plots the a to an ever shrinking cohort of nodes. As proved by the Branch-
erage sizes of the propagation network components obtaineding Process theory, the cascades inevitably reach a poertevh
with different values of the message Affinity Threshold wsrs there is no new offspring and they die off. Actually, even for
their reproductive numbé®, for each. The lines are not a fitto Ry > 1 the cascades extinction has a non-zero probability that
the data but the predicticg¥ given by Eq. (4). Notice their re- increases with the heterogeneity of the participants'viyti
markable agreement and the fact, shown in the inset, that whelistribution (Harris, 2002).
the effect ofSeed Nodes removed by plottindS— 1) /Ts the
results for_thg sjmulations on both substratg networks ImatcS' Conclusions and Discussion
exactly. This indicates that as our model predicts, for psses

running well below theTipping-pointthe impact of the sub- ked and vzed th d hd
strate network in the cascades average size or the dynamic pa We tracked an analyze the structure an gr_ovvt 1 dynam-
rameters of the propagation is very low. ics of the propagation network created by the diffusion of a

content-controlled message in real viral marketing cagmsi
The plot of theCascades Networttynamic parameters in the driven through email forwarding. The resulti@ascades Net-
main panel of Fig. 6 and their fit to Eq. (7) shows how MAM work, formed by almost pure trees of very low clustering, shows
accurately replicates their correlation pattern. Thisypeothat  two striking dynamical patterns not observed so far in other
the viral messages propagation patterns are independ#re of Social Dynamics processes like rumor spreading, innowatio
substrate network structure for loa. However theirry, val-  adoption or email chain-letters. First, there is positiverela-



tion between the spreading nodes activity level as meadiyred the Tipping-pointas it assumes th&eed Nodeare planted
their out-degree and that of their active off-spring andpsel, in a boundless network and far apart of each other to avoid
the propensity of nodes reached by the message to becomipgopagation clashing. Finally, MAM only runs on undirected
spreaders, th&ransmissibilityA , grows with those nodes depth and fully connected networks.

in the propagation path. These novel properties can only be

detected by scrutinizing the propagation of messages a fixe

and identical content. The scarcity of such type of data mayreferences

explain why they have remained unobserved until now. The
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