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Abstract

We build up from the plant level an “aggregate(d) Solow residual" by estimating every U.S.
manufacturing plant's contribution to the change in aggregate final demand between 1976 and
1996. We decompose these contributions into plant-level resource reallocations and plant-level
technical efficiency changes. We allow for 459 different production technologies, one for each 4-
digit SIC code. Our framework uses the Petrin and Levinsohn (2008) definition of aggregate
productivity growth, which aggregates plant-level changes to changes in aggregate final demand
in the presence of imperfect competition and other distortions and frictions. On average, we find
that aggregate reallocation made a larger contribution than aggregate technical efficiency growth.
Our estimates of the contribution of reallocation range from 1:7% to2:1% per year, while our
estimates of the average contribution of aggregate technical efficiency growth range from 0:2% to
0:6% per year.  In terms of cyclicality, the aggregate technical efficiency component has a
standard deviation that is roughly 50% to 100% larger than that of aggregate total reallocation,
pointing to an important role for technical efficiency in macroeconomic fluctuations. Aggregate
reallocation is negative in only 3 of the 20 years of our sample, suggesting that the movement of
inputs to more highly valued activities on average plays a stabilizing role in manufacturing
growth.
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1 Introduction

What are the micro-level components of aggregate productivity growth and
macroeconomic fluctuations? Aggregate final demand can increase without
an increase in input use if plants become more technically efficient, perhaps
by inventing new and better methods of production or by learning to im-
itate other better-performing plants. Alternatively, final demand increases
without more input use when the invisible hand of the market reallocates
an input to a more valued market activity.

In this paper we construct estimates of every U.S. Manufacturing plant’s
contribution to changes in aggregate final demand holding input use con-
stant between 1976 and 1996.1 We then decompose this aggregate(d) Solow
residual into a component arising from the aggregated impacts of resource
reallocation and one related to aggregated technical efficiency changes. In
doing so we estimate production functions separately for each of our 459
4-digit SIC industries and compare results across several different produc-
tion function estimators, including Ordinary Least Squares, Levinsohn and
Petrin (2003, LP), and the Wooldridge (2005) variant of the LP estima-
tor. Our findings have important implications for the sources of growth
and macroeconomic fluctuations at business cycle frequencies. Specifically,
we show that aggregate reallocation and aggregate technical efficiency both
play important roles in growth, and that most of the volatility in aggregate
productivity growth over this period was due to variation in the growth rate
of technical efficiency.

Our definition of aggregate productivity growth (APG) determines the
relevant measurements for calculation of the plant-level contributions to
reallocation and technical efficiency. We adopt the one from Petrin and
Levinsohn (2008), which we call PL-APG. It is defined so that changes at the
micro-level in reallocation and technical efficiency, when aggregated across
all plants, equal the aggregate change in final demand holding primary inputs

1For value-added production functions, we provide estimates for 1976 to 1999. We had

to stop in 1996 for the gross-output specification because we did not have a deflator for

energy inputs after 1996. See tables 5-6 and A5-A6 for our results from the value-added

specification.
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constant. Specifically, aggregate technical efficiency is the Domar-weighted
sum of plant-level growth rates in technical efficiency. Aggregate reallocation
tracks the movement of inputs across plants with different wedges between
their marginal revenue and marginal cost.

The two stories – technical efficiency and reallocation – are not mutually
exclusive. Both may be important causes of aggregate productivity growth,
both at business cycle frequencies and in the long run. On reallocation, to
the extent that an economy is not perfectly frictionless or perfectly compet-
itive, policies that reduce these frictions or increase competition may have
large effects on aggregate productivity growth via reallocation. We estimate
aggregate reallocation and we decompose it into terms related to production
workers, non-production workers, capital, and intermediate inputs to try to
understand which frictions are most important in U.S. manufacturing.

Over the period 1976-1996 we find that reallocation plays an important
and stabilizing role in the aggregate productivity growth of manufacturing,
which grew at an average annual rate of 2.2% with a standard deviation
of 3.7%. Reallocation’s contribution to this growth is positive in all but 3
years, on average accounting for more than half of aggregate productivity
growth (1.7% to 2.2% per year, depending on the production function esti-
mator). The volatility in the reallocation term is relatively small, with the
standard deviation of 1.1% to 1.7%. Technical efficiency growth was smaller
on average (0.2% to 0.6% per year), but it was also responsible for most
of the volatility in aggregate productivity growth, as its standard deviation
was 2.6% to 3.0%.

