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Abstract 22 
 23 
This study assess the possible outcomes of yield changes in the United States which is 24 

responsible for 40% of global maize supply under 1.5°C and 2°C global warming scenarios. 25 

Instead of providing deterministic estimates, this study introduces a probability-based approach 26 

that allow for examination of the associated probability of each outcome, which has great 27 

implications for decision-makings. Results show distinct spatial patterns in future yield loss risk 28 

associated with temperature rise at the county scale, with highest probability in central and 29 

southeastern US, and lowest risk in western US and high production regions such as Iowa. 30 

Comparing the estimates under 1.5°C global warming against that in 2.0°C warming indicates 31 

that keeping global warming within 1.5°C has great benefits for reducing future yield loss risk. 32 

Based on the ensemble mean of 97 climate model simulations, the risk of yield dropping below 33 

historical long-term mean is projected to decrease from 81% to 75% for the country as a whole. 34 

Such benefit is more evident when considering the risk of yield reduction by 10% and 20%, 35 

which is expected to decrease by 25% and 28%, respectively. This suggests that constraining 36 

global temperature rise to 1.5°C has more benefits for reducing extreme yield reductions. 37 

Spatially, keeping global warming within 1.5°C would benefit more in in Missouri, South 38 

Dakota, Eastern Kansas, Southern Texas and southeastern part of the country than other regions, 39 

highlighting the spatially variable benefits of climate mitigation efforts. The analysis framework 40 

introduced in this study can also be easily extended to other regions and crops. The results of this 41 

study highlight the areas where maize yield is most vulnerable to temperature rise, and the 42 

spatially variable benefits for reducing yield loss risk by keeping global warming within 1.5°C.  43 

Keywords: global warming; agriculture; risk; 1.5°C; yield loss; US crops. 44 

 45 
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1. Introduction 46 

Global food demand is expected to roughly double by 2050s (Godfray et al., 2010; Tilman et al., 47 

2011). The challenge of feeding global population within the context of a changing climate calls 48 

for assessment on the potential impacts of climate change on global food production. Towards 49 

this, numerous studies have investigated climate change impacts on agricultural production in 50 

China (Piao et al., 2010; Tao et al., 2006; Yao et al., 2007), Africa (Jones and Thornton, 2003; 51 

Müller et al., 2011; Schlenker and Lobell, 2010), Europe (Bindi and Olesen, 2011; Olesen and 52 

Bindi, 2002; Reidsma et al., 2010), United States (Rosenzweig et al., 2014; Schlenker and 53 

Roberts, 2009; Urban et al., 2012), and the whole globe (Parry et al., 2004; Rosenzweig et al., 54 

2014). Whilst these studies provided valuable insights, most of them are mainly based on a 55 

deterministic approach without considering the full range of possible outcomes of yields under 56 

given conditions.  57 

 58 

Year-to-year variation of crop yields is often associated with variability of growing season mean 59 

temperature, without CO2 fertilization or adaptations (Asseng et al., 2015; Deryng et al., 2011; 60 

Leng et al., 2016a; Liu et al., 2016; Lobell and Field, 2007; Peng et al., 2004; Ray et al., 2015; 61 

Schauberger et al., 2017; Schlenker and Roberts, 2009; Wang et al., 2017; Zhao et al., 2016). 62 

Besides temperatures, it is well recognized that yield is influenced by many other factors such as 63 

droughts, pests, CO2, agricultural management, technology and etc. (Challinor, A. et al., 2014; 64 

Deryng et al., 2011; Hawkins et al., 2013; Iizumi et al., 2013; Ray et al., 2015; Schauberger et 65 

al., 2017). The incomplete information and ignorance of physical, biological, and socio-66 

economic processes that are relevant to crop growth would therefore make it hard to derive 67 

certain estimates of temperature impacts on yield. The inherent uncertainty of assessing climate 68 
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change impacts on crop yield has also been emphasized in the literature (Asseng et al., 2013; 69 

