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Abstract 

A previous long-term microcosm experiment showed mercury (Hg) in aqueous phase of 

contaminated sediment was effectively stabilized through the addition of biochar. The present 

study focuses on the application of synchrotron-related methods to evaluate the distribution and 

speciation of Hg in the biochar particles reacted for 235, 387, and 1030 days. The study provided 

more information on Hg stabilization mechanisms in addition to the information obtained by the 

previous studies. Confocal micro-X-ray fluorescence imaging (CMXRFI) and micro-X-ray 

fluorescence (micro-XRF) maps show that mercury co-exists with S, Cu, Fe, Mn, and Zn on the 

surface and inside the particles of biochar. Extended X-ray absorption fine structure (EXAFS) 

modeling shows that Hg is in an oxide form on the surface of an iron (hydro)oxide particle from 

fresh sediment and in Hg-sulfide forms in biochar samples. S X-ray absorption near-edge 

structure (XANES) analyses show that sulfide is present within the biochar particles. After 

amendment with biochars, a fraction of the Hg originally present in unstable forms (dissolvable, 

HgO, colloidal, nano, etc.) in the sediment was likely stabilized as less soluble Hg-sulfide phases 
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on the surface or within the biochar particle. These results suggest Hg accumulation by the 

biochar particles renders it less potential for transport and bioavailability. 

Key Words 

Mercury; confocal X-ray micro-fluorescence imaging; biochar; sediment; synchrotron-based 

techniques 

 

1 Introduction 

Mercury (Hg) widely distributes in air, oceans, lake, rivers, soils, and sediments and can occur as 

elemental Hg, as Hg
2+

, in complexes with dissolved organic matter, and in organomercurial 

forms (Selin, 2009). Organic Hg, e.g. methylmercury (MeHg), is the most toxic form and can 

cause serious defects to central nervous system (Tchounwou et al., 2003). Hg can be converted 

from inorganic or elemental to organic forms by microbes (Hu et al., 2013; Zhang et al., 2012). 

The primary intake pathway of Hg is by the accumulation of dissolved species of Hg by aquatic 

organisms. The methylation and accumulation of Hg species by organisms is primarily initiated 

in the aquatic environment, especially in sediments. If Hg can be stabilized and transformed to 

less soluble, mobile, bioavailable, and bioaccessible forms in sediments, the health risk caused 

by Hg will be reduced. Laboratory studies show Hg is effectively removed from aqueous 

solution (Bundschuh et al., 2015; Dong et al., 2013; Liu et al., 2016) and sediment (Gomez-Eyles 

et al., 2013; Liu et al., 2017a; Liu et al., 2018a; Wang et al., 2019a) using biochars; as such, 

biochar is a potentially cost-effective reactive material for application in Hg-contaminated site 

remediation.  

 Biochar has been used for Hg, other heavy metals and organic pollutants control in 

sediment and paddy soils (Bussan et al., 2016; Gomez-Eyles et al., 2013; O'Connor et al., 2018; 

Shu et al., 2016; Wang et al., 2019b; Xiao et al., 2018; Zhang et al., 2018). The current study 
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combines geochemical aqueous analysis and solid-phase elemental analysis to determine Hg and 

MeHg distribution among different system phases to delineate the effect of biochar addition on 

Hg-contaminated media. These analyses are still critical in the future study of Hg stabilization 

using biochars. However, a knowledge gap exists regarding Hg species transformation and 

distribution after sediment amendment with biochar. The species or mineral form of Hg 

determines its stability and bioavailability; for example, Hg in aggregated Hg-S forms is 

expected to be more stable than other forms including nano-size or colloidal particulates as well 

as oxides and halogenated species. Moreover, the same Hg species located inside a biochar 

particle is expected to be more stable and less bioavailable than if present on the surface, where 

more exposure to the surrounding environment results in more opportunities for direct contact 

with potential Hg methylators. Advanced techniques are required to characterize the Hg species 

and spatial distribution during the stabilization process.  