The result that aggregate reallocation makes relatively stable and mostly
positive contributions to aggregate productivity growth is robust to a vari-
ety of estimators of plant-level productivity, and has been found in Chilean
and Colombian data as well. This result makes economic sense, as Petrin
and Levinsohn (2008) show that in the presence of imperfect competition,
frictions in input markets, or fixed costs, reallocation of resources can con-
tribute to aggregate productivity growth. Furthermore, we expect that any
market populated by profit-maximizing firms will have resources reallocating
on average towards uses with higher marginal products.

4



Our results are useful for determining which of the many theoretical
growth models with adjustment frictions appear consistent with U.S. man-
ufacturing. They also shed light on the precise meaning of counterfactuals
that take the U.S. as a “frictions benchmark” and then ask how much output
would increase if a country were able to achieve the U.S. level of frictions.
For example, Hsieh and Klenow (2007) ask what the impact for growth
would be in China and India if capital and labor were reallocated to reflect
the level of frictions that we see in U.S. manufacturing industries. Our find-
ings suggest that the U.S. benchmark is one with small gains from further
reallocation of non-production and production workers, and substantially
larger gains from the reallocation of capital.

While the finding of a positive contribution of aggregate reallocation
makes economic sense, it is in contrast to estimates of productivity growth
due to reallocation as defined by other measures, such as in Baily, Hulten,
and Campbell (1992, BHC hereafter). These indices define APG exclusively
as the change in the average of the plant-level technical efficiency shocks,
and thus do not aggregate plant-level changes in inputs and technical effi-
ciency to changes in aggregate value added. Petrin and Levinsohn (2008)
explain how the BHC index is related to PL-APG, and how it is not. When
we estimate aggregate productivity growth and reallocation as defined by
the BHC index, we find that the volatility of growth due to reallocation
is enormous: the standard deviation of the annual rate is as high as 7.8
percentage points – more than 4 times the volatility of the P-L measure
of reallocation. In many years, the contribution of BHC-measured reallo-
cation is both large (in absolute value) and negative, sometimes indicating
a decline of more than 20% in a single year.2 We find these results are
robust to a variety of production function estimators, suggesting the way
one defines aggregate productivity growth can have a substantial impact on
how one interprets the roles of technical efficiency and reallocation in any
economy. These differences between PL-APG-measured reallocation and

2When we use a value-added specification of the production function, we find that the

BHC reallocation index shows even greater volatility, with a standard deviation of 15.2

percentage points, and a maximum single-year decline for more than 30%.
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BHC-measured reallocation for U.S. manufacturing data are also consistent
with findings for Chilean, Colombian, and Japanese micro data.

In section 2 we discuss the theory in continuous time. Section 3 describes
the discrete-time approximation. Section 4 describes the estimation. Section
5 describes the data. Readers interested only in the results can skip to
section 6. Section 7 discusses the implications of our results for models of
business cycle fluctuations. Section 8 concludes.

2 Theory

Measuring aggregate productivity growth is an old and honored tradition
in macroeconomics, and there is an enormous theoretical and empirical lit-
erature devoted to it. Solow (1957) shows that in a perfectly competitive
economy with an aggregate production function and without distortions,
the residual measures both aggregate technology change and aggregate pro-
ductivity change. Hulten (1978) shows that if one estimates technological
change from disaggregated data and then aggregates, under perfect compe-
tition Solow’s result still holds. Hall (1988) and Hall (1990) show that the
estimate of technological change is affected by imperfect competition. More
recently, Basu and Fernald (2002) study an economy with markups, show-
ing that aggregate productivity growth and technological progress differ,
and that there is a role for reallocation of resources in increasing aggregate
final demand.