Challinor, A. J. et al., 2014; Lobell and Burke, 2008; Wang et al., 2017; Wheeler and von Braun, 70 

2013). Therefore, to give a distribution of possible outcomes of crop yields under given 71 

temperatures would greatly contribute to our understandings, complement previous studies using 72 

a deterministic approach.  73 

 74 

Recently, the Paris Agreement advocated pursuing efforts to keep global warming within 1.5°C 75 

while holding global temperature rise to well below 2°C (Rogelj et al., 2015; UNFCCC, 2015). 76 

Understanding regional patterns of crop loss probability under 1.5°C and 2°C can help guide 77 

adaptation and mitigation efforts. In this study, a probabilistic model is developed for assessing 78 

crop loss risk under 1.5° and 2° global warming and is applied for the United States which is 79 

responsible for around 40% and 70% of global maize supply and export. The author notes that 80 

several studies have used probabilistic approaches for estimating climate change impacts on crop 81 

yields (Tao et al., 2009; Tebaldi and Lobell, 2008; Wing et al., 2015), but their goal is to account 82 

for uncertainties from emission scenarios, climate models etc. Here, the probabilistic model 83 

developed in this study is featured with providing the full spectrum of possible outcomes and the 84 

associated probabilities, given a specific temperature rise. The analysis framework introduced in 85 

this study can also be easily extended to other regions and crops. Specifically, the following 86 

scientific questions are addressed in this study: 1) what are the possible outcomes of maize yield 87 

associated with temperature rise in the United States? How likely each possible outcome is to 88 

occur? Through a county-level analysis, we aim to identify where maize yield is most vulnerable 89 

to temperature rise across the growing areas of the country. 2) Whether, where and how much 90 

risk of yield loss can be reduced by constraining global temperature rise to 1.5°C? Understanding 91 
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the spatial pattern of the benefits can help mitigation and adaptation strategies.  92 

 93 

2. Materials and Methods 94 

2.1.  Crop yields and climate data 95 

Census data on maize yield is obtained from the National Agriculture Statistics Survey’s Quick 96 

Stats database maintained by the US Department of Agriculture (USDA) 97 

(http://www.nass.usda.gov/Quick_Stats). 97 climate model simulations from the Coupled Model 98 

Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) under four Representative 99 

Concentration Pathways (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) (Moss et al., 2010) are used 100 

(Table S1). These climate model projections are statistically downscaled to 1/8 degree and bias-101 

corrected against observations using bias-correction and spatial-downscaling approach (BCSD) 102 

(Leng et al., 2016b; Wood et al., 2004). The observed gridded climate is produced based on 103 

approximately 20,000 stations across the United States (Livneh et al., 2013; Maurer et al., 2002). 104 

(Jang and Kavvas, 2013) found that the BCSD method as a popular statistical downscaling method 105 

has limitations in projecting future precipitations. However, this study focus on yield changes 106 

associated with temperature rise without consideration of precipitation effects. In addition, the 107 

downscaled climate was bias corrected and widely validated against observations. The adjusted 108 

climate was found to have the same monthly climatology as the observed climate (Reclamation 109 

2013), and has been used in previous climate change impact studies (Huang et al., 2017; Leng and 110 

Huang, 2017; Leng et al., 2016b). 111 

Table 1 The ensemble of climate model projections used in this study 112 
 113 

http://www.nass.usda.gov/Quick_Stats
http://iopscience.iop.org/article/10.1088/1748-9326/11/11/114003/meta#erlaa44cfbib49
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ID Climate Model Emission Scenarios 