Synchrotron radiation-based techniques, including micro-XRF, CMXRFI, XANES, and 

EXAFS, are advanced tools for investigation of the spatial distribution and local geometric 

and/or atomic structure of elements of interest (Calvin, 2013; Pushie et al., 2014). For example, 

micro-XRF and CMXRFI can be used to delineate multiple element distribution at the 

micrometer scale (Liu et al., 2017a; Liu et al., 2018b; Meng et al., 2014; Nesbitt and Lindsay, 

2017), XANES analysis provides the oxidation state (Jamieson-Hanes et al., 2017; Liu et al., 

2016), and EXAFS can be used to obtain the chemical state and local coordination of the element 

of interest (Gibson et al., 2011; Liu et al., 2016; Liu et al., 2018b; Ravel et al., 2009; Skyllberg et 

al., 2006). These techniques can be used not only for Hg, but also for other elements without 

considerable extra work. Other elements that are important with respect to Hg speciation and 

distribution include S, Fe, Cu, and Zn. 
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 We previously described a serious of batch and long-term microcosm experiments 

designed to investigate aqueous Hg removal and stabilization of Hg in aqueous-sediment 

mixtures using biochars prepared from a range of different feedstocks (Liu et al., 2016; Liu et al., 

2017a; Liu et al., 2018a). The results indicate that Hg can be effectively removed from aqueous 

solution in batch experiments (Liu et al., 2016); concentrations of Hg in contaminated sediment 

amended with biochar are lower than in sediment controls without biochar after 30-250 days (Liu 

et al., 2018a). In this study, we applied synchrotron-related techniques to characterize particles 

from more biochar types derived from these long-term microcosm experiments (1030 days). The 

purpose of these analyses is to identify the distribution and speciation of Hg to provide an 

indication of mechanisms leading to Hg stabilization as well as an explanation for the 

phenomena observed in aqueous phase analysis. The synchrotron radiation-based techniques 

employed for this purpose include micro-XRF, CMXRFI, Hg and Cu EXAFS, and S XANES.  

2 Materials and methods 

2.1 Microcosm experiment 

A 1030-day anaerobic microcosm experiment was conducted by mixing activated carbon or 

biochars, Hg-contaminated sediment (particle size <3mm), and water at a ratio of 1:20:160 on a 

dry mass basis in 1 L amber bottles to avoid the effect of light. The biochars included oak 

biochar (CL2; Cowboy Charcoal Co.) and low-temperature (300 °C; GR4L) and high-

temperature (600 °C; GR4H) switchgrass biochars. The size of AC and biochar particle was in 

the range of 0.1-3 mm. The selection of the biochars was based on the results from previous 

batch-style experiments (Liu et al., 2015; Liu et al., 2016; Liu et al., 2018c), which showed low 

(GR4L) and high (AC, CL2, GR4H) Hg removal percentages, low (AC, CL2, GR4H) and high 

potential (GR4L) to release organic acids and dissolved organic matter, low (CL2) and high 

potential to release sulfate (AC, GR4L, GR4H). GR4L and GR4H were selected to evaluate 
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difference in the Hg stabilization potential due to pyrolysis temperature of biochar. Controls 

included 1) biochar-water mixture and 2) sediment-water mixture at the same ratios as the 

amended systems.  

The amber bottles were placed in an anaerobic chamber over the experimental period at 

room temperature (25ºC). The system was maintained under anaerobic conditions with Eh values 

<0 mV after 7 d and < -420 mV after 126 d (Liu et al., 2018a). The bottles were shaken after 

each sampling event. More details of the experiment were presented in a previous study which 

focused on the discussion of aqueous phase parameters and microbes in solid phase (Liu et al., 

2018a).  

2.2 Solid samples 

The Hg-bearing and sediment particles were collected at days 65, 100, 154, 235, 387, and 1030 

with a scoopula. Individual biochar particles were handpicked from the amended system using 

tweezers, and washed with ultra-pure water. These solid samples were freeze-dried and stored 

under anaerobic conditions before analysis. The fresh sediment and biochar particles collected at 

day 387 were frozen-dried and ground into fine powders (<0.1 mm) for total Hg analysis. The 

powers of 0.1 g were digested using 50 mL aqua regia for 7 d. Triplicate digestion was 

performed and a chi-square test was performed to evaluate if the measurements are significant 

different (P<0.05). The mixture was filtered using 0.45 µm hydrophilic polyethersulfone filters 

(Pall Corp., UK). Total Hg concentrations of the filtrates were determined by cold vapor atomic 

fluorescence spectroscopy (Tekran Instruments). 