Petrin and Levinsohn (2008) extend Basu and Fernald to plant-level
data, showing how to aggregate changes in plant-level technical efficiency
and changes in resource allocations across plants to changes in aggregate
final demand. The linkage provides a theoretical basis for decomposing
changes in aggregate final demand holding primary inputs constant - which
they define as aggregate productivity growth - into the contribution of tech-
nological progress (or “technical efficiency”) and several terms that measure
the contribution of the reallocation of inputs across plants, one for every
input. In this paper we provide the first application of the Petrin and
Levinsohn (2008) measure to U.S. data.
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We follow the discussion from Petrin and Levinsohn (2008, P-L here-
after). We operate in continuous time, and assume the production side of
the economy has at any time at most N plants. While it is not difficult to ex-
tend the framework to multi-product plants, we assume for transparency all
plants are single product plants. We let each plant i’s production technology
be written as

Qi(Xi,Mi, ωi), (1)

where Xi = (Xi1, . . . , XiK) is the vector of K primary input amounts used
at plant i, Mi = (Mi1, . . . ,MiJ) is the vector giving the amount of each
plant j’s output used as an intermediate input at plant i, and ωi is the level
of plant i’s technical efficiency. Primary inputs may include several types of
different labor and capital, and any of the N products may potentially be
used as an input in production somewhere in the economy.

We use Fi to denote the sum of all fixed and sunk costs that are paid
by plant i. We normalize these costs to the equivalent of the forgone output
and deduct them directly from the production function, letting

Qi = Qi(Xi,Mi, ωi)− Fi. (2)

The total amount of output from plant i that goes to final demand Yi is
then

Yi = Qi −
∑

j

Mji,

where
∑

j Mji is the total amount of i’s output that serves as intermediate
input within the plant and at other plants. The differential in levels is

dYi = dQi −
∑

j

dMji,

Pi denotes the price of plant i’s output, and thus
∑

i PidYi is equal to the
change in final demand.

P-L defines aggregate productivity growth as the difference between the
change in aggregate final demand and the change in aggregate costs:

PLLEV EL ≡
∑

i

PidYi −
∑

i

∑
k

WikdXik, (3)
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where Wik equals the unit cost of the kth primary input and dXik is the
change in the use of that primary input at plant i. Converting (3) to growth
rates we have:

PLGROWTH =
∑

i

DidlnYi ∗ −
∑

i

∑
k

sikdlnXik, (4)

where Di = PiQiPN
i=1 PiYi

is the Domar (1961) weight, dlnYi∗ = dYi
Qi

is the growth
rate of i’s output going to final demand, and

sik =
WikXik∑N

i=1 PiYi

. (5)

We do not observe in the data the amount of a plant’s output that
ultimately goes to final demand. However, the Growth Accounting Identity
shows that aggregate final demand is equal to aggregate value added:∑

i

DidlnYi∗ =
∑

i

Dv
i dlnV Ai

with value added
V Ai = PiQi −

∑
j

PjMij (6)

and the Domar weight equal to the plant’s share of value addedDv
i = V AiP

i V Ai
.

We then replace the first term in (3) and calculate aggregate productivity
growth as

PLGROWTH =
∑

i

Dv
i dlnV Ai −

∑
i

∑
k

sikdlnXik. (7)

with the cost share for the kth primary input now given as

sik =
WikXik∑

i V Ai
(8)

Lemma 1 in P-L shows when Qi is differentiable that equation (3) can
be decomposed as follows:∑

i

∑
k

(Pi
∂Qi

∂Xik
−Wik)dXik+

∑
i

∑
j

(Pi
∂Qi

∂Mij
−Pj)dMij−

∑
i

PidFi+
∑

i

Pidωi,

(9)

8



where ∂Q
∂Xik

and ∂Q
∂Mij

are the partial derivatives of the output production
function with respect to the kth primary input and the jth intermediate
input respectively, dMij is the change in intermediate input j at plant i, dFi

is the change in fixed and sunk costs, and dωi is the change in “net output”
at plant i, defined as the output remaining after the contribution of both
primary and intermediate inputs at plant i have been deducted:

dωi = dQi −
∑

k

∂Qi

∂Xik
dXik −

∑
j

∂Qi

∂Mij
dMij . (10)

Equation (9) shows that under this definition of aggregate productiv-
ity growth, if at every firm every marginal product is equated with every
marginal cost, then further reallocation cannot increase growth, as all alloca-
tive efficiency gains have been achieved. However, if there is market power
(i.e. markups) or frictions such as adjustment costs or taxes, or other char-
acteristics of the economy that lead to a divergence between the marginal
product and the marginal cost, then the reallocation of inputs can increase
aggregate productivity growth. This reallocation effect is captured in the
first two summation terms in (9).

