
Functional impact of sarcopenia in respiratory muscles

Jonathan E. Elliotta, Sarah M. Greisinga, Carlos B. Mantillaa,b, and Gary C. Siecka,b,*

aDepartment of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA

bDepartment of Anesthesiology, Mayo Clinic, Rochester, MN, USA

Abstract

The risk for respiratory complications and infections is substantially increased in old age, which 

may be due, in part, to sarcopenia (aging-related weakness and atrophy) of the diaphragm muscle 

(DIAm), reducing its force generating capacity and impairing the ability to perform expulsive non-

ventilatory motor behaviors critical for airway clearance. The aging-related reduction in DIAm 

force generating capacity is due to selective atrophy of higher force generating type IIx and/or IIb 

muscle fibers, whereas lower force generating type I and IIa muscle fiber sizes are preserved. 

Fiber type specific DIAm atrophy is also seen following unilateral phrenic nerve denervation and 

in other neurodegenerative disorders. Accordingly, the effect of aging on DIAm function 

resembles that of neurodegeneration and suggests possible common mechanisms, such as the 

involvement of several neurotrophic factors in mediating DIAm sarcopenia. This review will focus 

on changes in two neurotrophic signaling pathways that represent potential mechanisms 

underlying the aging-related fiber type specific DIAm atrophy.
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1. Introduction

The population of elderly (>65 years of age) individuals is steadily increasing worldwide, 

e.g., in the USA, the elderly population will more than double by 2030, exceeding 80 

million people (Federal Interagency Forum on Aging-Related Statistics, 2012). This 

demographic shift will bring a multitude of challenges, including an increased economic 

burden secondary to a greater incidence of chronic disease. Respiratory diseases associated 

with old age, such as pneumonia (3-fold higher incidence in those >65 years of age) (Chong 

and Street, 2008; Janssens and Krause, 2004), already account for ~7% of direct healthcare 

expenditures in the USA amounting to nearly $100 billion (National Institutes of Health: 

Fact Book Fiscal Year, 2012). Not only do these respiratory diseases diminish the quality of 

life in old age (Berry et al., 2012), they are also a leading cause of death in the elderly 

population (Heron, 2011; Xu et al., 2010). Indeed, the elderly are at greater risk for 

hospitalization and many are admitted to intensive care units because of respiratory failure 
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frequently requiring prolonged mechanical ventilation (Creditor, 1993; de Jonghe et al., 

2002, 2009; Hamel et al., 2005; Ray et al., 2006; Turrentine et al., 2006). For this reason, 

understanding the etiology of aging-related respiratory disease is vital to the future 

development of therapeutic strategies designed to lessen this increasing economic burden 

(Kirkland and Peterson, 2009).

2. Sarcopenia

Irwin Rosenberg proposed the term ‘sarcopenia’ in 1989 to describe the aging-related 

decrease of skeletal muscle mass, based on the Greek terms ‘sarx’ for flesh and ‘penia’ for 

poverty (Rosenberg, 1989). Later, Evans revised this definition of sarcopenia to include an 

aging-related loss in skeletal muscle strength (Evans, 1995; Evans and Campbell, 1993); a 

description that aligns with current consensus definitions (Cesari et al., 2012; Cruz-Jentoft et 

al., 2010; Evans, 2010; Fielding et al., 2011). In humans, the progressive aging-related 

decline in skeletal muscle mass and strength (sarcopenia) begins at ~30 years of age (similar 

to other physiologic systems; (Sehl and Yates, 2001)), progressing thereafter at a rate of 0.5–

1% of muscle mass lost per year with a more rapid decline in humans >65 years of age 

(Frontera et al., 2000; Lexell et al., 1988; Nair, 2005). Although the specific mechanisms 

mediating sarcopenia remain poorly understood, its etiology appears to be multifactorial and 

sarcopenia can often co-exist with other diseases or conditions that are also associated with 

cachexia (e.g., inactivity and muscle disuse, cancer, poor nutrition, chronic inflammation, 

insulin resistance, declining levels of anabolic hormones, etc.) (Biolo et al., 2014; Buford et 

al., 2010; Evans, 2010; Muscaritoli et al., 2010; Thomas, 2007; Thompson, 2007). In our 

studies, we are exploring whether sarcopenia involves aging-related alterations in 

neurotrophic influences affecting the entire motor unit (Fig. 1), which comprises a motor 

neuron and the muscle fibers it innervates through the neuromuscular junction (NMJ).