2.3 Reference materials and sample preparation for synchrotron analysis 

Reference materials for XAS analyses included cinnabar, metacinnabar, and HgO for Hg; Cu2S, 

CuS, CuO, and Cu foil for Cu; and cinnabar, elemental S, L-cysteine, dibenzothiophene, Na 
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methane sulfonate, and K2SO4 for S. Fine powder of the reference material was prepared and 

smeared on polyethylene terephthalate tape for collection of Hg and Cu EXAFS. For collection 

of S XANES spectra, the reference materials were either smeared on double-sided carbon tape 

for analysis on Sector SXRMB of Canadian Light Source (CLS) using total electron yield mode, 

or mixed with graphite at 5% content for analysis on Beamline GSECARS at Advanced Photon 

Source (APS; Lemont, IL) using fluorescence mode. The graphite was used to dilute pure S 

compounds to decrease the effect of self-adsorption (Jalilehvand, 2006).  Methodological details 

are described in Liu et al. (2016). 

Unreacted sediment, particles from the sediment control, and the biochar particles were 

embedded in epoxy and prepared as thin-sections (Φ=26mm; thickness as 30 µm) for micro-XRF 

and Hg micro-EXAFS analyses. Bulk samples of unreacted sediment and separated biochar 

particles were also prepared for Hg EXAFS spectra. Particles of AC and CL2 from biochar 

controls and the amended systems at day 387 were freeze-dried for bulk S XANES analysis. 

2.4 Micro-XRF maps 

Micro-XRF maps of the thin-sections were collected on 13-IDE and 20-IDB at the APS 

following the setup and procedures described by Liu et al. (2016). Briefly, a focused 2×2 µm
2
 

beam, 2 µm step, and 12.6 keV photon energy were applied for micro-XRF maps. The sample 

stage and detector was oriented at 45° and 90° to the beam, respectively.  

2.5 Confocal micro-X-ray fluorescence imaging (CMXRFI) 

CMXRFI analysis of biochar particles collected from amended systems reacted for 1030 days 

was performed on Beamline 20-ID at the APS. A quartz slide (22×22 mm
2
) was used for particle 

attachment. The data were collected using the setup and methods described by Liu et al. (2017b). 

Briefly, the data were collected using 12.6 keV incident energy, ~2×2 µm
2
 beam size, 5 µm step 
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size, a Ge optical unit, a Si-drift Vortex detector, and an angle between the incident beam and 

sample holder of 35°. The map was collected in the horizontal plane (xy plane) of the particle. 

The intensities of the XRF and incident beam were corrected for each pixel of the map using the 

algorithm provided in Liu et al. (2017b). Data processing and plotting were performed in 

MATLAB
®
. 

2.6 XANES and EXAFS 

Areas with elevated Hg, Cu, and S intensity indicated by micro-XRF maps were identified for 

acquisition of micro-EXAFS or micro-XANES spectra. Hg EXAFS spectra of bulk fresh 

sediment and biochar particles were collected using the same setup as for EXAFS spectra 

collection of Hg-enriched areas in the thin-sections using unfocused beam. S XANES spectra of 

bulk biochars from amended systems and controls were collected on the SXRMB beamline. 

The EXAFS spectra of Hg and Cu and XANES spectra of S were first processed by 

Athena, then EXAFS spectra was modeled using Artemis (Ravel and Newville, 2005). The 

modeling steps followed a previous method (Liu et al., 2018b). Briefly, the weak oscillations of 

EXAFS spectra was enhanced by a k
3
 weighting. The amplitude reduction factor (S0

2
) and mean-

square radial displacement (σ
2
) were obtained by keeping the coordination numbers (CN) 

invariant during refinement of the first and second (only Cu2S) shells for the reference materials. 

Then, S0
2
 and σ

2
 were kept constant during refinement of the first and second shells to obtain the 

CN. 

3 Results and discussion 

3.1 Hg contents in fresh sediment and biochars 

Total Hg content in the fresh sediment was 186 µg g
-1

 (Fig. 1). The total Hg contents in the 

biochars reacted with the sediment for 387 day were all greater than that of the fresh sediment 

with ratios ranged from 3 to 9.3. Greatest total Hg content was observed in GR4L (1730 µg g
-1

), 
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and least were observed in CL2 (274 µg g
-1

). This observation inversely corresponds to the 

aqueous total Hg concentration in previous study (Liu et al., 2018a), and explained the decrease 

of total mercury in aqueous concentration is a result of accumulation in the biochars.  