Equation (9) can be rewritten in growth rates as:∑
i

Di

∑
k

(εik−cik)dlnXik+
∑

i

Di

∑
j

(εij−cij)dlnMij−
∑

i

DidlnFi+
∑

i

Didlnωi,

(11)
where Di is the Domar weight, εik and εij are the elasticities of output
with respect to primary and intermediate inputs, cik = WikXik

PiQi
and cij =

PjMij

PiQi
are the respective plant-specific revenue shares for both primary and

intermediate inputs, and dlnFi and dlnωi denoting the growth rates in fixed
costs and technical efficiency, with the base given by Qi.

If a value added production function exists (e.g., see Bruno (1978)), then
we can express the decomposition as3∑

i

∑
k

(Dv
i ε

v
ik−sik)dlnXik+

∑
i

∑
j

(Dv
i ε

v
ij−sij)dlnMij−

∑
i

Dv
i dlnF

v
i +
∑

i

Dv
i dlnω

v
i ,

(12)
3A sufficient condition is that the intermediate inputs are separable in the gross output

production function.
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where the elasticities are now those for the value added production function,
which can be shown to equal the elasticities from the gross output production
function divided by one minus the ratio of intermediate expenditures to
revenues:

εvij =
εij

1−
∑

j cij
.

lnF v denotes the growth rate in fixed costs divided by one minus the ratio
of intermediate inputs expenditures to revenues. The value added technical
efficiency shock is derived from the value added production function, which
can be expressed as

lnωv
i = ln(V Ai)−

∑
k

εviklnXik (13)

with intercept βv
0 .4 The relationship between the value added technical

efficiency shock and the gross output production function technical efficiency
shock is

lnωv
i =

lnωi

1−
∑

j cij
. (14)

We now discuss implementation of this index with discrete time data.

3 Discrete Time Approximation

The theory says that we can compute an approximation to PL-APG directly
from plant-level data without having to estimate production functions. How-
ever, up to this point all of the equations that we have considered have been
written in continuous time, and the data we observe has been aggregated
to discrete intervals. We use Tornquist-Divisia approximations for all of our
calculations. For example, for equation (7), we calculate growth as

PLG,t =
∑

i

D
v
it∆lnV Ait −

∑
i

∑
k

sikt∆lnXikt (15)

4If the elasticity of output with respect to each intermediate input is not equal to the

intermediate’s revenue share, then the estimated residual will include additional terms

related to the intermediates.
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where Dv
it is the average of plant i’s value-added share weights from period

t-1 to period t, ∆ is the first difference operator from t − 1 to t, sikt is the
average across the two periods of plant i’s expenditures for the kth primary
input as a share of aggregate value-added.

We do need estimates of production function parameters and residuals
to estimate the components of the decomposition. Equation (9) can be
estimated in discrete-time by:

PLG,t =
∑

iDit
∑

k(εik − cikt)∆lnXikt +
∑

iDit
∑

j(εij − cijt)∆lnMijt

−
∑

iDit∆lnFit +
∑

iDit∆lnωit,
(16)

where again bars over variables denote two-period averages and ∆ is the first-
difference operator. We estimate the production function parameters in logs
and use them as estimates for εik and εij . For the growth rate in plant-level
technical efficiency, we use the posited functional form for the production
function to calculate the residuals, and then take the first difference. For
example, if we assume a Cobb-Douglas production function, we would take
first differences of an estimate of:

lnωi = lnQi − (
∑

k

εiklnXik +
∑

j

εijlnMij). (17)

We do not observe changes in fixed costs in our data directly, but we can
infer the aggregate change as the difference between PL growth and the
reallocation and technical efficiency terms.5

If intermediate inputs are separable in the production function then one
can approximate the decomposition using a value added production function
to construct estimates of the elasticities and changes in technical efficiency.
In this case the decomposition is given as

PLG,t =
∑

i

∑
k(Dv

itε
v
ik − sikt)∆lnXikt +

∑
i

∑
j(Dv

itε
v
ij − sijt)∆lnMijt

−
∑

iD
v
it∆lnF v

it +
∑

iD
v
it∆lnωv

it,
(18)

5Our fixed costs residual term will also include discrete-time approximation error. See

Appendix D for a derivation. Empirically, this discrete-time approximation error turns

out to be an important part of our “fixed costs” term.
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with the value added residual calculated as

lnωv
i +

∑
j

(εij − cijt)lnMijt = lnV Ai − (
∑

k

εviklnXik). (19)

Note that we have explicitly included in the residual the terms related
to the intermediate inputs, which will be non-zero if the elasticity of output
is not equal to the ratio of expenditure on the input to total revenues for
one or more intermediate inputs.6 We now turn to the data and estimation.