1 access1-0  rcp45  rcp85 

2 bcc-csm1-1 rcp26 rcp45 rcp60 rcp85 

3 bcc-csm1-1-m  rcp45  rcp85 

4 canesm2 rcp26 rcp45  rcp85 

5 ccsm4 rcp26 rcp45 rcp60 rcp85 

6 cesm1-bgc  rcp45  rcp85 

7 cesm1-cam5 rcp26 rcp45 rcp60 rcp85 

8 cmcc-cm  rcp45  rcp85 

9 cnrm-cm5  rcp45  rcp85 

10 csiro-mk3-6-0 rcp26 rcp45 rcp60 rcp85 

11 fgoals-g2 rcp26 rcp45  rcp85 

12 fio-esm rcp26 rcp45 rcp60 rcp85 

13 gfdl-cm3 rcp26 rcp45 rcp60 rcp85 

14 gfdl-esm2g rcp26 rcp45 rcp60 rcp85 

15 gfdl-esm2m rcp26 rcp45 rcp60 rcp85 

16 giss-e2-h-cc  rcp45   

17 giss-e2-r rcp26 rcp45 rcp60 rcp85 

18 giss-e2-r-cc  rcp45   

19 hadgem2-ao rcp26 rcp45 rcp60 rcp85 

20 hadgem2-cc  rcp45  rcp85 

21 hadgem2-es rcp26 rcp45 rcp60 rcp85 

22 inmcm4  rcp45  rcp85 

23 ipsl-cm5a-mr rcp26 rcp45 rcp60 rcp85 

24 ipsl-cm5b-lr  rcp45  rcp85 
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25 miroc-esm rcp26 rcp45 rcp60 rcp85 

26 miroc-esm-chem rcp26 rcp45 rcp60 rcp85 

27 miroc5 rcp26 rcp45 rcp60 rcp85 

28 mpi-esm-lr rcp26 rcp45  rcp85 

29 mpi-esm-mr rcp26 rcp45  rcp85 

30 mri-cgcm3 rcp26 rcp45  rcp85 

31 noresm1-m rcp26 rcp45 rcp60 rcp85 

Number of Projections  97 21  31  16  29 

 114 

2.2.  Conditional probability estimation 115 

A probabilistic model describes the distribution of possible outcomes and associated 116 

probabilities under a given condition through Copulas (Nelsen, 2007). Specifically, a Copula is 117 

first fit to the time series of yield and temperature to derive their joint probability distribution 118 

function (PDF), based on which the probabilistic model is then constructed. A copula describes 119 

the multivariate distributions (C) of two or more uniformly distributed variables (Nelsen, 2007). 120 

In this study, five bivariate copulas which are frequently used in the literature are adopted for 121 

estimating the joint probability distribution between temperature (x) and yield (y).  122 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑋𝑋,𝑌𝑌) = 𝐶𝐶[𝐹𝐹𝑋𝑋(𝑋𝑋),𝐹𝐹𝑌𝑌(𝑌𝑌)]                (1) 123 

Where C is the cumulative distribution function (CDF) of copula, while 𝐹𝐹𝑋𝑋(𝑋𝑋) and 𝐹𝐹𝑌𝑌(𝑌𝑌) are the 124 

marginal distributions of 𝑥𝑥 and 𝑦𝑦, respectively. Details on the five copula families and their 125 

mathematical descriptions can be found in Table 1. Besides the five commonly used copulas, there 126 

are several other copula families that have not fully been used in the literature (Sadegh et al., 2017), 127 

and are not considered in this study. 128 
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 129 

Table 2 Copula families used in this study and the mathematical descriptions 130 

Name Mathematical Description 
Parameter 

Range 
Reference 

Gaussian � �
1

2𝜋𝜋√1 − 𝜃𝜃2
exp (

2𝜃𝜃𝜃𝜃𝜃𝜃 − 𝑥𝑥2 − 𝑦𝑦2

2(1− 𝜃𝜃2)
)dxdy𝑏𝑏

∅−1(𝑣𝑣)

−∞

∅−1(𝑢𝑢)

−∞
 𝜃𝜃 ∈ [−1, 1] 