3. Muscle fiber type and motor unit classification

The concept of the motor unit as the basic functional element of neuromotor control was 

first proposed by Sherrington in 1925 (Liddell and Sherrington, 1925). Motor units are 

classified into specific types based on the mechanical and fatigue properties of the muscle 

fibers comprising each unit (Burke, 1981; Burke et al., 1971, 1973; Fournier and Sieck, 

1988a). Accordingly, fast-twitch (type F) and slow-twitch (type S) motor units are 

distinguished by the rate of twitch force generation, as well as the presence (type F) or 

absence (type S) of “sag” in an unfused tetanic force response. Type F motor units are 

further sub-classified into three distinct types based on their resistance to fatigue during 

tetanic stimulation: fast-twitch fatigue resistant (type FR); fast-twitch fatigue intermediate 

(type FInt); and fast-twitch fatigable (type FF). Type S motor units are fatigue resistant. In 

the diaphragm muscle (DIAm), motor unit types also vary in their contractile strength, with 

type FInt and FF motor units generating greater peak twitch (Pt) and maximum tetanic (Po) 

force compared to type FR and S motor units (Fournier and Sieck, 1988a; Sieck, 1988, 1991, 

1994; Sieck et al., 1989a).

Each motor unit type is composed of muscle fibers that are homogeneous with respect to 

their metabolic properties and contractile protein composition, specifically the expression of 
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myosin heavy chain (MyHC) isoforms (Enad et al., 1989; Gransee et al., 2012; Greising et 

al., 2012; Sieck, 1994; Sieck et al., 1989a, 1996). In fact, this relationship forms the basis of 

muscle fiber type classification (Brooke and Kaiser, 1970; Edstrom and Kugelberg, 1968; 

Schiaffino et al., 1989; Sieck et al., 1985). Accordingly, type S motor units comprise type I 

muscle fibers that have higher oxidative capacity and express a MyHCSlow isoform. Type FR 

motor units comprise type IIa muscle fibers that also have higher oxidative capacity and 

express the MyHC2A isoform. More fatigable type FInt motor units comprise type IIx 

muscle fibers that have lower oxidative capacity and express the MyHC2X isoform. Type FF 

motor units comprise lower oxidative type IIb muscle fibers primarily expressing MyHC2B 

although co-expression of the MyHC2X isoform in these fibers commonly occurs (Sieck, 

1995; Sieck et al., 1989a). The mechanical properties of single muscle fibers reflect the 

expression of MyHC isoforms (Geiger et al., 1999, 2000, 2001a,b, 2002), which underlies 

differences in motor unit force generation. In addition, the number of muscle fibers 

innervated by each motor neuron (innervation ratio) varies, which also contributes to 

differences in motor unit force generation. Motor unit fatigue resistance is associated with 

differences in mitochondrial volume density and the oxidative capacity of muscle fiber types 

(Sieck et al., 1989b, 1996).

Often in pathological conditions, e.g., hypothyroidism (Geiger et al., 2002), spinal muscular 

atrophy (Ben Hamida et al., 1994) and amyotrophic lateral sclerosis (Baloh et al., 2007), 

muscle fibers co-express MyHC isoforms obviating unambiguous fiber type classification. 

In vastus lateralis muscle biopsies from subjects ranging in age from 21 to 66 years of age, 

we found a significant number of fibers from older subjects co-expressed MyHCSlow and 

MyHC2A isoforms, as well as MyHC2X and MyHC2A isoforms (Han et al., 2001). These 

results were consistent with a prior study by Klitgaard et al. (1990) in which they found an 

increased incidence of co-expression of both MyHCSlow and MyHC2A and MyHC2A and 

MyHC2B isoforms in medial vastus lateralis and medial biceps brachii muscle fibers from 

older (68–70 years of age) compared to younger (21–31 years of age) men. In addition to 

pathological conditions and aging, this type of co-expression of MyHC isoforms also occurs 

following denervation and removal of neurotrophic influence on muscle fibers (Geiger et al., 

2001a); thus, there may be a common underlying mechanism responsible for the loss of 

matching between motor neurons and muscle fiber type. We believe this common 

mechanism involves the influence of neurotrophic signaling (see below).

3.1. Motor unit recruitment and frequency coding

Charles Sherrington first proposed that motor units are recruited in an all-or-none fashion, 

such that force generated by the whole muscle represents the sum of forces produced by the 

recruitment (recruitment coding) and frequency of activation (frequency coding) of 

individual motor units (Liddell and Sherrington, 1925; Sherrington, 1925, 1929). Later, 

Elwood Henneman proposed a mechanism to explain the recruitment of motor units that 

relates to the intrinsic size-related properties of motor neurons—Henneman’s “Size 

Principle” (Henneman, 1957; Henneman and Olson, 1965; Henneman et al., 1965). 

