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Abstract 35 
 36 

The dynamics of the active microbial populations involved in nitrogen 37 
transformation in a vertical subsurface flow (VF) constructed wetland (VF) 38 
treating urban wastewater was/were??? evaluated. Aquí hay que decir que se 39 
consideraron 2 periodos que se diferenciaron en ….The VF wetland (1.5 m²) 40 
operated under average loads of 130 g COD m-2 d-1 and 17 g TN m-2 d-1 in 41 
Period I, and of 85 g COD m-2 d-1 and 19 g TN m-2 d-1 in Period II. The mean 42 
hydraulic loading rate was 375 mm d-1 and C/N ratio was 2 in both periods. 43 
Samples for microbial characterization were collected from the filter medium 44 
(top and bottom layers) of the wetland, and from water inflow and outflow at the 45 
end of Periods I (Jun-Oct) and II (Nov-Jan). Decir los meses cuando se 46 
presentan los dos periodos (lo que he escrito arriba)The combination of qPCR 47 
and high throughput sequencing (NGS, MiSeq) assessment at DNA and RNA 48 
level of 16S rRNA genes and nitrogen-based functional genes (amoA and nosZ- 49 
clade I) revealed that nitrification was associated both with ammonia-oxidizing 50 
bacteria (AOB) (Nitrosospira) and ammonia-oxidizing archaea (AOA) 51 
(Nitrososphaeraceae), and nitrite-oxidizing bacteriaers (NOB) such as 52 
Nitrobacter. Considering the active abundance (based in amoA transcripts), the 53 
AOA population revealed to be more stable than AOB in both periods and 54 
depths of the wetland, being less affected by the organic loading rate (OLR). 55 
Although denitrifying bacteria (nosZ copies and transcripts) were actively 56 
detected in all depths, but, the denitrification process was lower (removal of 2 g 57 
TN m-2 d-1 for both periods) as shown by NOx-N accumulation in the effluent. 58 
Overall, AOA, AOB and denitrifying bacteria (nosZ) were observed to be more 59 
active in the bottom than in the top layer at lower OLR (Period II). A proper 60 
design of OLR and hydraulic loading rate (HLR) seems to be crucial to control 61 
the activity of microbial biofilms in VF wetlands on the basis of oxygen, organic -62 
carbon and NOx-N forms, to improve their capacity for total nitrogen removal. 63 
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1. INTRODUCTION 69 
 70 

Constructed wetlands (CW) are engineered systems designed to simulate the 71 

conditions that occur in natural systems to treat wastewater (Kadlec and 72 

Wallace, 2009). This technology is under continuous development worldwide as 73 

a sustainable alternative for decentralized wastewater treatment in small 74 

communities or remote areas, due to its low energy consumption, ease of 75 

operation and provision of ecosystem services, and it has been widely 76 

employed for the treatment of different types of wastewater (García et al., 77 

2010). Vertical subsurface flow (VF) constructed wetlands (VF) are one of the 78 

configurations of  subsurface CW which holds greater oxygen transfer capacity 79 

due to its design (unsaturated bed) and operational mode (intermittent feeding), 80 

and require a smaller land area compared to other types of CW operating 81 

without air induction (Cui et al., 2010). Given their large oxygen transfer 82 

capacity, VF wetlands are mainly employed for nitrification and removal of 83 

organic matter (Platzer, 1999).  84 

It has been proven that the nitrification capacity of VF wetlands is directly 85 

related to the applied organic loading rate (OLR), since the excess of organic 86 

compounds can affect the oxidation of ammonia due to the competition of 87 

oxygen between heterotrophic and autotrophic organisms (Saeed and Sun 88 

2012; Sun et al., 1998). On the other hand, the presence of biodegradable 89 

organic compounds seems to promote the growth of denitrifying organisms 90 

(Headley et al., 2005). Therefore in general, nitrogen removal is associated with 91 

nitrification of ammonia nitrogen followed by denitrification of nitrate. In this way, 92 

nitrogen transformation in VF wetland is accomplished by ammonia-oxidizing 93 

bacteria (AOB), ammonia-oxidizing archaea (AOA), nitrite oxidizing bacteria 94 

(NOB) and to a lesser extent by denitrifying bacteria enriched in the biofilm of 95 

filter media, which are metabolically active depending on the specific linked to 96 

certain environmental conditions.CITA 97 

Several studies have been conducted to elucidate the bacterial dynamics 98 

involved in the nitrogen cycle in VF wetlands. In a VF wetland operated under 99 

OLR of 27 g COD m-2 d-1 was identified that Nitrosomonas europaea, N. mobilis 100 

and Nitrosospira were dominant AOBs in the filter media (Tietz et al., 2007). 101 

Guan et al. (2015) evaluated in three VF wetlands (1.2 m²) the influence of 102 



different substrates (sand, zeolite and gravel) and showed that the bacterial 103 

community was significantly influenced by substrate type. However, Nitrospira 104 

one of the NOB, was abundant in all units showing no influence of substrate 105 

type. Wu et al. (2016) using fluorescence in situ hybridization (FISH), reported 106 

that the growth of AOB and NOB in VF wetlands was enhanced by the use of 107 

intermittent aeration and of a specific substrate (sludge-ceramsite). Pelissari et 108 

al. (2016) showed how lower OLR (41 vs. 104 g COD m-2 d-1) and hydraulic 109 

loading rates (HLR) favored simultaneous nitrifying and denitrifying bacteria in 110 

two VF wetland microcosms (microcosm 1, 41 g COD m-2 d-1, HLR  of= 72 mm 111 

d-1; microcosm 2, 104 g COD m-2 d-1, HLR of 170. 5 mm d-1). Recently, Pelissari 112 

et al., (2017) showed in a partially saturated full scale VF (full scale) showed 113 

that nitrifying bacteria are presents in the first layers of the filter bed (until 34 cm 114 

of depth), while denitrifying bacteria since top layer. Coban et al. (2015) 115 

described that anaerobic ammonia-oxidizing bacteria were marginal in CW 116 

running with urban wastewater. 117 

 Despite the progress achieved with modern molecular techniques, microbial 118 

dynamics involved in nitrogen transformations in VF wetlands are still unclear. 119 