(Renard and Lang, 

2007) 

t � �
Γ�𝜃𝜃2 + 2

2 �

Γ �𝜃𝜃22 �𝜋𝜋𝜃𝜃2�1− 𝜃𝜃12
�1 +

𝑥𝑥2 − 2𝜃𝜃1𝑥𝑥𝑥𝑥 + 𝑦𝑦2

𝜃𝜃2 �

𝜃𝜃2+2
2

dxdy𝑐𝑐
𝑡𝑡𝜃𝜃2
−1(𝑣𝑣)

−∞

𝑡𝑡𝜃𝜃2
−1(𝑢𝑢)

−∞
 

 

  𝜃𝜃 ∈ [−1, 1]; 𝜃𝜃2

∈ [0,∞]  

 

(Demarta and 

McNeil, 2005) 

Clayton max (𝑢𝑢−𝜃𝜃 + 𝑣𝑣−𝜃𝜃 − 1,0)−1/𝜃𝜃         

 

𝜃𝜃 ∈ [−1,∞]\0    

 

(Clayton, 1978) 

Frank −
1
𝜃𝜃

ln �1 +
(exp(−𝜃𝜃𝜃𝜃) − 1)(exp(−𝜃𝜃𝜃𝜃) − 1)

exp(−𝜃𝜃) − 1 �     𝜃𝜃 ∈ ℝ\0    (Li et al., 2013) 

Gumbel exp �−�(− 𝑙𝑙𝑙𝑙(𝑢𝑢))𝜃𝜃 + (−𝑙𝑙𝑙𝑙(𝑣𝑣))𝜃𝜃�
1
𝜃𝜃�  𝜃𝜃 ∈ [−1,∞ ] 

 (Zhang and Singh, 

2006) 

 131 

Based on the fitted Copula, the conditional probability of yield dropping below a certain amount 132 

(𝑌𝑌 < 𝑦𝑦) under a given temperature (𝑋𝑋 = 𝑥𝑥) is estimated; i.e., 𝐹𝐹𝑌𝑌|𝑋𝑋(𝑌𝑌 < 𝑦𝑦 | 𝑋𝑋 = 𝑥𝑥). Here, the 133 

conditional probability density function of 𝑓𝑓𝑦𝑦|𝑥𝑥(𝑦𝑦|𝑥𝑥) is calculated as follows:  134 

𝑓𝑓𝑌𝑌|𝑋𝑋(𝑦𝑦 | 𝑥𝑥) = 𝑐𝑐[𝐹𝐹𝑋𝑋(𝑋𝑋),𝐹𝐹𝑌𝑌(𝑌𝑌)] ∗ 𝑓𝑓𝑌𝑌(𝑦𝑦)            (2) 135 

Where 𝑐𝑐 is the PDF of the Copula and 𝑓𝑓𝑌𝑌(𝑦𝑦) is the PDF of marginal distribution of yield. Once the 136 

conditional PDF under a particular temperature is obtained from equation (2), the probability of 137 

yield dropping below a certain amount, i.e., 𝐹𝐹𝑌𝑌|𝑋𝑋(𝑌𝑌 < 𝑦𝑦 | 𝑋𝑋 = 𝑥𝑥), is estimated as the area under 138 

𝑓𝑓𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑥𝑥)| for 𝑌𝑌 < 𝑦𝑦. 139 
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2.3.  Analysis 140 

The linear trend of maize yield is removed using the least squares method, to account for the effects 141 

of technological improvement. The growing season temperature is defined as the average of 142 

monthly temperatures during June-July-August following previous studies (Leng, 2017a; b; Lobell 143 

and Asner, 2003). All the five bi-variable copulas are fitted for each maize growing county based 144 

on de-trended maize yield and growing season temperature for the reference period 1986-2005, 145 

and the one that has the highest statistically significant (at 95% confidence level) maximum 146 

likelihood is selected as the best copula (Sadegh et al., 2017). The statistical significance is 147 

estimated according to the two-tailed Student’s t-test. The selected copula for each maize growing 148 

county is shown in Supplementary Figure S1. Based on the fitted copula, the conditional 149 

probability (%) of yield dropping below a certain level is estimated for each maize growing county 150 

under 1.5°C and 2°C global warming scenarios. There are two approaches (i.e. transient and 151 

stabilized approaches) to evaluate climate change impacts under the 1.5 and 2.0 °C warming 152 

worlds. To date, most of previous studies evaluating climate change impacts at specific global 153 

temperature targets have relied on transient climate states extracted from the CMIP5 archive. 154 