According to the Size Principle, both intrinsic membrane resistance and membrane 

capacitance (Cm) of a motor neuron is size dependent. For a given level of synaptic input 

(i.e., input current; Ic), the rate of change of membrane potential (dVm/dt—reflecting motor 
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neuron excitability), is inversely proportional to Cm; such that, dVm/dt = Ic/Cm. Thus, for a 

given level of synaptic input, smaller motor neurons, with a lower Cm are more excitable 

(increased dVm/dt) compared to larger motor neurons. Motor neurons innervating type S 

motor units are the smallest and therefore more excitable and recruited first during motor 

behaviors followed in rank order by motor neurons innervating type FR, FInt, and FF motor 

units (Burke, 1975; Henneman and Mendell, 1981). Frequency coding of motor units also 

depends on intrinsic size-related membrane properties of motor neurons (Kernell, 1983, 

2003), such that, type S motor units have the lowest onset and peak discharge rates, whereas 

type FR, FInt and FF motor units display increasingly higher onset and peak discharge rates 

(Sieck et al., 1984, 2013). The range of discharge rates (onset to peak) of motor neurons 

generally matches the force-frequency characteristics of motor units, thereby optimizing 

frequency coding of motor unit force production (Fournier and Sieck, 1988a; Kernell, 2003; 

Seven et al., 2014; Sieck et al., 1984).

3.2. Diaphragm motor unit recruitment

In 1988, we introduced a model of DIAm neuromotor control across a range of motor 

behaviors, in which we assumed that DIAm motor unit recruitment order was consistent 

with Henneman’s Size Principle (Sieck, 1988; Sieck and Fournier, 1989). Indeed, it is now 

clear that DIAm motor units obeyed the Size Principle (Dick et al., 1987; Jodkowski et al., 

1987, 1988; Seven et al., 2014). This model of DIAm motor unit recruitment also depends 

on estimates of the proportion of motor unit types and the forces they contribute. The 

proportion of different motor unit types can be estimated based on the proportion of different 

muscle fiber types and measurements of the innervation ratio of each motor unit type (based 

on glycogen depletion) (Enad et al., 1989; Fournier and Sieck, 1988b). The force generated 

by each motor unit type depends on the total cross-sectional area (CSA) of the muscle fibers 

comprising each unit, which can be estimated from fiber type proportion, average fiber CSA 

and the innervation ratio. In some studies, we directly measured the force generated by 

different motor unit types by isolating single motor units following dissection of cervical 

ventral root filaments and graded electrical stimulation (verified by waveform analysis of 

evoked motor unit action potentials) (Fournier and Sieck, 1988a). In other more recent 

studies, we measured the specific force of single permeabilized DIAm fibers (type identified 

by MyHC isoform expression) activated by extracellular Ca2+ (Geiger et al., 2000, 2001a, 

2002). Using in vivo measurements of transdiaphragmatic pressure (Pdi—a surrogate of 

DIAm force), we determined DIAm force generation across a range of ventilatory and 

higher force non-ventilatory motor behaviors (Fig. 2). Based on our model of DIAm motor 

unit recruitment, both eupneic ventilation and ventilation stimulated by a hypoxic-

hypercapnic gas mixture (10% O2, 5% CO2, balance N2) require the recruitment of only 

type S and FR motor units, whereas higher force non-ventilatory motor behaviors require the 

additional recruitment of more fatigable type FInt and FF motor units (Fournier and Sieck, 

1988a; Gransee et al., 2012; Greising et al., 2012; Mantilla et al., 2010; Mantilla and Sieck, 

2011; Sieck, 1988, 1989, 1990, 1991, 1994, 1995; Sieck et al., 1989a, 2013; Sieck and 

Fournier, 1989; Sieck and Gransee, 2012).
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3.3. Diaphragm muscle sarcopenia and motor unit recruitment

The presence of sarcopenia is well characterized in limb muscles in both humans (Doherty, 

2003; Proctor et al., 1995) and rodent models of aging (Brooks and Faulkner, 1988). 

Sarcopenia also exists in the DIAm. For example, work from our lab in Fischer 344 rats 

showed an ~20% reduction in DIAm specific force in old (24 months of age; 50% survival) 

compared to young (6 months of age; 100% survival) animals (Gosselin et al., 1994). 

Subsequent work in Fischer 344 (Criswell et al., 1997; Powers et al., 1996; Smith et al., 

2002) Fischer 344 × Brown Norway (Criswell et al., 2003) and Wistar (Imagita et al., 2009) 

rats confirmed an aging-related reduction in DIAm specific force. An aging-related 

reduction in DIAm specific force has also been reported in golden hamsters (Zhang and 

Kelsen, 1990). More recently, work by our group used a mouse model (C57BL/6 × 129) of 

natural aging (6 and 24 months of age, corresponding to 100% and 75% survival, 

respectively) to investigate DIAm sarcopenia. In these studies, we showed an ~25% 

reduction in DIAm specific force (Fig. 3A) (Greising et al., 2013, 2015b) together with a 

selective atrophy of type IIx and/or IIb DIAm fibers (Fig. 3B). Importantly, the CSA of type 

I and IIa DIAm fibers was not reduced in older mice. In our earlier study (Greising et al., 

2013), we also found that in the transgenic BubR1H/H mouse model of early onset aging, 

there was fiber type specific DIAm fiber atrophy and a reduction in specific force 

characteristic of sarcopenia in the naturally aging mice.