Firstly, many of the microbiological studies carried out in CW refer to microbial 120 

abundance and do not demonstrate the active abundance microbial, which 121 

actually acts in the removal and transformation of nitrogen. Secondly, microbial 122 

processes in CW depend on environmental factors, properties of wastewater, 123 

substrate type, and operational conditions of the treatment units (Meng et al., 124 

2014).  125 

It has been well established in the literature that the autotrophic oxidation of 126 

ammonia is not only limited to the bacteria domain, but it is also performed by 127 

archaeal domain (Angnes et al., 2013; Konneke et al., 2005). Current, studies 128 

conducted in CW have demonstrated that bacterial diversity is greater than 129 

archaeal in VF and horizontal subsurface flow wetlands (HF), but ammonia-130 

oxidizing archaea (AOA) and taxonomic assignment of archaea were not 131 

assessed (Adrados et al., 2014). The same behavior was observed in a free 132 

water surface (FWS) wetland, where archaeal communities showed lower 133 

richness and diversity than bacterial communities (Fan et al., 2016). Zhi and Ji 134 

(2014) reported in a tidal flow CW that archaea were not dominant in the 135 



microbial community during the entire operation period. Oppositely, Sims et al. 136 

(2012) showed that AOA were found to be generally in higher abundance than 137 

AOB in FWS soils and water in both summer and winter over a period of two 138 

years. On the other hand, Paranychianakis et al. (2016) showed in planted and 139 

unplanted HF wetlands, the abundance of amoA genes of AOA was lower than 140 

that of AOB and plant species showed to have a weak effect on the abundance 141 

of AOA. 142 

In spite of the knowledge gained in the abovementioned studies in regards to 143 

the dynamics between AOA and AOB, the contribution fraction of ammonia 144 

oxidizers (AOA vs. AOB) and their amoA gene expression between kingdoms in 145 

VF wetlands is still unknown (You et al., 2009). In addition, there are no studies 146 

evaluating the effect of operational conditions (different OLR???) on nitrifying 147 

and denitrifying microbial populations. To our knowledge, the microbial 148 

community structure of active microbial populations (eubacteria and archaea) 149 

involved in nitrogen cycle in CW wetlands is scarcely known in the literature. 150 

The present study aims at gaining insight into the dynamics of active microbial 151 

populations during a nitrification-based process in a vertical flow constructed 152 

wetland treating urban wastewater under high OLR. 153 

  154 

2. MATERIALS AND METHODS 155 

 156 

2.1. Description of the wastewater treatment plant 157 

This study was conducted in a VF wetland which was part of a hybrid CW 158 

system. The hybrid system was comprised of a primary treatment performed by 159 

an Imhoff tank, followed by a VF wetland stage, a HF wetland, and a FWS 160 

wetland in series. The experimental treatment plant is set outdoors at the 161 

experimental facility of the GEMMA group (Department of Civil and 162 

Environmental Engineering of the Universitat Politècnica de Catalunya-163 

BarcelonaTech, Spain) in a Mediterranean climate. The treatment plant was 164 

commissioned in 2010, and up to the time of the current study the treatment 165 

system operated in a continuous mode under different organic and hydraulic 166 

loads over the years of operation (Ávila et al., 2016, 2014, 2013). 167 



The VF wetland stage had a surface area of 3 m2, divided into two cells with 1.5 168 

m2 of surface area each (1.0 W × 1.5 L × 1.3 D), operating alternatively in 169 

cycles of 3.5 days, in order to control the growth of attached biomass, maintain 170 

aerobic conditions within the filter bed and mineralize the organic deposits 171 

accumulated on the bed surface (Molle et al., 2008). The filter media was 172 

composed by a 0.1 m sand layer (ø = 1-2 mm) in the top, and 0.7 m layer of fine 173 

gravel (ø = 3-8 mm) underneath (Fig.1). The VF cells were constructed in 174 

polyethylene tanks, and a polyethylene pipe distributed the pumped water 0.1 m 175 

above the top of the bed. This pipe contained 5 perforations with diffusers that 176 

provided a true 360◦radial horizontal water pattern, thus ensuring an evenly 177 

distribution of the wastewater over the whole surface of the filter. Water was 178 

pumped from the effluent of the Imhoff tank to the VF bed in operation in an 179 

intermittent mode, providing about 22 pulses per day (about 50 L pulse-1). Each 180 

VF container had a metal tramex 0.1 m above floor level and a number of holes 181 

situated underneath it so as to allow for passive aeration of the bed. The 182 

aquatic macrophyte planted in all wetland units was Phragmites australis. 183 

During the period of this study (Jun 2015 to Jan 2016), the hybrid system 184 

operated with a recirculation strategy, with the purpose of enhancing the 185 

removal of total nitrogen (see Ávila et al., submitted COMO LO VAN A VER SI 186 

NO ESTÁ PUBLICADO???). A parcel of the final effluent of FWS was 187 

recycledback to the Imhoff tank by means of a peristaltic pump in a recirculation 188 

flow rate of 50% (RFR = daily recirculated effluent volume/daily raw wastewater 189 

volume x 100) (Fig 1). The performance of the hybrid system varied 190 

substantially during the implementation of the recirculation strategy owed to the 191 

poor performance of the FWS during the fall season, which was attributed to the 192 

senescence stage of macrophytes. The decay and decomposition of the plant 193 

biomass caused a steep increase in the concentration of organic matter and 194 

many other contaminants in the water table, which generated a high OLR 195 

applied in the VF wetlands (considered as Period I). As a remediation measure 196 

the aboveground biomass was harvested in this unit, and the pollutant loads 197 

recycled back to the Imhoff tank from the final effluent decreased, resulting in a 198 

lower OLR applied in the VF beds (considered as Period II). The determination 199 

of the microbial community structure and activity was carried out in one of the 200 



two VF beds at the culmination of these two periods. In Period I (Jun-Oct) the 201 