Recently, simulations are made available by the Half a degree Additional warming, Projections, 155 

Prognosis and Impacts project (HAPPI), which is designed to provide stabilized scenarios for the 156 

1.5 and 2.0 °C warming worlds (Mitchell et al., 2017). To inter-compare climate scenarios between 157 

transient and stabilized states is not within the scope of this study. A recent study by (Ruane et al., 158 

2018) found that the stabilized scenarios from HAPPI are largely consistent with the transient 159 

scenarios extracted from CMIP5 simulations in agricultural regions.  160 

In this study, to investigate future yield loss risk at under 1.5°C and 2°C global warming targets, 161 

analyses were performed using time-slice periods following the literature (Gosling et al., 2016; 162 
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Leng et al., 2015; Schewe et al., 2014; Zhang et al., 2018). Specifically, the 20-year periods with 163 

1.5°C and 2°C global temperature target relative to pre-industrial era are extracted, based on which 164 

local temperature change is calculated relative to reference period (Lissner and Fischer, 2016). It 165 

should be noted that not all climate models projected 1.5°C and 2.0°C rise of global temperature 166 

under RCP2.6 (Supplementary Table S1). The projected change in local temperature is then used 167 

as input into the probabilistic model for estimating the probability of yield change in the future. It 168 

is noted that the reference period 1986-2005 is 0.6°C warmer than pre-industrial levels (IPCC, 169 

2013). Thus, 1.5°C and 2°C warming target corresponds to a warming of 0.9°C and 1.4°C above 170 

the reference period, respectively (Lissner and Fischer, 2016).  171 

The above processes are repeated for each climate model under each emission scenario. The multi-172 

model ensemble mean is calculated for illustration, while inter-model spread is used for denoting 173 

the uncertainty from models. Through a county-scale analysis, the regions that are most vulnerable 174 

to temperature rise can be identified. Yield loss probability is compared between the 1.5°C and 175 

2°C warming worlds to investigate whether, where and how much benefit would be achieved by 176 

constraining global warming to 1.5°C for reducing yield loss risk.  177 

 178 

3. Results and Discussion 179 

Figure 1a shows the temporal variations of de-trended maize yield and growing season 180 

temperature for the reference period. Maize yield for the country as a whole has exhibited 181 

substantial variations in recent decades, and yield reductions often correspond to above-normal 182 

temperatures. For example, maize yield shows a substantial decrease by up to 16% at above-183 

normal temperatures compared to below-normal temperatures. Overall, more than one third of 184 
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yield variation can be significantly (P<0.01) explained by growing season temperature 185 

anomalies. The negative temperature impacts on maize yields are consistent with previous 186 

studies at regional and global scales (Asseng et al., 2015; Deryng et al., 2011; Leng et al., 2016a; 187 

Liu et al., 2016; Lobell and Field, 2007; Ray et al., 2015; Schauberger et al., 2017; Schlenker and 188 