Overall, it appears that DIAm sarcopenia exists and that muscle fiber atrophy and weakness 

is fiber type specific such that the higher force-generating type IIx and/or IIb fibers are most 

affected whereas lower force-generating type I and IIa fibers are spared. These results are 

consistent with work in limb muscles in which it has been reported that aging-related 

atrophy predominantly affects type IIx and/or IIb fibers, whereas CSA and force-generating 

capacity of type I and IIa fibers is relatively preserved (Aniansson et al., 1986; Grimby et al., 

1982; Larsson et al., 1978; Lexell et al., 1988; Nilwik et al., 2013; Oertel, 1986; Proctor et 

al., 1995; Tomonaga, 1977). Importantly, an effect of sarcopenia on type IIx and/or IIb fibers 

would impact the relative contributions of more fatigable type FF and FInt motor units. 

Thus, lower force motor behaviors would be minimally affected, whereas higher force motor 

behaviors would be primarily impacted (Fig. 2). For the DIAm, this would involve higher 

force non-ventilatory behaviors primarily involved in airway clearance.

The functional consequence of DIAm sarcopenia in elderly humans was explored by Tolep 

et al., where the maximum Pdi generated through a combined expulsive-Mueller maneuver 

was found to be ~25% lower in older (65–75 years of age) individuals (Tolep et al., 1995). 

Subsequently, Polkey et al. confirmed aging-related DIAm weakness in subjects 67–83 years 

old as reflected by a ~14% reduction in Pdi generated by a maximal sniff test (Polkey et al., 

1997). Similar to the performance of expulsive, airway clearance maneuvers (e.g., coughing 

and sneezing), the performance of these maximal inspiratory efforts requires the recruitment 

of all available motor units, particularly the higher force generating type FInt and FF motor 

units (Fig. 2) (Fournier and Sieck, 1988a; Greising et al., 2012; Mantilla et al., 2010; Sieck, 

1988, 1991, 1994; Sieck et al., 1989a). Accordingly, the aging-related reduction in 

maximum DIAm strength, does not appear to impact the ability to sustain normal ventilatory 

behaviors (i.e., eupneic ventilation in normoxia) but does impair the ability to perform 
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higher force, expulsive airway clearance maneuvers (Greising et al., 2015b). In this way, 

DIAm sarcopenia may put elderly individuals at an increased risk for developing pneumonia 

or other respiratory system infections.

4. Aging-related motor neuron loss and sarcopenia

Although the underlying etiology and pathogenesis for the aging-related selective atrophy of 

type IIx and/or IIb fibers in the DIAm and other muscles remains undetermined, evidence 

suggests that the entire motor unit (motor neuron, NMJ, and muscle fibers) is involved, 

which may reflect alterations in neurotrophic influence (Fig. 1). There is an aging-related 

progressive loss of motor neurons innervating limb muscles (Brown, 1972; Kwan, 2013; 

Lexell et al., 1988; McNeil et al., 2005; Rosenheimer, 1990; Tomlinson and Irving, 1977) 

that is correlated with the presence of sarcopenia (Drey et al., 2014). This frank loss of 

motor neurons results in denervation of muscle fibers, with possible reinnervation by 

remaining motor neurons (via axonal sprouting), and consequent motor unit expansion 

(Gordon and Stein, 1982). With axonal sprouting and reinnervation, there is fiber type 

transition leading to a clustering of fiber types. In a recent study, we found an aging-related 

increase in fiber type clustering in the mouse DIAm providing indirect evidence of motor 

neuron loss (Greising et al., 2015c). Importantly, in a number of studies, we have shown that 

denervation of DIAm fibers induces a decrease in maximum specific force and a selective 

atrophy of type IIx and/or IIb fibers (Geiger et al., 2001a; Miyata et al., 1995; Zhan et al., 

1997), a pattern very similar to aging-related sarcopenia. Thus, motor neuron loss and 

denervation may at least partially underlie sarcopenia.

In a study, examining the effect of unilateral phrenic nerve denervation on the morphological 

and mechanical properties of single rat DIAm fibers (Geiger et al., 2001a), we reported that 

at 14 days after denervation, there was atrophy of type IIx and/or IIb fibers and a decrease in 

maximum Ca2+-activated force (similar to sarcopenia). Furthermore, there was a decrease in 

MyHC content per half-sarcomere in type IIx and/or IIb DIAm fibers. Importantly, 

maximum force was reduced even when normalized for CSA (specific force) as well as 

MyHC content per half-sarcomere (indicating reduced force per cross bridge). In contrast, 

unilateral denervation slightly increased the CSA of type I and IIa fibers with no effect on 

MyHC content per half-sarcomere. However, denervation did induce a decrease in specific 

force in type I and IIa DIAm fibers, but much less in contrast to that observed in type IIx 

and/or IIb fibers. It is unlikely that the selective atrophy of type IIx and/or IIb DIAm fibers 

following unilateral phrenic nerve denervation is due to muscle paralysis and inactivity per 
se, since there is no change in the CSA of type IIx and/or IIb fibers following DIAm 

paralysis induced by unilateral spinal hemisection at C2 (Miyata et al., 1995; Prakash et al., 