VF wetland operated with an OLR of 130 g COD m-2 d-1, whereas in Period II 202 

(Nov-Jan) the OLR decreased to 85 g COD m-2 d-1. In both periods the VF 203 

wetland operated under a flow of 1.125 m3 d-1, resulting in a HLR of about and a 204 

HLR of 375 mm d-1 (taking into account the area of the two VF beds). Table 1 205 

shows the operational conditions of each period. 206 

An electromagnetic flow meter (Sitrans F M Magflo®) was installed at the inlet 207 

and outlet of the VF wetland, so as to assist on the follow up of the flow values 208 

entering the treatment system, which allowed expressing the results on a mass 209 

balance basis. Physicochemical data from influent and effluent samples from 210 

the VF beds were determined twice a week throughout the whole study period. 211 

Some water quality parameters (i.e. temperature, pH, dissolved oxygen –DO-, 212 

electrical conductivity –EC- and redox potential –EH) were determined onsite at 213 

the time of sample collection, and grab water samples were taken to the 214 

adjacent laboratory for the immediate analysis of the following parameters: total 215 

suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen 216 

demand (BOD5), total organic carbon (TOC), total nitrogen (TN), ammonium 217 

nitrogen (NH4-N), nitrate and nitrite nitrogen (NOx-N). 218 

Onsite measurements of water temperature, DO, pH and EC were taken by 219 

using a Checktemp-1 Hanna thermometer, a Eutech Ecoscan DO6 oxymeter, a 220 

Crison pH-meter and a EH CLM 381 conductivity meter, respectively. EH was 221 

also measured onsite by using a Thermo Orion 3 Star redox meter and values 222 

were corrected for the potential of the hydrogen electrode. The determination of 223 

conventional wastewater quality parameters, including TSS and NH4-N was 224 

done by following the Standard Methods (APHA, 2012). TN and TOC were 225 

analyzed using a Multi N/C (2100 S) analyzer. BOD5 was measured by using a 226 

WTW® OxiTop® BOD Measuring System. NOx-N- was analyzed using a 227 

DIONEX ICS-1000 chromatography system. 228 

 229 

2.2. Microbial community assessment 230 

 231 

To elucidate the microbial community dynamics involved in nitrogen 232 

transformation in the VF wetland, a DNA- vs RNA-based assessment of 233 



functional genes (qPCR of amoA and nosZ genes versus 16S rRNA both for 234 

eubacteria and archaea) was performed in order to quantify active microbial 235 

populations during nitrification and denitrification processes. Moreover, active 236 

eubacterial and archaeal microbial communities were deeply assessed by 237 

means of 16S rRNA-based high throughput sequencing (rRNA-based MiSeq) to 238 

identify the most predominant microbial key players which were enriched and 239 

active in the different depths of the VF wetland and during different OLR (Period 240 

I vs Period II). Nucleic acid extracts such as DNA, RNA and complementary 241 

DNA (cDNA) of functional genes and 16S rRNA genes were stored frozen at -242 

80ºC until analysis. 243 

 244 

2.2.1. Sample collection and RNA/DNA extraction 245 

 246 

In order to identify the microbial community involved in nitrogen utilization in the 247 

VF wetland and the effect of the OLR, water inflow, water outflow and filter 248 

media samples (gravel and sand) from the top (0-15 cm depth) and bottom (70-249 

80 cm depth) layers were collected at two sampling campaigns. The first 250 

campaign took place at the end of Period I (October), after 5 months of VF 251 

wetland operation (OLR = 130 g COD m-2 d-1), and the second one was 252 

performed at the end of Period II (January), after 3 months of operation under 253 

lower OLR (85 g COD m-2 d-1). Samples were immediately submerged and 254 

mixed with 2 mL of LifeGuard Reagent (MO BIO, Inc., Carlsbad, CA) to prevent 255 

RNA degradation according to manufacturer’s instructions.  256 

Simultaneous RNA + DNA extraction from approx. 0.25 g of filter media and 257 

1mL pellet of water samples (20.000g/5’ at 4ºC) were extracted in triplicate for 258 

each period by using an adapted protocol of PowerMicrobiomeTM RNA Isolation 259 

kit (MO BIO Laboratories, Inc., Carlsbad, CA). The RNA extracts were treated 260 

during 10 minutes at 25°C with 10 units of DNase I (a room temperature stable 261 