4 Production Function and Technical Efficiency

Estimation

One major advantage of PL-APG and its decomposition in (11) is that
many of the components are either directly observed or easy to estimate
using standard plant-level data sets. Both Domar weights Dit and Dv

it are
measurable as PiQi and V Ai are observed for every plant-year. The shares
in (11) are typically observed for all inputs but capital because plants report
expenditures on their inputs. Finally, the plant-level data can also be used
to estimate the parameters and technical efficiency terms for both gross
output and value added production functions.

We estimate both the value added and the gross output specifications
and their associated decompositions. While the value-added specification
is less general than the gross output approach, it is more widely used in
macroeconomics, perhaps because it is more natural for looking at macroe-
conomic aggregates. A comparison of the two shows the empirical impact of
assuming separability of intermediate inputs, the restriction that makes the
value added production function a special case of the gross output produc-
tion function. We also compare the estimated technical efficiency residuals
across the two approaches - properly adjusted as in (14) - to see if differences

6The additional term in the residual arises because value added is defined by subtracting

the expenditures on intermediate inputs. When the revenue share equals the elasticity,

the intermediate terms cancel out in the move from the gross output production function

to the value added production function.

12



between output elasticities and revenue shares for intermediate inputs are
important in confounding technical efficiency.

Our definition of plant-level double deflated value added is given by

V ADD
it =

PitQit

Pt
− PiMtMit

PM
t

− PiEtEit

PE
t

(20)

where we deflate expenditures on materials (M) and energy (E) using a 4-
digit industry price indexes for materials (PM

t ) and energy (PE
t ). In a perfect

world we would like our output measure to be Qit, the quantity of output.
While we observe every plant’s nominal value of total shipments - PitQit -
for most plants we do not have separate observations on price and quantity.
Suppose for the moment that there are no intermediate inputs. If we relate
changes in ln(PitQit) to changes in inputs, lnPit enters as measurement error.
It will bias the estimated coefficients if changes in price are correlated with
changes in inputs used. For example, if demand is downward sloping and a
plant increases output (and inputs) then the fall in price will be associated
with an increase in inputs (and vice versa), and coefficient estimates will be
biased.

We deflate nominal gross output by a 4-digit industry price index for
shipments, denoted Ps for time period s, so that the measurement error in
output is now given by the log ratio of the plant’s output price to average in-
dustry price as given by the index. Continuing to abstract from intermediate
inputs, our dependent variable in the regressions becomes

ln
PitQit

Pt
= lnQit + lnPit − lnPt, (21)

and we think that it is less likely that the relative price lnPit − lnPt will be
correlated with input levels.

Unobserved prices also potentially confound the estimate of plant-level
technical efficiency. Again, if we continue to abstract from intermediate
inputs, in terms of growth rates, the size of the price measurement error
added to the growth in technical efficiency is

ln(
Pit

Pt
)− ln(

Pi,t−1

Pt−1
). (22)
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If the relative price of plant i’s output to the 4-digit industry price index does
not change, then unobserved prices add no error to the technical efficiency
residual. Otherwise it is increasing in the relative change in price.7 In
future work, we plan to assess the amount of measurement error associated
with missing price data by linking the plant-level Census data to transaction
prices from the Bureau of Labor Statistics Producer Price Index program.
However, linking this price data is a large project, and is beyond the scope
of the current paper.

Error also arises because intermediates in our data are treated as an
aggregate and because the price deflator is likely to vary by plant. There
is also an additional term in the technical efficiency residual unless inter-
mediate inputs grow at the same rate as output (see Bruno (1978) or Basu
and Fernald (1995)). Our comparison of the decompositions between the
gross output and the value added case will shed light on the impact of these
approximations.