1999; Zhan et al., 1997). Accordingly, we concluded that the selective atrophy and reduction 

of specific force of type IIx and/or IIb DIAm fibers was due to the removal of a neurotrophic 

influence (Fig. 1). Thus, it is likely that an aging-related disruption in neurotrophic influence 

(either via motor neuron loss or decreased expression) underlies DIAm sarcopenia (Fig. 4).
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4.1. Aging reduces neurotrophic influence on muscle fibers

The importance of neurotrophic interactions in the establishment and maintenance of muscle 

fiber properties was first demonstrated in 1960 by Buller et al. (1960) in a study in which the 

nerves innervating the flexor digitorum longus (predominantly fast) and soleus 

(predominantly slow) muscles were cut and then switched resulting in reinnervation and a 

reversal of the mechanical properties of these muscles. It is possible that the pattern of 

neural activation (e.g., frequency of activation) caused the switch in mechanical properties; 

however, it is now apparent that motor unit-specific neurotrophic factors are primarily 

responsible. The problem is which ones?

One potential candidate that we are exploring is neuregulin (NRG), which is a member of 

the epidermal growth factor family of trophic factors that acts through receptor tyrosine 

kinases of the epidermal growth factor (ErbB) family. To date, six NRG genes (NRG1-6) 

have been identified, each with multiple splice isoforms (e.g., >30 for NRG-1) that interact 

with four different ErbB receptors (ErbB1-4) (Buonanno and Fischbach, 2001; Burden and 

Yarden, 1997; Falls, 2003; Mei and Nave, 2014; Mei and Xiong, 2008; Yarden and 

Sliwkowski, 2001; Zhu et al., 1995). The number of potential permutations between NRG 

and ErbB is further increased by ErbB receptor dimerization, which allows for 6 different 

ErbB receptor complexes (Jones et al., 1999). We have primarily focused on NRG-1 and 

NRG-2, due to their relevant expression in muscle fibers and motor neurons (Falls et al., 

1993; Moscoso et al., 1995; Rimer et al., 2004; Trinidad et al., 2000; Zhu et al., 1995). 

Neither NRG-1 nor NRG-2 appreciably binds ErbB1, and both are unable to bind ErbB2. 

Although NRG-1 and NRG-2 can bind ErbB3 and ErbB4, ErbB3 lacks a functional tyrosine 

kinase domain and requires dimerization with other ErbB receptor complexes for activation. 

Compared to ErbB3 and ErbB4 homodimers, the ErbB2/3 and ErbB2/4 heterodimers display 

an ~100 fold greater binding affinity for NRG-1 and NRG-2 (Jones et al., 1999).

We found that activation of NRG/ErbB signaling has an anabolic effect in DIAm and 

therefore, may have an integral role in the maintenance of muscle mass (Hellyer et al., 

2006). The signal transduction initiated from NRG/ErbB binding in muscle is mediated by 

phosphorylation of the ErbB receptor and subsequent activation of the phosphoinositide 3-

kinase (PI3K) and protein kinase B (Akt) intracellular pathways (Citri et al., 2003). Indeed, 

activation of PI3K/Akt and subsequent initiation of mammalian target of rapamycin (mTOR) 

signaling is a critical regulator of muscle protein synthesis (Argadine et al., 2009; Argadine 

et al., 2011; Bodine et al., 2001). Although all four ErbB receptors can activate PI3K/Akt/

mTOR signaling, the ErbB2/3 receptor heterodimer appears uniquely suited to activating the 

PI3K/Akt/mTOR pathway in DIAm (Hellyer et al., 2001).

The anabolic effect of NRG/ErbB signaling makes the removal of this neurotrophic factor 

particularly well suited to mediate the aging-related atrophy of muscle fibers due to a 

negative protein balance, with a reduction in MyHC content per half-sarcomere and resulting 

decrease in force generation (Fig. 1). At the present time it is unknown whether there are 

fiber type specific changes in NRG/ErbB signaling that may contribute to muscle fiber 

atrophy and weakness characteristic of sarcopenia.
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4.2. Neurotrophic signaling at phrenic motor neurons

It is clear that neural-derived trophic influence has a pro-found effect on determining muscle 

fiber metabolic and mechanical properties within motor units, but neurotrophic factors can 

also substantially influence properties of the motor neuron as well. Our own studies have 

focused on brain-derived neurotrophic factor (BDNF), which is a member of the 

neurotrophin family that includes nerve growth factor (NGF), neurotrophin-3 (NT-3) and 

neurotrophin-4 (NT-4), all of which act through sub-classes of the high affinity tropomyosin-

related kinase (Trk) receptors (Koliatsos et al., 1993; Reichardt, 2006). Acting through its 

high affinity Trk subtype B receptor (TrkB), BDNF is broadly involved in several aspects of 

motor unit function, including the regulation of motor neuron survival during embryonic 

development (pruning process) and possibly during aging (Fig. 1), enhancement of 

presynaptic release of neurotransmitters and postsynaptic regulation of receptor expression 

(c.f. Kalinkovich and Livshits, 2015; Raschke and Eckel, 2013; Sakuma et al., 2015).