DNase enzyme provided by the PowerMicrobiome Isolation kit) to remove any 262 

contamination of  genomic DNA. All of the DNase I-treated RNAs were 263 

subjected to 16S rRNA-based PCR amplification as previously described 264 

(Prenafeta Boldú et al., 2012) to verify their purity. RNAs were subsequently 265 

transcribed to cDNA by means of PrimeScriptTM RT reagent Kit (Perfect Real 266 



Time, Takara) following the manufacturer's instructions. cDNA and DNA extracts 267 

were kept frozen at -80ºC until further analysis. 268 

2.2.2. Quantitative assessment of total, nitrifying and denitrifying microbial 269 

populations  270 

 271 

- Quantitative Polymerase Chain Reaction (qPCR) 272 

Quantitative analysis of total eubacterial population was conducted on the V3 273 

hypervariable region of 16S rRNA (Prenafeta Boldú et al., 2012). The 274 

denitrifying population was quantified by nosZ (clade I), the encoding gene of 275 

catalytic subunit of nitrous oxide reductase, as previously reported in Calderer 276 

et al. (2014). AOB and AOA population were quantified by means of ammonia 277 

monooxygenase α-subunit encoding genes (amoA_AOB (eubacteria) and 278 

amoA_AOA (archaea) genes, respectively). amoA_AOB abundance genes was 279 

performed as previously reported by Rotthauwe et al. (1997), whereas a new 280 

combination of primers for amoA_AOA genes was applied in the present study 281 

in order to include the known amoA-related AOA lineages (group I.1a: 282 

Nitrosopumilus cluster; group I.1a-associated: Nitrosotalea cluster; group I.1b: 283 

Nitrososphaera cluster; and ThAOA group: Nitrosocaldus cluster): CamoA19Fw 284 

5’-ATGGTCTGGYTWAGACG-3’ (Pester M. et al., 2012) and Arch_amoAF_Rv 285 

5’-GATGTCCARGCCCARTCAG-3’ (Wuchter et al., 2006). The reaction was 286 

performed in 10 µl volume containing 1 µl of DNA template, 400 nM of each 287 

primer, 5 µl of the ready reaction mix (Brilliant II SybrGreen qPCR Master Mix, 288 

Stratagene) and 30 nM of ROX reference dye. qPCR reaction was operated 289 

with the following protocol: 10 min at 95°C, followed by 40 cycles of 290 

denaturation at 95°C for 30 s; annealing for 30 s at 52ºC, extension at 72°C for 291 

45 s and the image capture was performed at 75°C for 35 s to exclude 292 

background fluorescence from the amplification of primer dimmers. All qPCR 293 

reactions were conducted in a Real Time PCR System MX3000P (Stratagene, 294 

La Jolla, CA). All samples were analyzed in triplicate by means of three 295 

independent cDNA and DNA extracts. 296 

For the standard curve of each target gene, it was designed by using FunGene 297 

data base (http://fungene.cme.msu.edu/) five gBlocks® Gene Fragments (IDT, 298 

Integrated DNA Technologies).Ten-fold serial dilutions from synthetic genes 299 



were subjected to qPCR assaysin duplicate showing a linear range between 101 300 

and 108 gene copy numbers per reaction to generate standard curves. qPCR 301 

reactions fitted quality standards: efficiencies were between 90-110% and R2 302 

above 0.985. All results were processed by MxPro™ QPCR Software 303 

(Stratagene, La Jolla, CA) and were treated statistically. 304 

 305 

2.2.3 Active microbial community abundance and diversity 306 

 307 

- Next Generation Sequencing (NGS) 308 

A 16S rRNA based metabarcoding assessment through MiSeq platform was 309 

performed to study the diversity of active microbial populations. Transcribed 310 

16S rRNA libraries targeting V1-V3 and V3-V4 regions from eubacterial and 311 

archaeal population, respectively, were sequenced by utilizing MiSeq Illumina 312 

sequencing platform at Molecular Research DNA following manufacturer’s 313 

instructions. For the eubacterial and archaeal libraries, the primer set 27F (5’-314 

AGRGTTTGATCMTGGCTCAG–3’) / 519R (5’-GTNTTACNGCGGCKGCTG-3’) 315 

and 349F (5’-GYGCASCAGKCGMGAAW-3’) / 806R (5’–316 

GGACTACVSGGGTATCTAAT-3’) were used, respectively. 317 

Downstream MiSeq data analysis was carried out by using QIIME software 318 

version 1.8.0. The obtained DNA reads were compiled in FASTq files for further 319 

bioinformatic processing. Trimming of the 16S rRNA barcoded sequences into 320 

libraries was carried out using QIIME software version 1.8.0 (Caporaso et al., 321 

2010). Quality filtering of the reads was performed at Q25, prior to the grouping 322 

into Operational Taxonomic Units (OTUs) at a 97% sequence homology cutoff. 323 

The following steps were performed using QIIME: Denoising using Denoiser 324 

(Reeder and Knight, 2010); reference sequences for each OTU (OTU picking 325 

up) were obtained via the first method of UCLUST algorithm (Edgar, 2010); for 326 

sequence alignment and chimera detection the algorithms PyNAST (Caporaso 327 

et al., 2010b) and ChimeraSlayer (Haas et al., 2011) were used. OTUs were 328 

then taxonomically classified using BLASTn against GreenGenes and RDP 329 

(Bayesian Classifier) database and compiled into each taxonomic level 330 

(DeSantis et al., 2006).  331 



Data from MiSeq NGS assessment were submitted to the Sequence Read 332 

Archive (SRA) of the National Center for Biotechnology Information (NCBI) 333 

under the accession number SRP090290.  334 

 335 

2.3 Statistical data analyses  336 

 337 

Normality of the data of water quality parameters was tested by Kolmogorov – 338 

Smirnov test. Furthermore, Student’s tT test (p< 0.05) was used to test whether 339 

there were statistically significant differences on (i) water quality of samples 340 

between Periods I and II; (ii) bacterial and archaeal abundance between the top 341 

and bottom layer samples within the same period; (iii)  bacterial and archaeal 342 

abundance  between Periods I and II. For statistical analysis Statistic 7.0 343 

software was used (Statsoft Inc, 2004). 344 

 345 

3. RESULTS AND DISCUSSION  346 

 347 

3.1 Treatment performance of the vertical subsurface flow constructed 348 

wetland 349 

Recommendations regarding design OLR loads to be applied in VF wetlands 350 

vary in relation to climatic conditions. For warm climates, Hoffmann et al. (2011) 351 

recommends a range of 60 to 70 g COD m−2 d−1, for subtropical climates the 352 

recommendation is 41 g COD m−2 d−1 (Sezerino et al., 2012), and under cold 353 

climate the indicated OLR decreases to 20 g COD m−2 d−1 (Winter and Goetz, 354 

2003). The VF wetland in the current study operated under high OLR (average 355 

of 130 g COD m−2 d−1 and 80 g COD m−2 d−1 in Periods I and II, respectively) as 356 

can be observed by influent COD and BOD5 values in Table 2. However, the TN 357 

load applied to the VF unit was very similar in the two periods.  Despite the high 358 