Roberts, 2009; Zhao et al., 2016), although the strength of yield-temperature relation differs to 189 

certain extent. Figure 1b shows the joint distributions between maize yield and temperature 190 

anomalies, as well as a full spectrum of likely outcomes of maize yields under various 191 

temperature conditions (see methods). Comparing the estimated maize yield distributions with 192 

observed maize yields (red dots) indicates that the majority of observed yields fall within the 193 

high-density region of PDFs, demonstrating that the fitted joint distribution function is reliable 194 

for describing maize yield at given temperatures. 195 

 196 

 197 

Figure 1 Observed temperature-yield relations for the reference period 1986-2005. (a) temporal 198 

changes in de-trended yield anomaly and growing season temperature anomaly; (b) fitted joint 199 

distribution function between yield anomaly and temperature anomaly;  200 

 201 
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Based on the fitted joint distribution, the conditional probability of yield changes under given 202 

local temperature rise of 0.5°C, 1°C to 1.5°C and 2°C are estimated to explore the sensitivity of 203 

yield loss risk to temperature (see methods). Figure 2a shows that yield probability density 204 

curves gradually shift to the left side of the vertical dashed line (i.e. its long-term mean) with 205 

increase in temperature rise from 0.5°C to 2°C. This suggests a steady increase of yield loss risk 206 

(i.e. yield dropping below its long-term mean). There is 63.3% probability that 0.5°C rise of 207 

local temperature would result in yield reduction below its long-term mean for the country as a 208 

whole. With a 2°C increase in temperature, the probability would increase to 81.4% (Figure 2b). 209 

The sensitivity of yield loss probability to local temperature rise is found to become more 210 

pronounced when considering the risk of yield reduction by 10% and 20% below its long-term 211 

mean value. Given a 0.5°C rise of local temperature rise, the probability of yield reduction by 212 

10% is only 15%. However, such risk would jump by a factor of 4 to 67% when experiencing a 213 

2°C rise of local temperature. The risk of yield reduction by 20% which is negligible under 214 

0.5°C (i.e. 0.9%) would even become 32.2% given 2°C temperature rise. These suggests that 215 

local temperature rise would have more pronounced effects in causing extreme yield reductions. 216 

 217 

 218 

Figure 2 (a) conditional probability of yields at given temperature rise of 0.5°C, 1°C, 1.5°C and 219 
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2°C. The shaded areas represents the probability of likely yield changes under different 220 

temperature rises.; (b) probability of yield dropping below and reducing by 10% and 20% of 221 

historical mean at given temperature rises. 222 

 223 

How much risk there will be for future maize reduction under1.5°C and 2°C global warming 224 

targets? (Schlenker and Roberts, 2009) projected a decrease by 30–46% by the end of the century 225 

based on one climate model. (Urban et al., 2012) found that US maize yields are projected to 226 

decrease by an average of 18% by 2030–2050 relative to 1980–2000 based on 15 climate 227 

models. Instead of providing a deterministic projection in specific future periods, we examine 228 

future yield changes under 1.5°C and 2°C global warming targets in a probabilistic manner. 229 

Figure 3 shows the risk of yield dropping by 10% of the historical mean under 1.5°C and 2°C 230 

warming in four RCPs. Under the 2°C warming world, the multi-model ensemble mean shows 231 

that yield loss probability for the country as a whole is projected to be 65%, 61%, 60% and 44% 232 

under RCP8.5, RCP6.0, RCP4.5 and RCP2.6 emission scenario, respectively. Such risk is 233 

expected to decrease substantially in a 1.5°C warming world, independent of emission scenarios. 234 

However, larger uncertainty exist as indicated by the wide ranges among climate models under 235 

both 1.5°C than 2°C warmings. Compared to 2°C, larger uncertainty ranges are found under 236 

1.5°C warming except for the RCP2.6 scenario. This could be attributed to the fact that global 237 

mean temperature rise simulated by some climate models may not reach 2°C under RCP26 238 

scenario. Indeed, 15 and 7 climate models out of 21 that provided simulations under RCP26 239 

scenario have simulated a global warming of 1.5°C and 2°C, respectively. The relatively smaller 240 

sample of climate model simulations under 2°C than 1.5°C leads to the larger range as indicated 241 

by the boxplot for the RCP2.6 scenario. Overall, the multi-model ensemble indicates that the 242 
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probability of yield reduction by 10% would reduce by 20%, 19%, 19%, and 16% under RCP8.5, 243 