Recently, we demonstrated a role for BDNF/TrkB signaling in enhancing functional 

recovery of rhythmic phrenic motor neuron activity following upper cervical spinal cord 

injury (SCI) (Gransee et al., 2013, 2015; Mantilla et al., 2013, 2014a). Intrathecal infusion of 

BDNF in the cervical spinal cord promoted recovery after SCI, whereas competitive 

inhibition of BDNF by intrathecal infusion of TrkB-Fc blunted recovery. Knocking down 

TrkB receptor expression in phrenic motor neurons by intrapleural injection of siRNA also 

blunted recovery after SCI, while increasing TrkB receptor expression using an AAV7 vector 

enhanced recovery. Inhibition of TrkB kinase activity in a knockin TrkBF616A mouse model 

(reversible inhibition that is sensitive to the phosphoprotein phosphatase-1 derivative, 

1NMPP1) also blunted functional recovery after SCI. The postsynaptic effect of BDNF/

TrkB signaling at phrenic motor neuron is to enhance excitability through an increased 

expression of serotonergic (5HT2A) and glutamatergic (NMDA and GluR) receptors 

(Mantilla et al., 2012).

4.3. Aging effect on neuromuscular transmission

There is substantial evidence of an aging-related remodeling of the NMJ (Deschenes et al., 

2010; Fahim and Robbins, 1982; Gutmann and Hanzlikova, 1965; Kung et al., 2014; Miyata 

et al., 2008; Prakash and Sieck, 1998; Suzuki et al., 2009; Valdez et al., 2010). Previous 

work from our laboratory showed aging-related remodeling of NMJs in DIAm from 24-

month old Fischer 344 rats (75% survival) with motor end-plate fragmentation found 

predominantly at type IIx and/or IIb fibers (Prakash and Sieck, 1998). Importantly, a similar 

fiber type specific remodeling of DIAm NMJs was also reported following DIAm paralysis 

induced by unilateral spinal hemisection at C2 (Prakash et al., 1999). Cardasis and 

LaFontaine also reported aging-related NMJ remodeling in the rat DIAm (~24 month) with 

an increased incidence of frank denervation (Cardasis and LaFontaine, 1987). Deschenes et 

al. (2010) reported that aging-related NMJ remodeling occurred at muscle fibers in the 

plantaris and soleus muscles in Fischer 344 rats during early stages of aging (21 month; 80% 

survival). It should be noted that in these muscles, aging-related NMJ remodeling occurred 

before muscle fiber atrophy. Accordingly, an aging-related disruption of normal 

neurotrophic signaling, by way of denervation, may induce morphological and mechanical 

Elliott et al. Page 8

Respir Physiol Neurobiol. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adaptations of DIAm fibers (predominantly type IIx and/or IIb) that are characteristic of 

sarcopenia (Fig. 1).

In previous studies, we assessed neuromuscular transmission failure in the DIAm by 

repetitive stimulation of the phrenic nerve with periodic superimposition of direct muscle 

stimulation (Kuei et al., 1990; Sieck and Prakash, 1995). In this technique, if neuromuscular 

transmission failure occurs, the DIAm does not fatigue and there is a greater difference in 

the forces evoked by nerve vs. direct muscle stimulation (Fig. 5). Using this technique, we 

demonstrated that significant neuromuscular transmission failure occurs in the DIAm 

especially at higher rates of stimulation (e.g., >40 Hz). For example, neuromuscular 

transmission failure accounts for ~43% of rat DIAm force loss at 75 Hz stimulation (Kuei et 

al., 1990). To assess whether neuromuscular transmission failure was fiber type specific, we 

used a glycogen depletion technique in which muscle fiber glycogen stores are not depleted 

in fibers susceptible to neuromuscular transmission failure during repetitive stimulation. 

Using this technique we demonstrated that type IIx and/or IIb fibers in the rat DIAm are 

most susceptible to neuromuscular transmission failure (Johnson and Sieck, 1993). Later, it 

was shown that during repetitive phrenic nerve stimulation, terminals innervating type IIx 

and/or IIb DIAm fibers demonstrated significantly less synaptic vesicle recycling compared 

to terminals innervating type I and IIa DIAm fibers (Mantilla et al., 2004a). Furthermore, we 

showed that during repetitive phrenic nerve stimulation quantal release of acetylcholine 

(ACh) is depressed to a greater extent at type IIx and/or IIb DIAm fibers, due to a decreased 

probability of release at nerve terminals (Rowley et al., 2007). With a decrease in quantal 

ACh release at type IIx and/or IIb DIAm fibers, end-plate potential (EPP) amplitude falls 

below the safety factor (i.e., ratio of EPP amplitude to action potential activation threshold) 

and neuromuscular transmission fails (Ermilov et al., 2007).