HLR, the performance of the VF wetland was generally high and stable 359 

overtime, showing a great capacity of the VF wetland to handle large loads, 360 

observing no signs of clogging of the filter bed throughout the whole study 361 

period.  362 



Average load removal efficiencies were very similar in Periods I and II, 363 

exhibiting values of about 50% COD and BOD5, 70% NH4-N and 20% TN. High 364 

organic load removal rates were achieved, observing mean values of 73 g COD 365 

m-2 d-1 and 45 g BOD5 m-2 d-1 in Period I, and 32 g COD m-2 d-1 and 21 g BOD5 366 

m-2 d-1 in Period II. These results are in accordance with other studies which 367 

report that, the higher the organic load, the greater the removal of organic 368 

carbon in CW (Calheiros et al., 2007; Saeed and Sun, 2012).  369 

The removal of the ammonium nitrogen load was also similar in both periods (4 370 

g NH4-N m-2 d-1). Nitrification is the main mechanism associated with the 371 

elimination of NH4-N in VF wetlands (Kadlec and Wallace, 2009). Although 372 

effluent NOx-N values were similar in both periods (10 ± 4 mg NOx L-1 in Period 373 

I and 15 ± 3 mg NOx L-1 in Period II) (Fig. 2).The average TN removal rate was 374 

of 2 g TN m-2 d-1 (20% load removal) in both periods (Fig. 2), which is in 375 

agreement with other studies in VF wetlands, owed to the low denitrification 376 

capacity of these systems due to the prevailing aerobic conditions within the 377 

filter bed, which hinder the establishment of denitrifying microorganisms (Saeed 378 

and Sun 2012; Vymazal, 2013).  379 

  380 

3.2 Microbial community assessment   381 

 382 

3.2.1 Quantification of nitrifying and denitrifying population 383 

Eubacterial populations exhibited variability on the metabolic activity and active 384 

diversity as a function of the filter depth and OLR applied in the VF wetland (Fig. 385 

3a). In Period I (130 g COD m-2 d-1) eubacteria were more active in top than in 386 

the bottom layer of the wetland (1012 and 1010 16S rRNA transcripts g-1, 387 

respectively). Greatest microbial abundance has been reported to occur in the 388 

top layer of VF wetlands by previous studies, being attributed to the higher 389 

availability of organic matter and nutrients in the surface of the unit (Foladori et 390 

al., 2015; Tietz et al., 2008). However, in the current study, the activity of 391 

eubacteria decreased in the top layer (1010 16S rRNA transcripts g-1) and 392 

increased in bottom layer (1012 16S rRNA transcripts g-1) when the OLR 393 

decreased (Period II). This stratification may be associated with greater 394 



availability of oxygen along the vertical profile of the filter medium promoted by 395 

the lower OLR applied in this period.  396 

Nitrification was identified as an active process in the top and bottom layers of 397 

the VF wetland throughout the study, where ammonia oxidizing bacteria (AOB) 398 

and archaea (AOA), and phylotypes related to nitrite oxidizing bacteria (NOB) 399 

belonging to Nitrobacter genus were actively detected (Fig. 3 b, c and 5). 400 

Independently of the applied OLR, total AOB were more abundant than AOA 401 

populations in both periods and depths, being 106 amoA_AOB copies g-1 402 

quantified in Period I, and 107 amoA_AOB copies g-1 in Period II, in both layers; 403 

and 105 amoA_AOA copies g-1 for Periods I and II, in both layers. 404 

Paranychianakis et al. (2016) showed higher abundance of amoA_AOB gene 405 

copies in respect to amoA_ AOA in pilots 6 units of CW with conditions of 406 

horizontal flow (planted and unplanted) fed with synthetic wastewater. Lower 407 

abundance of AOA has been reported to be presumably caused by a lack of 408 

ecological niche variables in CW (Correa-Galeote et al., 2013). However, the 409 

previous studies conducted in CW were not performed at gene expression level 410 

of amoA, and therefore no information regarding the effect of environmental 411 

variables such as the OLR on the metabolic activity of ammonia-oxidizers has 412 

been described so far.  413 

Current results concerning the active biomass at gene expression level (amoA 414 

transcripts) showed different dynamics of the ammonia-oxidizing population 415 

than those previously observed. The active AOA community showed a stable 416 

throughout the study, showing high resilience to changes in organic load. 417 

Moreover, In Period I, when the VF wetland operated under higher OLR, alike 418 

active archaeal and bacterial abundance was recorded in top and bottom layers 419 

(106 and 105 amoA transcripts g-1 in top and bottom respectively). However, in 420 

Period II at lower OLR, AOB activity decreased in the top layer (105 amoA 421 

transcripts g-1) and increased in the bottom layer (106 amoA transcripts g-1), 422 

while, AOA activity remained stable (106 amoA transcripts g-1 in both layers). 423 

Environmental conditions seem to be fundamental in the growth and 424 

development of stable and specialized ammonia-oxidizing communities (Fan et 425 

al., 2016). AOA have been detected over a wide pH range, whereas AOB are 426 

neutrophilic and their highest growth rate occurs at pH 7 to 7.5 (Prosser and 427 