3.2 XAS analysis of sediment controls 

Micro-XRF map of a fresh sediment particle shows Hg and Cu present on the surface of an Fe-

enriched particle (Fig. 2). The Fe-enriched particle is assumed to be an iron (hydro)oxide phase 

based on microscopic images in reflection and transmission mode (Fig. S1). The Hg and Cu-

enriched areas are located within the cavities of this particle. XRF spectra of the arrow-indicated 

area in the Hg Lα line map confirm the existence of Hg in the cavities and show coexistence of 

Hg, Fe, Cu, and Zn. The maps of a particle from the sediment control at day 235 show 

coexistence of Hg, Fe, Ni, Cu, and Zn (Fig. 2 and Fig. S2). Whether this Hg-enriched particle 

was newly formed during the experiment period or was present in the source sediment prior to 

the experiment is difficult to discern. Attempts were made to collect µ-XRF maps of the two 

particles at 2.5 keV for S, but the intensity of S was not distinguishable from the background, 

which indicates the particle was not rich in S. 

 Hg from the enriched area of the particles of fresh sediment and the sediment control at 

day 235 is in the Hg oxide form indicated by µ-EXAFS modeling results (Fig. 2 and Table 1), 

with coordination numbers for the Hg with the O atoms of 2.15 and 4.97 and bond lengths of 

1.95 and 2.21 Å, respectively. In contrast, the EXAFS of bulk fresh sediment (fine or colloidal 

fraction) indicate the Hg is primarily present as metacinnabar (β-HgS) with a coordination 

number of 3.07 for the Hg with the S and a bond length of 2.51 Å. The modeling results indicate 

Hg is present as a Hg oxide in the enriched area and Hg in the sediment is primarily in a Hg 
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sulfide form, consistent with Hg sequential extraction results (Fig. S3) and in agreement with 

previous studies (Gibson et al., 2015; Lowry et al., 2004). 

 The observation of Hg on the surface of a (hydro)oxide phase in the natural sediment and 

coexistence of Hg with Mn, Fe, and Cu (in oxide form; Supporting Information) are consistent 

with observations from previous studies at Hg-contaminated sites (Bernaus et al., 2006; Gibson 

et al., 2015; Gu et al., 2014). Hg can be effectively adsorbed by iron (hydro)oxide by forming 

bidentate inner-sphere complexes on the substrate surface (Collins et al., 1999; Kim et al., 2004). 

The Hg from the Hg-enriched area of fresh sediment is in a Hg-oxide form with a coordination 

number of 2.15 and bond length of 1.95 Å, which are consistent with Hg EXAFS modeling 

results for Hg(II) sorption onto goethite (Kim et al., 2004).   

3.3 Micro-XRF maps of biochar particles 

The distribution of Hg, Cu, Fe, and S is indicated by the micro-XRF maps for four particles of 

AC and biochars collected from the amended Hg-contaminated sediment at day 387 (Fig. 3). The 

micro-XRF mapping indicates Hg coexists with S, Cu (in Cu2S form in AC-387 and CL2-

235&387; in Cu(0) in another CL2-387; SI), Fe, Mn, and Zn, whereas Ni-enriched areas are 

located in separate spots of the particle pores (Fig. 3 and Fig. S5-S17). The distribution patterns 

of Hg, Cu, Fe, and S are different for these particles: for AC, these elements not only distributes 

on the surface but also penetrate into the particles; for CL2, the elements are primarily located in 

two large pores, other small pores, and the edges of the particle; for low-T switchgrass biochar 