RCP6.0, RCP4.5 and RCP2.6 emission scenario, respectively, if global temperature rise is 244 

constrained to 1.5°C.  245 

 246 

 247 

Figure 3 Probability (%) of future yield reduction by 10% in 1.5°C and 2°C warming worlds. 248 

The probability is estimated for each climate model under each RCP scenario (See Table 1 for 249 

details). The central mark in the boxplot indicates the median, while the bottom and top edges 250 

indicate the 25th and 75th percentiles, respectively. 251 

 252 

Spatially, the highest risk will be experienced in central and southeastern US, while the lowest 253 

risk is located in western US and high production regions such as Iowa (Figure 4). The physical 254 
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mechanism behind the distinct spatial patterns is, however, an open question since many factors 255 

could influence yield sensitivity to temperature in farmers’ fields. For example, the concurrent 256 

drought stress could to be a potential cause for yield reductions (Lesk et al., 2016; Lobell et al., 257 

2014; Zipper et al., 2016), which may be partly alleviated by CO2-induced increase in crop water 258 

use efficiency (McGRATH and Lobell, 2011). One obstacle for quantitative attributions has been 259 

lack of accurate field-level data on both environmental conditions and yield performance, which 260 

points to the importance of giving a distribution of possible outcomes rather than a deterministic 261 

estimate. Indeed, the negative temperature impact on crop yields could be reduced through 262 

management practices such as soil mulching (Qin et al., 2015), conservation tillage (Karlen et 263 

al., 2013) and multiple cropping (Seifert and Lobell, 2015). Recent observation-based studies 264 

showed that irrigation would dampen crop yield response to temperature (Leng, 2017b; Troy et 265 

al., 2015), which could partly explain the relatively low sensitivity of yield loss probability to 266 

temperature rise in western arid regions, western Kansas and Nebraska where irrigation is 267 

extensively applied (Leng et al., 2013).  268 

 269 

Importantly, it is found that with increase in temperature, yield loss probability tends to grow 270 

progressively across the country, especially in Southeastern growing areas. Under 2°C global 271 

warming, the probability of yield reduction by 10% could exceed 50% in Missouri, South 272 

Dakota, Eastern Kansas, Southern Texas and southeastern part of the country. These hot-spot 273 

regions point to the need for adaptation and mitigation priorities for enhancing yield residence 274 

under global warming. Constraining global temperature rise to 1.5°C would lead to substantial 275 

decrease in yield loss risk. Such benefit is, however, spatially variable, with largest risk reduction 276 

in those hot spot areas, while negligible change is found in high production areas including 277 
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Illinois, Indiana and Ohio. Further analysis show that the spatial pattern of reduced yield loss risk 278 

is independent of emission scenario (Supplementary Figure S2-4), pointing to the robustness of 279 

the revealed maps on the uneven distribution of climate mitigation benefits. This has great 280 

implications for informing targeted adaptation and mitigation measures, through identifying the 281 

regions that are most vulnerable to global warming, and especially showing where and how 282 

much benefits would be achieved by constraining global temperature rise to 1.5°C.  283 

 284 
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 285 

Figure 4 Spatial distribution of the probability (%) of yield reduction by 10% under (a) 1.5°C 286 

and (b) 2°C global warming target in the RCP8.5 scenario. The probability is estimated for each 287 

climate model under each warming scenario and the multi-model ensemble mean is shown. The 288 
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benefit of constraining global temperature rise to 1.5°C is shown in (c), as calculated by the 289 

difference between (a) and (b). 290 

 291 

4. Conclusion  292 

Enhanced stability of maize production in the United States would greatly benefit global food 293 

security, as it provides 40% of global supply. Important in this regard is to understand the full 294 

range of possible outcomes of yields and the associated probabilities under future warming. 295 