Nicol, 2012). qPCR results show how at higher oxygen availability across the 428 

filter bed (under lower ORL) and more availability of carbon in top layer, AOB 429 

exhibited their highest activity at the bottom layer. Differently, metabolically 430 

active AOA remained more stable. As previously described, increasing oxygen 431 

concentrations enhanced enrichment of AOB, whereas the archaeal population 432 

was almost oxygen-insensitive.  433 

In relation to the denitrification, nosZ gene abundance (clade I) was similar in 434 

both periods and along the depth of the filter bed (107 nosZ copies g-1). 435 

Nevertheless, nosZ gene copies were always lower in respect to nosZ gene 436 

transcripts (Fig. 3d).  In Period I greater activity of denitrifying bacteria was 437 

identified in the top (106 nosZ transcripts g-1) than in the bottom (104 nosZ 438 

transcripts g-1) of the wetland. When the OLR was decreased (Period II), the 439 

activity of denitrifying bacteria showed a similar behavior than AOB, decreasing 440 

in the top layer (105 transcripts g-1) and increasing in the bottom layer (106 441 

transcripts g-1). These results suggest that under conditions of high carbon 442 

concentrations the denitrification could occur in the surface layers at low oxygen 443 

availability (Period I). When the OLR was decreased (Period II), a higher 444 

oxygen transfer capacity would displace the denitrifying community to the 445 

bottom of the wetland. This community may also be linked to the activity of the 446 

nitrifying community in this part of the wetland, which would help decreasing 447 

oxygen availability in the filter, thus promoting the denitrification activity both 448 

inside the biofilms and in planktonic cells. 449 

Globally, ammonia oxidizers (eubacteria and archaea), as well as denitrifying 450 

bacteria (nosZ) were detected to be more active in the bottom layer during 451 

Period II at lower OLR (Fig 3 b, c, and d), compared with top layer and Period I, 452 

which would confirm the occurrence of higher simultaneous active nitrifying-453 

denitrifying process in the VF wetland at a specific range of organic load.  454 

Figure 4 shows the ratio of genes transcripts vs. genes copies of bacterial and 455 

archaeal amoA and nosZ in top and bottom layers of the VF wetland at the two 456 

sampling campaigns. Regardless of OLR applied in the VF wetland, AOA was 457 

the active nitrifying community more abundant along the vertical profile of 458 

wetland, whereas AOB activity was highly dependent on the OLR. Interestingly, 459 

AOB could be also be influenced by the availability of carbon. High carbon 460 



availability resulted in higher specific growth rate of heterotrophic organisms 461 

(compared to autotrophic) and promoting a rapid consumption of available 462 

oxygen (Saeed and Sun, 2012). This also would also end up promoting the 463 

displacement of the nitrifying bacteria to the lower part of the filter, where the 464 

availability of organic carbon compounds would be lesser (Salomo and Roske, 465 

2009). Transcript levels of nosZ gene were lower than amoA gene in both 466 

periods, which was in accordance the low denitrification potential observed in 467 

VF wetlands (Vymazal, 2013).  468 

 469 

3.2.2 Active microbial community diversity 470 

High-throughput bacterial 16S rRNA (cDNA) sequencing detected 3,263 and 471 

112 OTUs with 48,525-92,518 and 62,921-55,563 reads, for eubacteria and 472 

archaea, respectively. Fig. 5 and 6 shows the relative abundance (RA) of the 473 

active eubacterial and archaeal populations, present in water inflow and the 474 

biofilm stablished at gravel samples in Period II.   475 

Active microbial community from water inflow is dominated by 476 

Gammaproteobacteria (40% RA), Epsilonbacteria (19% RA) and Flavobacteriia 477 

(16% RA) classes, whereas the active biofilm from the filter media of the VF 478 

wetland presented a different microbial community, showing more diverse and 479 

similar between layers (see SM). In the top layer Deltaproteobacteria (21% RA) 480 

was the predominant class followed by Alphaproteobacteria (18% RA), 481 

Planctomycetia and Actinobacteria (both at 12% RA). The profile of active 482 

bacteria in the bottom layer was slightly different being Alphaproteobacteria the 483 

most active class (22% RA), followed by Gammaproteobacteria, Plantomycetia, 484 

Acidobacteria_Gp4, Betaproteobacteria (all classes at 9% RA). Interestingly 485 

Deltaproteobacteria was marginal at the bottom layer accounting for 6% of RA. 486 

NGS results revealed that eubacterial populations of biofilms attached to bed 487 

material (gravel-sand) were clearly represented by metabolically active families 488 

linked to the nitrogen cycle (Graf et al., 2014). Regarding the active AOB 489 

population, Nitrosomonadaceae family (1% and 0.8% RA at top and bottom 490 

layers, respectively) were represented by OTUs belonging to the genus 491 

Nitrosospira (see supplementary material- Figure S1) that could accumulate 492 



nitrite in the oxygenated layers of the biofilm and CWs. Interestingly, recently it 493 

has been described that all known AOB are able to conduct nitrifier-494 

denitrification by means of nitrite reductases (nir genes) and nitric oxide 495 

reductases (nor genes), favoring the transformation of NO2- to N2O under low 496 

O2 environments (Kozlowski et al., 2016; Zhu et al., 2013). 497 

Active NOBs were represented by OTUs belonging to the genus Nitrobacter 498 

(4% RA at both layers) that belongs to the order Rhizobiales 499 

(Bradyrhizobiaceae family) (Fig. 6). The high revealed activity of Nitrobacter 500 

could be related with the accumulation of nitrate observed in the present study 501 

and enhanced at lower OLR. Nitrobacter have a low-nitrite affinity, high growth 502 

rate and develop large populations when nitrite is present at high concentrations 503 