(GR4L), the Hg, Fe, and Cu are primarily located inside the particle; and for high-T switchgrass 

biochar (GR4H), the most Hg, Cu, and Fe are observed on the surface and inside the pores of the 

particle. These observations are based on the microscopic images collected under transmission 

mode (Fig. S16-S17).  
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Biochar particle thin-sections from day 65, 154, and 235 were also prepared for µ-XRF 

map, but Hg XRF intensity was low and poor quality µ-XRF maps were obtained for the 

majority of the thin sections. The likelihood of locating Hg-enriched biochar particles increased 

as the experiment continued past 235 days. The results indicate limited Hg accumulation by AC 

and the biochars at the beginning of the experimental period. This observation is consistent with 

the total Hg concentration changes in the aqueous phase (Liu et al., 2018a), which demonstrate 

an increase and then a decrease in total Hg concentrations in the amended systems. The increase 

of aqueous Hg concentration is likely due to the reduction of Fe(III) minerals, which results in 

the release of Hg into solution (Liu et al., 2018a). The decrease in Hg concentration occurs after 

the sulfate reduction period, which indicates the stabilization of Hg is achieved by Hg-S mineral 

formation.  

 The results indicate that Hg coexists with Cu, Fe, and S on surface, inside the pores, or 

inside the particles of AC and biochars. The difference in element spatial distribution of different 

biochar type is likely due to the following reasons: 1) different porous structure, e.g. biochar with 

macro pores (>70 nm (Zdravkov et al., 2007), even >10 µm (Figs. 3&4)), AC without macro 

pores (Laine and Yunes, 1992); 2) pore types (accessibility for metal accumulation), e.g. closed 

or open pores, pores open at one end or both ends (Zdravkov et al., 2007); 3) penetrability in the 

structure material or the skeleton (Liu et al., 2017a). The distribution of Hg in the GR4L and 

GR4H systems is consistent with the results from other particles from the same experiment (Liu 

et al., 2017a). Due to the stability of biochar (Spokas, 2010), the Hg that co-exists with these 

elements could be stable for prolonged periods. Furthermore, the Hg is located and aggregated 

within the coarse biochar particles, potentially lessening its bioavailability.  

3.4 Confocal micro-X-ray fluorescence imaging 
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CMXRFI analysis was conducted for AC and biochar particles from the amended systems 

reacted for 1030 days (Fig. 4 and Figs. S18-21). The porous structure of the particles is indicated 

by the Ca intensity maps, because Ca is a common element in the feedstock (plant) of AC and 

the biochars. The distributions of Mn, Co, Ni, Cu, and Zn are similar to Fe for each particle (Fig. 

S18-21), and therefore Fe was selected to prepare the tricolor plot in combination with Ca and 

Hg (Fig. 4). The distributions of S, Fe, and Hg for all particles are not identical, but show similar 

trends. Fe and Hg distribute across the AC particle, but primarily accumulate on the surface of 

the structural material (e.g., pore walls). Fe and Hg primarily distribute on the surface of CL2 

and GR4H. For GR4L, Fe and Hg distribute across the profile and localized inside the structural 

material, in contrast to on the surface of pore walls for AC or only on the particle surface for 

CL2 and GR4H. 

 The step size for CMXRFI analysis was 5 µm in both the horizontal (y axis) and depth (x 

axis) directions (Fig. 4). The maps indicate features are distinguishable at this resolution (5 µm), 

especially for Fe and Hg maps. While the thickness of the thin section was 30 µm, the signal 

received by the detector for micro-XRF analysis was 42 µm (30 µm/sin(45°), considering the 

geometry of the setup). This length was the same as the medium pore space in GR4L (Fig. 4). 

This calculation indicates the micro-XRF maps show the elemental distribution over a thickness 

of 42 µm, but the CMXRFI maps show features are distinguishable at a resolution of 5 µm. 

Therefore, CMXRFI analysis provides more precise elemental distribution and pore structure 

information compared to micro-XRF results, consistent with a previous study applying micro-

XRF and CMXRFI to an archaeological bone (Choudhury et al., 2017). 

 The CMXRFI analysis indicates Hg was still accumulated on the surface of the particle or 

pore wall for CL2, GR4H, and AC even after 1030 days. However, for GR4L, Hg distributes 
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inside the structural material. Results from the microcosm study indicate the lowest total MeHg 

and Hg concentrations in GR4L-amended system and suggest GR4L is the best candidate for 

sediment Hg stabilization (Liu et al., 2017a; Liu et al., 2018a). The distribution of Hg inside the 

structural material of GR4L is likely one of the reasons for the lowest total aqueous Hg and 

MeHg concentrations. The encapsulation of Hg inside the GR4L particle results in more stable 

and less bioavailable forms of Hg. For other reactive materials, Hg distributes on the surface of 

the particle or pore walls; this Hg that is still exposed to the surrounding environment is not as 

stable as Hg located inside the structure of the biochar particle. 