In hippocampal neurons, exogenous BDNF treatment increases quantal content, and the 

frequency of miniature excitatory postsynaptic potentials (mEPSPs), indicating an effect on 

the probability of presynaptic neurotransmitter release (Tyler and Pozzo-Miller, 2001; Tyler 

et al., 2006). Through this mechanism, BDNF/TrkB signaling improves synaptic 

transmission (Boulanger and Poo, 1999; Lohof et al., 1993). We also found that at the rat 

DIAm NMJ, BDNF increases quantal release of ACh (unpublished observations), and 

thereby improves synaptic transmission (Greising et al., 2015a; Mantilla and Ermilov, 2012; 

Mantilla et al., 2004b; Zhan et al., 2003). This effect of BDNF/TrkB signaling on synaptic 

transmission is particularly evident at the DIAm NMJ (Greising et al., 2015a; Mantilla and 

Ermilov, 2012; Mantilla et al., 2004b, 2014b; Zhan et al., 2003).

In a recent study, we showed an aging-related increase in neuromuscular transmission failure 

in the mouse DIAm (Fig. 5) (Greising et al., 2015a). Furthermore, we found that aging 

diminishes the beneficial impact of BDNF/TrkB signaling on neuromuscular transmission. 

In younger mice and rats (3–6 months of age), BDNF/TrkB signaling significantly improves 

neuromuscular transmission (Fig. 5) (Greising et al., 2015a; Mantilla et al., 2004b). A 

similar effect is seen using the BDNF agonist, 7,8-dihydroxyflavone (Mantilla and Ermilov, 

2012). In contrast, inhibition of TrkB using the non-specific tyrosine kinase inhibitor, K252a 

(Mantilla et al., 2004b) or more specifically by inhibiting TrkB tyrosine kinase activity in a 

knockin TrkBF616A mouse model sensitive to 1NMPP1 (Greising et al., 2015a; Mantilla et 
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al., 2014b), markedly impairs neuromuscular transmission. However, in older mice (24 

months of age), the beneficial effects of BDNF/TrkB signaling on DIAm neuromuscular 

transmission are largely absent (Fig. 5) (Greising et al., 2015a). Furthermore, in TrkBF616A 

mice at 24 months of age, inhibition of TrkB kinase activity (by 1NMPP1 treatment) has no 

effect on neuromuscular transmission (Fig. 5). Interestingly, in TrkBF616A mice at 18 months 

of age, BDNF improved neuromuscular transmission, while 1NMPP1-induced inhibition of 

TrkB kinase activity had no effect on neuromuscular transmission (Fig. 5). Together, these 

results suggest that with aging there is a reduction in endogenous BDNF production in 

phrenic motor neurons that precedes alterations in TrkB expression and/or activity (Fig. 1).

5. Conclusion

As the elderly population increases across the world, so will the economic burden associated 

with a greater incidence of aging-related chronic diseases, particularly the ubiquitous patho-

physiological effects of sarcopenia. Unlike sarcopenia of the limb muscles that manifests as 

systemic weakness, an increased risk for falling and limitations in activities of daily living, 

sarcopenia of the respiratory muscles rarely contributes to ventilatory failure. Instead, 

respiratory muscle sarcopenia, particularly of the DIAm, manifests as an impaired ability to 

generate higher levels of Pdi necessary for expulsive airway clearance behaviors (e.g., 

coughing and sneezing). Accordingly, DIAm sarcopenia may directly contribute to the 

significantly increased risk for pneumonia and other respiratory infections common in 

elderly populations. Unfortunately, the mechanisms underlying sarcopenia remain unknown. 

However, the similarity in the physiological consequences associated with sarcopenia and 

unilateral phrenic nerve denervation suggest a common mechanism. With unilateral phrenic 

nerve denervation, neurotrophic influence on DIAm fibers is removed resulting in atrophy 

and decreased specific force that is most pronounced in type IIx and/or IIb fibers. 

Importantly, with aging, there are similar morphological and functional changes in type IIx 

and/or IIb DIAm fibers that may reflect a progressive removal of neurotrophic influence. In 

this regard, there is evidence for a loss of phrenic motor neurons with aging. Two potential 

neurotrophic signaling pathways may be affected by aging. At DIAm fibers, nerve-derived 

NRG/ErbB signaling exerts an anabolic effect that maintains contractile protein content in 

type IIx and/or IIb DIAm fibers. The influence of NRG/ErbB signaling may be lost during 

aging by the loss of phrenic motor neurons. At phrenic motor neurons, BDNF/TrkB 

signaling may be essential to promote motor neuron survival, possibly by enhancing 

synaptic transmission. An aging-related decrease in BDNF expression and/or a decrease in 

TrkB signaling may lead to phrenic motor neuron loss. Together, NRG/ErbB and BDNF/

TrkB provide important regulatory signals serving to maintain synaptic transmission, 

integrity of the neuromuscular junction and muscle fiber mass. Further work aimed at 

investigating the aging-related impairments in the signaling of these neurotrophic factors 

may provide important mechanistic insight into the etiology of not only sarcopenia, but 

potentially other neurodegenerative diseases as well.
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Fig. 1. 
Schematic illustrating a fast-twitch fatigable (type FF) and fast-twitch fatigue intermediate 

(type FInt) motor unit. Muscle fibers corresponding to type FF and FInt motor units are most 

susceptible to atrophy and weakness secondary to the natural aging process and denervation. 