(Andrews and Harris, 1986). In this way, the active presence of AOB and AOA 504 

populations in the VF wetland could favor the nitrite accumulation and the 505 

potential activity of Nitrobacter genus even at the bottom layer. 506 

Active archaeal community structure and diversity was completely different 507 

between inflow and filter media. Active methanogenic archaea were highly 508 

specialized in the biofilms accounting for 99.4% of active archaeal population in 509 

water inflow and for less than 5% in biofilms in the top layer and 20% in the 510 

bottom layer. Archaeal active biofilms on filter media were clearly dominated by 511 

AOA with a relative abundance of Nitrososphaeraceae accounting for 97.5% at 512 

top layer and 78.4% at bottom layer. It is obviously the establishment and 513 

activity of AOA population, becoming an important group of the filter media 514 

biofilm as previously observed by qPCR quantification (Fig 3b). The main 515 

representative OTU of the AOA family was OTU2 that belongs to the genera 516 

Nitrososphaera (see supplementary material- Figure S1). That sequence 517 

showed 100% of similarity (NCBI Blastn) with Archaeon G61 (KR233006.1), 518 

belonging to the new genus Candidatus Nitrosofontus exaquare 519 

(Nitrosophaeraceae), that were found in a municipal wastewater treatment 520 

plant. Despite the fact that AOA could accumulate nitrite, Sauder et al. (2016) 521 

found the important role of available nitric oxide (NO) as a key player of 522 

Thaumarchaeotal ammonia oxidizing pathway. In The microbial community from 523 

the biofilm that could generate NO i.e. Planctomycetia, could enhance the 524 

ammonia-oxidizing activity of AOA. 525 



Jin et al. (2010) showed that AOB community was more sensitive than of AOA 526 

to operational conditions, such as ammonia loading rate and dissolved oxygen 527 

in a nitrogen-removing reactor. Lower active abundance of AOB in relation AOA 528 

can be associated with higher OLR applied in the wetland, which favored the 529 

activity of heterotrophic bacteria, such as Myxococcales that was identified as 530 

active biomass in higher abundance (20% in top and 5% in bottom layers) (Fig. 531 

6). Myxococcales live in environments with lots of decomposed organic matter, 532 

and are gliding bacteria commonly found in soils and activated sludge that are 533 

thought to significantly impact biomass carbon (Luerders et al., 2006). 534 

On the other hand, denitrifying bacteria were found in low abundance and 535 

activity in the filter bed of the VF wetland (Fig. 6) observing accumulation of 536 

NOx-N in the effluent. The active abundance of Pseudomonadales 537 

(Pseudomonadaceae family; Pseudomonas genus – see supplementary 538 

material- Figure S1) was higher in the influent wastewater (38% RA). However, 539 

in the filter bed of the wetland the active abundance of Pseudomonadaceae 540 

was significantly lower (2 % in top and 5% in bottom layers). The same behavior 541 

was identified for other well-known denitrifying bacteria in wastewater such as 542 

Opitutus (Opitutaceae family; Opitutus genus – see supplementary material- 543 

Figure S1) and Clostridiales (Peptostreptococcaceae family; Clostridium XI 544 

genus), which indicated a low stability of active denitrifying bacteria in the filter 545 

bed, probably due the overall high oxygen availability. However, they were 546 

detected in both periods, when active methanogenic bacteria were identified.  547 

 548 

4. CONCLUSION  549 

 550 

This study showed the microbial population dynamics involved in nitrogen 551 

transformation of a vertical flow constructed wetland operated under high OLR 552 

(Period I: 130 g COD m-2 d-1; Period II: 85 g COD m-2 d-1). COD and BOD5 553 

removal load rates were higher in Period I (73 g COD m-2 d-1 and 45 g BOD5 m-2 554 

d-1) than Period II (32 g COD m-2 d-1 and 21 g BOD5 m-2 d-1), demonstrating the 555 

great capacity of the wetland to handle large organic loads. NH4-N  an TN 556 

removal rates were similar in both periods (4 g NH4-N m-2 d-1 and 2 g TN m-2 d-557 
1). 558 



The combination of qPCR and NGS at RNA level revealed that the nitrification 559 

process was associated with AOB (Nitrosospira), AOA (Nitrososphaeraceae) 560 

and NOB (Nitrobacter). AOB populations were observed more abundant (at 561 

DNA level) than AOA in both layers. However, considering the active abundance 562 

(based in amoA transcripts) the ammonia oxidizing population dynamics was 563 

inverted being AOA population more stable in both periods and depths. 564 

Although denitrifying bacteria (nosZ copies and transcripts) were detected 565 

active in the filter bed, it was not enough to minimize NOx-N accumulation in the 566 

water effluent.  567 

Ammonia oxidation was performed mainly by AOB (Nitrosospira) and AOA 568 

(Nitrososphaeraceae). Nitrite oxidation was accomplished by NOB (Nitrobacter) 569 

both in top and bottom layers. Although the denitrifying community was 570 

metabolically active in the CW, denitrifying microbial populations were not highly 571 

enriched in the biofilm of VF wetland. 572 

A proper design of OLR and HLR becomes crucial in VF wetlands to control the 573 

activity of microbial biofilms on the basis of oxygen, organic carbon and NOx-N 574 

available forms in the water phase and the biofilm, in order to promote adequate 575 

conditions for an efficient nitrification-denitrification processes to enhance total 576 

nitrogen removal from wastewater.  577 
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FIGURES 
 

 