Previous assessment on climate change impacts under global warming are mainly based on a 296 

deterministic approach, without providing the likelihood of different outcomes which is more 297 

relevant for decision-makers in selecting appropriate strategies. Here, this study provides a 298 

probabilistic assessment of maize yield changes associated with temperature rise in the United 299 

States at the county scale under 1.5°C and 2°C global warming worlds. Results show a 300 

significant association between temperature rise and maize yield reductions across the country 301 

during the past three decades. A probabilistic model is then developed to allow for examination 302 

of yield loss risk under given temperatures. It is found that yield loss risk (i.e. the probability of 303 

yield dropping below its long-term mean) tends to increase significantly with rise of temperature, 304 

and distinct spatial patterns exist at the county-scale. The highest risk is observed in central and 305 

southeastern US, while maize failure risk is relatively low in western US. Comparing the 306 

estimates under 1.5°C global warming against that in 2.0°C warming indicates that keeping 307 

global warming within 1.5°C has great benefits for reducing future yield loss risk. Based on a 308 

large ensemble of 97 climate model simulations, the risk of yield dropping below the long-term 309 

mean is projected to decrease by 6% from 81% for the country as a whole. Such benefit are more 310 

evident when considering the risk of yield reduction by 10% and 20%, which is excepted to 311 
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decrease by 25% and 28% under 1.5°C warming, respectively. Spatially, constraining global 312 

temperature rise to 1.5°C would benefit more in Missouri, South Dakota, Eastern Kansas, 313 

Southern Texas and southeastern part of the country than other regions, and highlighting the 314 

spatially variable benefits of climate mitigation efforts. 315 

 316 

There are a number of caveats that should be acknowledged when interpreting the results 317 

obtained in this study. First, it is assumed that the historical temperature-yield relation hold in the 318 

future, without considering adaptations and the possible changes in the temperature-yield 319 

relations. (Leng, 2017b) reported a weakening strength of temperature-corn yield relation in the 320 

United States during recent decades. Thus, the estimates obtained in this study would represent 321 

an upper-bound of possible yield changes associated temperature rise. Second, the magnitude of 322 

yield changes may differ if a different reference period is selected for constructing the 323 

probabilistic model. Indeed, several reference periods have been used in climate change impact 324 

assessment, e.g. 1980-2010 (Schewe et al., 2014), 1971-2000 (Haddeland et al., 2014) as well as 325 

1986-2005 (Lissner and Fischer, 2016) which is adopted in this study. Third, only temperature is 326 

included for assessing future yield changes, without considering the concurrent changes in 327 

precipitation, wind field, humidity, extreme heat, droughts and vapor pressure deficit that are 328 

relevant to crop yield at different growth stages (Asseng et al., 2013; Challinor, A. et al., 2014; 329 

Deryng et al., 2011; Hawkins et al., 2013; Iizumi et al., 2013; Lobell et al., 2013; Schauberger et 330 

al., 2017). What’s more, estimates of future yield changes are based on the assumption of no 331 

adaptations. Thus, this study may not give the accurate estimate of yield changes in the future, 332 

rather it demonstrates the sensitivity of yield loss risk to temperature rise under global warmings 333 

in a probabilistic and spatially explicit manner. 334 
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 335 

Despite the limitations and uncertainties, this study has great implications for assessing climate 336 

change impacts on yields, through introducing a spatially explicit probabilistic modeling 337 

approach which can be easily extended to other regions and crops, considering other climatic 338 

variables such as precipitation, wind field and humidity conditions. The results are valuable for 339 

adaptation and mitigations by showing the probability distribution of possible yield changes in 340 

the United States under 1.5°C and 2°C global warming scenarios. This study highlights the 341 

regions where maize yield is most vulnerable to temperature rise, and importantly, the benefits 342 

for reducing yield loss risk by constraining global temperature rise to 1.5°C, which turns out to 343 

be spatially variable across the country.  344 

 345 
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