Two neurotrophic factors that may be mediating this fiber type specific effect of atrophy and 

weakness are: (1) brain derived neurotrophic factor (BDNF) acting through the tropomyosin-

related kinase receptor B (TrkB) which is involved in motor neuron survival, excitability, 

and neuromuscular synaptic transmission, and (2) the trophic factor family of neuregulins 

(NRG) which activate tyrosine kinases of the ErbB receptor family that is released from the 

motor neuron exerting an anabolic effect on muscle fibers and is implicated in the matching 

of motor neuron to muscle fiber properties.
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Fig. 2. 
Model of diaphragm muscle motor unit recruitment during ventilatory and non-ventilatory 

behaviors in mice at 6 and 24 months of age. Motor units are assumed to be recruited in an 

orderly fashion in rank order beginning with slow-twitch (Type S), followed by fast-twitch 

fatigue resistant (Type FR), fast-twitch fatigue intermediate (Type FInt), and finally fast-

twitch fatigable (Type FF) motor units. Ventilatory behaviors can be accomplished without 

the recruitment of more fatigable motor units (i.e., FInt and FF). Recruitment of these motor 

units is only required during more forceful non-ventilatory behaviors that are associated with 

clearing the airways. Data adapted from (Greising et al., 2015b).
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Fig. 3. 
Diaphragm muscle sarcopenia is event by ~75% survival in mice. (A) Maximal isometric 

twitch force (Pt ) and maximal tetanic force (Po ), normalized to physiological cross-

sectional area, of midcostal diaphragm muscle (DIAm) of mice across the lifespan (aged 6, 

18 and 24 months). There is a significant (*) loss of force by 24 months of age but not 

between 6 and 18 months. Reprinted with permission from (Greising et al., 2015a). (B) 

Fiber cross-sectional area (CSA) of the DIAm of across the lifespan. There is a significant 

(*) loss of type IIx and/or IIb DIAm fiber CSA by 24 months of age. Data at 6 and 24 

months of age adapted from (Greising et al., 2013), data at 18 months of age is pilot (n = 4). 

Mean ± SE.
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Fig. 4. 
Schematic illustrating the aging-related functional consequences of diaphragm muscle 

(DIAm) fiber type specific sarcopenia (atrophy and weakness). In this model, DIAm 

sarcopenia is predominantly present in the fast-twitch fatigable (type FF) and fast-twitch 

fatigue intermediate (type FInt) motor units, which in turn are associated with type IIb and 

IIx DIAm fibers that express the MyHC2B and MyHC2X isoforms, respectively. In contrast, 

DIAm sarcopenia is less evident in the fast-twitch fatigue resistant (type FR) and slow (type 

S) motor units, which in turn are associated with type IIa and I DIAm fibers that express the 

MyHC2A and MyHCSlow isoforms, respectively. The functional consequences of this fiber 

type specific effect of DIAm sarcopenia is a decrease in the maximum transdiaphragmatic 

pressure (Pdimax ) the DIAm is capable of generating, and therefore an impaired ability to 

perform expulsive, high force non-ventilatory behaviors (i.e., coughing and sneezing). 

However, the Pdi required to perform ventilatory behaviors remains preserved.
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Fig. 5. 
Across the lifespan in mice (aged 6, 18 and 24 months) the contribution of neuromuscular 

transmission failure to diaphragm muscle fatigue over a 2-min period of repetitive nerve 

stimulation and superimposed intermittent muscle stimulation. (A) Representative tracings 

for control (vehicle-treated) diaphragm muscle-phrenic nerve preparations of each age 

group. (B) Time course of neuromuscular transmission failure during repetitive stimulation 

in control, brain derived neurotrophic factor (BDNF), or 1NMPP1-treated (inhibition of 

TrkB kinase activity) preparations at each age group, all for 30 min in vitro. In all age and 

treatment groups, there is progressively greater neuromuscular transmission failure over 

time. (C) Neuromuscular transmission failure following 2 min of repetitive stimulation in 

control, BDNF- and 1NMPP1-treated groups. *Significantly different from control at the 

same age; †significantly different from BDNF at the same age; ‡significantly different from 

6 months within the same treatment; §significantly different from 18 months within the 

same treatment. Mean ± SE. Reprinted with permission from (Greising et al., 2015a).
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