 
Figure 1. Diagram of the treatment system. a) Sampling points of inflow and outflow  wastwater. b) Sampling collects of filter media from vertical subsurface 
flow constructed wetland. 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Nitrogen transformation in the vertical subsurface flow constructed wetland in Period I (130 g COD m-2 d-1) and II (85 g COD m-2 d-1).  a: Statistical 

significance between the two periods (p<0.05). 
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Figure 3. Average of nitrogen functional genes identified in top (0-15 cm) and bottom (70-80 cm) layers of the filter bed of the vertical subsurface flow 

constructed wetland in the two microbiological sampling campaigns: Period I (ORL= 130 g COD m-2 d-1) and Period II (ORL= 85 g COD m-2 d-1). a) Abundance 

of 16 S rDNA and 16 S rRNA; b) Abundance of bacterial amoA genes and transcripts; c) Abundance of archaeal amoA genes and transcripts; d) Abundance of 

nosZ genes and transcripts.  

a: Statistical significance observed in the layer between the two periods (p<0.05);  

b: Statistical significance observed between top and bottom layers within the same period (p<0.05); 



 (p<0.05). 

 
 
 
Figure 4. Ratio of transcripts and genes copies of bacterial and archaeal amoA and nosZ in top 
(0-15 cm) and bottom layers (70-80 cm) of the vertical flow wetland at the two microbiological 
sampling campaigns: Period I (ORL= 130 g COD m-2 d-1) and Period II (ORL= 85 g COD m-2 d-

1). 
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Figure 5. Taxonomic assignment of sequencing reads (MiSeq) from the active eubacterial 
community (16S rRNA-based cDNA) of water inflow, and filter media from top and bottom layers 
of Period II at order level. Relative abundance was defined by the number of reads (sequences) 
affiliated with any given taxon, divided by the total number of reads per sample. Phylogenetic 
groups with a relative abundance lower than 1 % were categorised as ‘others’. Taxonomic 
assignment of individual datasets using the RDP Bayesian Classifier with a bootstrap cut-off of 
80%. 
  
 
 



 
Figure 6. Taxonomic assignment of sequencing reads from the active archaeal community (16S 
rRNA based cDNA) of water inflow, and filter media from top and bottom layers of Period II at 
family level. Relative abundance was defined by the number of reads (sequences) affiliated with 
any given taxon, divided by the total number of reads per sample. Phylogenetic groups with a 
relative abundance lower than 0.5 % were categorised as ‘others’. Taxonomic assignment of 
individual datasets using the RDP Bayesian Classifier with a bootstrap cut-off of 80% 
 
 
 
 
 
 
 



TABLES 

Table 1. Operational conditions of the vertical subsurface flow constructed wetland in Periods I 

and II. 

Operational conditions Period I (Jun-Oct) Period II (Nov-Jan) 
Duration (months) 5 3 
Air temperature ºC 25 14 
Flow (m³ d-1) 1.125 1.125 
HLR (mm d-1) 375 375 
OLR (g COD m-2 d-1) 130 85 
TN (g m-2 d-1) 17 19 
*C/N Ratio influent 2 2 
*Ratio performed between TOC/TN 

Table 2. Average (±SD) concentration and loads of water quality parameters at the influent and 

effluent of the vertical subsurface flow constructed wetland in Periods I and II. 

Parameters 

Period I (Jun-Oct) 
n = 26 

Period II (Nov-Jan) 
n = 15 

Influent  Effluent  
Mean 

concentration 
removal  

Influent  Effluent  Mean load 
removal  

T (ºC) 23 ± 5 23 ± 5 - 11 ± 7 11 ± 9 - 

DO (mg L-1) 0.5 ± 0.2 2.5 ± 1 - 0.6 ± 0.2 3.1 ± 1.1 - 

EC (mS cm-1) 2 ± 0.5 2 ± 0.4 - 2 ± 0.2 2 ± 0.2 - 

EH (mV) -101 ± 66 +181 ± 67 - -71 ± 63 +112 ± 72  - 

pH  7.5 ± 0.3 7.5 ± 0.3 - 7.8 ± 1.2 7.6 ± 0.3 - 

TSS (mg L-1) 72 ± 31 55 ± 65 19  ± 72% 112 ± 53 40 ± 30 62 ± 24% 

COD (mg L-1) 347 ± 104 207 ± 88 43 ± 14% 213 ±21 129 ±17 39 ± 10% 

BOD5 (mg L-1) 223 ± 88 91 ± 50 76 ± 14% 126 ± 23 71 ± 25 81 ± 7% 

TOC (mg L-1) 90 ± 30 45 ± 21 50 ± 12% 91 ± 9 51 ± 28 44 ± 18% 

TN (mg L-1) 46± 10 36 ± 9 20 ± 21% 50 ± 12 40 ± 10 15 ± 22% 

NH4-N (mg L-1) 18 ± 7 6.5 ± 3 62 ± 11% 15 ± 3 5 ± 2 61 ± 12% 

*NOx-N (mg L-1) <LOD 10 ± 4 - <LOD 15 ± 3 - 

Parameters Load applied  
(g m-2 d-1) 

Load 
removal  

 (g m-2 d-1) 

Load 
removal  

% 

Load applied  
(g m-2 d-1) 

Load 
removal  

 (g m-2 d-1) 

Load 
removal  

% 

COD (g m-2 d-1) 130 ± 39 73 ± 36 50 ± 24% 80 ± 8 32 ± 9 51 ± 10% 

BOD (g m-2 d-1) 79 ± 38 45 ± 39 58 ± 10 %  46 ± 9 21 ± 6 46 ± 8 % 

TN (g m-2 d-1) 17 ± 4 2 ± 2 23 ± 12%  19 ± 5 2 ± 2 21 ± 6% 

NH4-N (g m-2 d-1) 7 ± 2 4 ± 2 71 ± 8%  6 ± 1 4 ± 1 67 ± 7% 

<LOD: below limit of detection 
* Statistical significance between the periods (p<0.05) 
 