3.5 S XANES 

S XANES spectra were collected for standards and samples (Figs. 5 and S22). The energies of 

lines 1-6 are 2471.9, 2472.7, 2473.5, 2474.3, 2481.4, and 2482.8 eV, respectively. These lines 

were obtained from spectra collected from the standards corresponding to inorganic-sulfide, 

elemental, thiol, thiophenic, sulfonate, and ester-sulfate sulfur functionalities, respectively, 

following the assignment from Manceau and Nagy (2012 and Vairavamurthy (1998. The S 

XANES spectra collected for AC and CL2 particles from control and amended systems at day 

387 display a number of edge features that indicate different S forms are present. 

Thiophenic S (line 4) and ester-sulfate S (line 6) structures are observed in all spectra, but 

their relative intensities are low for the thin-section spot of the AC-amended system. The 

elemental S (line 2) structure is observed in the thin-section spot of the CL2-amended system 

and bulk samples of the AC control and amended systems. The bulk spectra from the amended 

system are more complex than those from the biochar control in which reactive media was only 

mixed with river water; sulfonate (line 5) is only obvious in the amended systems.  
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The differences between the spectra of bulk samples and the spectra of thin-section spots 

from the amended systems indicate the S species are highly heterogeneous; the sulfonate S peak 

is more pronounced than the ester-sulfate peak, and the thiol S (line 3) peak is only observed in a 

thin-section spot of the AC amended system. The shoulder indicated by line 1 in the thin-section 

spots of AC and CL2 amended systems is at a similar energy as the S peak of cinnabar (Fig. S22).  

The spectra of AC and CL2 controls at day 387 are similar to the corresponding washed 

samples (Liu et al., 2016), which indicate the S forms in AC and CL2 are relatively stable under 

the experimental conditions. Differences between the amended systems and controls are likely 

due to the sediment matrix. During the experiment period, sulfate is released from the biochar 

and sediment (Liu et al., 2016; Liu et al., 2018a), and sediment is expected to release more 

sulfate because the mass of the sediment was 20 times of the biochar, the S content of the 

sediment is greater than those of the biochar, and limited sulfate is released from these biochars 

in a previous batch-style experiment (Liu et al., 2016). Sulfate concentration decreased from 28 

mg L
-1

 to <detection limit in the aqueous phase (Liu et al., 2018a), which indicates sulfate was 

reduced by sulfate-reducing bacteria to generate sulfide. The reduced sulfur then co-precipitates 

with other elements, e.g., Fe, Cu, Hg, on the surface or in the pores of the amended reactive 

materials (Figs. 3 and S18-S21). The sulfate or other oxidized S forms undergo a series of 

reactions and are finally converted to carbon-bonded sulfide, thiol, and sulfonate forms at the end 

of the experimental period.  

3.6 Hg EXAFS for biochar particles 

Hg EXAFS data were obtained from the thin-section enriched areas, and the bulk AC and 

biochars reacted with the sediment (Fig. 6 and Fig. S4). The results show Hg is likely in cinnabar 

(α-HgS) form in the enriched spots of AC, CL2, GR4L and GR4H particles (Fig. 3; Table 1), and 
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another five enriched areas from CL2 particles (Figs. S6, 9, 11-13 and Table S1). The modelled 

coordination numbers (CN) of S range from 1.00 to 2.88 and modelled bond lengths range from 

2.36 to 2.38 Å for Hg-enriched area (Table 1), in agreement with cinnabar (Fig. S23 and Table 

S2) and previous studies (Bisson et al., 2012; Gibson et al., 2011; Li et al., 2012; Liu et al., 2016). 