Our gross output production function specification includes three pri-
mary inputs: production worker labor (LP ), non-production worker labor
(LNP ), and capital (K). We also have intermediate inputs, which includes
the cost of parts and materials (M) and energy (E).8 Our value added speci-
fications include just the three primary inputs as regressors. For production

7Foster, Haltiwanger, and Syverson (2008) (FHS) estimate both physical quantity-

based productivity (similar to our equation 17) and revenue-based plant-level produc-

tivity for the small subset of manufacturing industries for which physical quantities and

plant-level prices of output are available. They find that plant-level physical productivity

shows more within-industry dispersion than plant-level revenue-based productivity be-

cause physical productivity is negatively correlated with plant-level prices. To the extent

that their results generalize to all manufacturing industries, this suggests that revenue-

based measures of productivity will have less within-industry dispersion than the physical

quantity-based technical efficiency. We investigated using the same physical quantity data

that FHS use. Unfortunately, this data is available only in quinquennial Census years,

and only for certain products in certain industries.
8When we used the Levinsohn and Petrin (2003) estimator, we used energy as a proxy

variable, and therefore did not estimate an output elasticity for energy. For the OLS and

Wooldridge (2005) estimators, we included both materials and energy as separate variables

in the production functions.
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workers we observe total number of hours at the plant.9 For non-production
workers, we only observe number of bodies, so we abstract from utilization.
For capital we use the real value of the total capital stock at the plant, con-
structed using the perpetual inventory method. Similarly, we are working
to correct the stock for unobserved utilization rates.10 The data appendix
contains more detailed descriptions of our measures.

We posit a Cobb-Douglas production function. We estimate production
functions separately for each of our 459 4-digit SIC industries using the
Levinsohn and Petrin (2003, LP) estimator.11

Given any estimator of production function coefficients our estimate of
plant-level technical efficiency from the gross output specification is then

lnω̂it = lnPitQit

Pjt
− (ε̂jP lnLP

it + ε̂jNP lnL
NP
it + ε̂jK lnKit

+ ε̂jM lnMit + ε̂jE lnEit)
(23)

where ε̂j· denotes the estimated elasticities of output with respect to the in-
puts in 4-digit SIC industry j. Similarly, our estimate of technical efficiency
for the value-added specification is given as

lnω̂v
it = ln(V Ait)−

(
ε̂vjP lnL

P
it + ε̂vjNP lnL

NP
it + ε̂vjK lnKit

)
(24)

where ε̂vj· denotes the estimated elasticities of value added with respect to
the inputs in 4-digit SIC industry j.

9To try to see how much capacity utilization affects measured productivity, we also

estimated production functions with the number of production workers (instead of total

production worker hours) as our measure of production worker labor. Somewhat surpris-

ingly, this had little affect on our main results. See Appendix E for details.
10At the time of this writing we are waiting for IRS approval to access the plant-level

Survey of Plant Capacity Utilization (PCU) data. For a subset of our sample, this data

will allow use to adjust our plant-level capital services measures for plant-level differences

in capital utilization. In future work we also plan to adapt the industry-level proxy

methods of Basu (1996) and Burnside, Eichenbaum and Rebelo (1995) for estimating

capital utilization at the plant-level.
11We compare results across several different production function estimators, including

Ordinary Least Squares, Levinsohn and Petrin (2003, LP), and Wooldridge (2005) variant

of the LP estimator. The different estimators have different strengths and weaknesses,

our preferred estimator is the latter, which corrects for the simultaneous determination

of inputs and technical efficiency, is robust to the Ackerberg, Caves, and Frazer (2008)

criticism, and is one line of code in Stata, available from the authors on request.
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We now turn to the specifics of the data.

5 The Annual Survey of Manufacturers and Cen-

sus Data

We use the U.S. Census Bureau’s Annual Survey of Manufactures and Cen-
sus of Manufactures, which provide a nationally representative sample for
the entire U.S. manufacturing sector. These data include measures of the
total (nominal) value of shipments, total expenditures on intermediate and
primary inputs, and other input and output measures needed for our esti-
mation.

The Census takes place in the years ending in 2 and 7, and includes
approximately 200,000 manufacturing establishments that make up virtually
all of aggregate value added.12 The Annual Survey of Manufacturers (ASM)
samples between 50,000 and 70,000 plants in U.S. manufacturing. With
probability one the ASM samples all plants with more than 250 employees,
all plants that are part of very large companies, and all plants in certain
industries that are considered important to track. These plants account for
approximately half of the sample. The other half includes plants that are
sampled from the population with a probability related to the plant’s value
of shipments within each 5-digit product class.13 The ASM sampling weight
applied to these plants is then inversely proportional to the probability that
the plant is sampled.