The EXAFS results are in accordance with the S XANES spectra (Fig. 5) of the spots collected 

from the Hg-enriched area (Fig. 3). For bulk biochar samples reacted with the contaminated 

sediment for 387 days, the Hg is primarily present as newly formed cinnabar form for CL2 and 

GR4L with Hg coordination numbers of 2.54 and 1.93 and bond lengths of 2.32 and 2.36 Å, 

respectively (Table 1). The Hg is primarily present as metacinnabar (β-HgS) for AC and GR4H 

bulk samples with coordination numbers of 3.91 and 3.24 and bond lengths of 2.55 and 2.49 Å, 

respectively, which are close to the metacinnabar reference material (Fig. S23 and Table S2); this 

observation is different from the Hg-enriched area of the corresponding thin-sections. This 

difference indicates the fraction of the Hg species from the enriched area were too low to be 

accounted in the bulk sample. Hg in methyl form may also be in the biochar particle, but methyl 

Hg was not observed by the analysis of EXAFS likely due to its low fraction (usually<0.1% of 

total Hg (Qiu et al., 2005)). 

 The XAS and Hg sequential extraction analyses of the fresh sediment indicate the 

presence of Hg on the surface of iron (hydro)oxide particles as Hg-oxide and soluble forms of 

Hg, and the majority of Hg in the sediment in fine particles and in Hg sulfide forms (Fig. 2 and 

Fig. S3). The synchrotron-based results show the coexistence of Hg, Fe, Cu, and S on the surface 

or inside the particles of AC and biochars and that the Hg is in Hg-sulfide forms. The Hg in the 

bulk AC and biochar samples is also in Hg-sulfide forms. Based on the results, the Hg observed 

in the AC and biochar particles is likely converted from soluble forms of Hg, Hg released during 
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dissolution of iron (hydro)oxide, and Hg from colloidal or nano particles; this Hg interacts with 

biogenic sulfide converted from sulfate by sulfate-reducing bacteria to form Hg sulfide. These 

results are consistent with the process described in Liu et al. (2018a) and provide direct evidence 

for the evolution observed in the aqueous phase. The EXAFS results are also consistent with the 

observations from micro-XRF and CMXRFI results (Figs. 3 and 4). The difference between Hg 

speciation in bulk sample and Hg-enriched area indicate the Hg removal mechanisms involve 

multiple processes, but the primary process was the formation of Hg sulfide species. 

4 Conclusions 

The results of this study indicate part of the Hg in the contaminated sediment is converted to Hg 

sulfide that co-exists with S, Fe, Cu, and Zn after amendment with activated carbon, oak wood 

and switchgrass biochar particles. The biochar particles likely provide a host for Hg to 

accumulate in sulfide forms indicated by micro-XRF (17 particles), CMXRFI (9 particles), Hg 

EXAFS and S XANES analyses, with the Hg being stabilized in these particles compared to its 

original forms (soluble forms, colloidal, nano, or fine particles). The biochar particles did not 

decompose and were distinguishable after 1030 days. Biochars can be stable in natural 

environments for prolonged periods; co-occurrence of Hg with biochar particles could therefore 

also lead to increased stability of Hg over the long term. Low-temperature biochar is likely the 

most promising biochar, as Hg was observed in the form of Hg sulfide minerals and distributed 

across the particle and located in the structural material.  

Biochar particles are fragile and light, and therefore can be physically broken down and 

transported by flowing water. Because biochar particles are enriched in Hg, this process 

potentially facilitate the transport of Hg to the downstream of the river. Engineering controls is 

required to keep the biochar particles in shape and in place. The present study simulated the 
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situation that after amending sediment with biochar the exchange of the pore water with surface 

water or groundwater is limited, for example due to the formation of new layer of sediment on 

the top of the mixture or a clay layer under the loose sediment. Full-scale applications for site 

remediation is required to be evaluated. 
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Table 1. Best-fit results for the Hg LIII-edge data from bulk and enriched area of micro-XRF 

maps of sediment control (SRD) and biochar amended systems. 

Sample Model Path CN R (Å) S0
2
 σ

2
 (Å

2
) R-factor 

Fresh SRD_ Bulk β-HgS Hg-S 3.07±0.29 2.51±0.01 0.718
a
 0.009

a
 0.01 

Fresh SRD_M6 HgO Hg-O 2.15±1.04 1.95±0.03 0.962
a
 0.005

a
 0.003 

SRD-C-235_M6 HgO Hg-O 4.97±1.14 2.21±0.03 0.962
a 

0.005
a
 0.06 

AC-387_M1 α-HgS Hg-S 2.88±0.70 2.38±0.05 0.841
a
 0.005

a
 0.04 

CL2-387_M1 α-HgS Hg-S 1.00±0.23 2.36±0.10 0.841
a
 0.005

a
 0.02 

GR4L-387_M1 α-HgS Hg-S 1.41±0.27 2.41±0.03 0.841
a
 0.005

a
 0.18 

GR4H-387_M1 α-HgS Hg-S 1.43±0.62 2.41±0.08 0.841
a
 0.005

a
 0.18 

AC-387_Bulk β-HgS Hg-S 3.91±0.53 2.55±0.02 0.718
a
 0.009

a
 0.04 

CL2-387_Bulk α-HgS Hg-S 2.54±0.62 2.32±0.04 0.841
a
 0.005

a
 0.18 

GR4L-387_Bulk α-HgS Hg-S 1.93±0.14 2.36±0.01 0.841
a
 0.005

a
 0.01 

GR4H-387_Bulk β-HgS Hg-S 3.24±0.70 2.49±0.03 0.718
a
 0.009

a
 0.17 

R-factor represents fitting statistic. 
a
 values obtained from reference materials (Fig. S18 and 

Table S2) 
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Figure 1. The total Hg contents in control (fresh sediment) and activated carbon and biochar 

reacted with the sediment for 387 d. The triplicate analyses were not significant different 

(P<0.05).  
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Figure 2. Micro-XRF maps of particles from fresh sediment and sediment control at day 235. 

The first column of the first two rows is the microscopic pictures and the right column is the Hg 

XRF spectra from the arrow-indicated area. The white line represents 100 µm. The points 

indicated by the white arrow in Hg and Cu maps indicate Hg and Cu EXAFS spectra were 

collected. The bottom row includes: a) Normalized absorption data of the spots indicated in the 

micro-XRF maps and bulk fresh sediment. b) Background-subtracted χ(k)k
3
 (black-solid line) 

and model. c) Magnitude and the model of the Fourier transform (corrected for phase shift). d) 

Real part and the model of the Fourier transform. 
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Figure 3. Micro-XRF maps of AC, CL2, GR4L, and GR4H from the amended systems reacted 

for 387 days. The first column is the microscopic pictures and the right column is the Hg XRF 

spectra from the white arrow indicated area. The white line represents 100 µm. The white-arrow 

indicated points in the Hg, Cu, and S maps show Hg and Cu EXAFS and S XANES spectra were 

collected. S XRF maps were collected at different beamlines. 
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Figure 4. Tri-color maps (left to right column: Ca, Fe, Hg, and combination of these elements) 

obtained using confocal micro-X-ray fluorescence imaging (CMXRFI) of activated carbon (AC) 

and biochar particles (CL2, GR4L, and GR4H) from the sediment-amended systems at day 1030. 

The intensity maps were collected in the xy plane. The white line represents 100 µm. The yellow 

line in the Ca intensity map of GR4L represents 42 µm. The incident X-ray (I0) and emitted XRF 

(If) paths are indicated by the arrows. 
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Figure 5. S XANES spectra of activated carbon (AC) and CL2 particles from amended systems 

and control at day 387. Bulk represents results of bulk sample analysis. M1 represents the spectra 

from spots on thin-sections. S forms indicated by lines 1-6 are inorganic-sulfide, elemental, thiol, 

thiophenic, sulfonate, and ester-sulfate sulfur, respectively, as assigned by Manceau and Nagy 

(2012 and Vairavamurthy (1998. 
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Figure 6.
 
Hg LIII-edge data from bulk sample and enriched area (represented by M1) in the µ-

XRF maps. a) Normalized absorption data. b) Background-subtracted χ(k)k
3
 (black-solid line) 

and model. c) Magnitude and the model of the Fourier transform (corrected for phase shift). d) 

Real part and the model of the Fourier transform.  
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Highlights 

 Synchrotron-related methods were used to characterize Hg stabilization mechanisms 

 Hg is on the surface of an Fe(III)-rich particle in fresh sediment and in Hg-O form 

 Confocal micro-XRF shows Hg co-exists with S, Fe, and Cu across biochar particles 

 Hg EXAFS analyses show Hg is in sulfide forms in biochars 

 S XANES analyses show sulfide is present within the biochar particles 
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