12There are many other small plants from which data are not collected because they

generate very little value added.
13The sampling probabilities for other plants are chosen to minimize the total cost of

sampling, subject to a set of target variances. The targets are the sampling variances

of the estimated change since the last Census in the value of shipments for each 4-digit

SIC industry and each 5-digit product class. In 1994, Census changed the algorithm

they used to select the sample, but the description above of the sampling weights still

remains applicable. In a 1999 Census also increased the threshold for certainty plants to

500 employees. Also, in 1997 Census moved to the NAICS system (although the SIC was

also used in 1997), so they changed the industries and product classes for which they are

minimizing sampling variances.
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While the data we have is from the manufacturing sector and not the
entire economy, P-L show that for any subset of plants in the economy we
can decompose their contribution to aggregate value added.

While we do observe the plants that are the largest contributors to value
added in every year, we do not observe the entire manufacturing sector in
every year. In order to account for this, we use the ASM sample weights,
which add no error to either PL-APG or its decomposition for the plants
sampled with probability one.14

Given the definition of plant-level value added (see equation 20) and the
ASM sampling weights wit, we estimate aggregate value added in manufac-
turing as

V ADD
t =

∑
i

wit V A
DD
it (25)

Table 1 shows the annual growth rates of real GDP and four different
measures of the growth rates of aggregate real value-added in manufacturing:
from the National Income and Product Accounts (NIPA), from the NBER-
CES manufacturing productivity database, and two different measures from
the plant-level ASM data.15 To calculate the estimates in column (4), we
first used equation (25) to computed aggregate real value-added using all
plants in the ASM for which we could compute real value-added, and then
we computed the growth rates of these aggregates. For column (5), we
selected only plants which are continuers from one year to the next and
for which we could compute plant-level estimates of productivity. Then
we computed the growth rate of aggregate real value-added as a Tornqvist
index, as in the first term in equation (26).

The average annual growth rate (AAGR) of real GDP over this period
was about 2.5%, while our estimates of the AAGR of manufacturing value-

14For those plants that are sampled with probability less than one, the ASM weight need

not be representative of the input expenditures and changes in input levels. However, the

results presented below in Table 1 indicate that the growth rates of aggregate value-added

calculated from the ASM are highly correlated with the estimates of the growth rates of

aggregate valued-added from other sources.
15Unfortunately real value-added for manufacturing is only available on the BEA website

starting in 1987.
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added range from 2.3% for the Tornqvist index based on continuing ASM
plants to 3.6% in the NBER-CES database. The growth rate of manufactur-
ing valued-added was more volatile than that of GDP: our estimates of its
standard deviation range from 4.6% for the Tornqvist index of continuing
ASM plants to 6.0% for the ASM measure that uses all plants. This is com-
pared to a standard deviation of only 2.4% for the growth rate of real GDP.
The correlation between the growth rate of manufacturing valued-added for
continuers and the GDP growth rate during this period is 0.78.

The numbers from the plant-level ASM do not exactly match the aggre-
gate real value-added growth rates from the NIPA both because the samples
are different, and because the value-added measures used by the Census Bu-
reau and the BEA are somewhat different. However, the numbers are quite
similar in most years.

The differences between columns (4) and (5) illustrate the importance of
entry and exit in the ASM. If we exclude the first year of each ASM panel–
years ending in 4 or 9–then in most years the growth rate of aggregate real
value-added based on all ASM plants is close to the growth rate computed
only for continuing ASM plants.16 The biggest departures from this rule
occur in 1992 and in 1994-1996. In 1992, it seems that “false” entry (plants
that showed up for the first time in the ASM data but previously existed
in the LBD) contributed a lot to real valued-added in manufacturing. For
1994-1996, the difference between the Tornqvist index in column (5) and the
results in column (4) seems to be related to price indexes in computer-related
industries.17

Despite the differences in the samples and value-added measures, our es-
timates from the ASM do generally track the growth rates of manufacturing
value-added from other sources. In particular we can clearly see the con-
tractions in 1980, 1982, and 1990/1991, and the expansions in the 1980s and
1990s, and the standard deviation of our estimates of the growth rate of ag-

16At the beginning of each ASM panel, a little less than half of the plants exit the panel

and are replaced.
17We discuss entry and exit and the issues related to price indexes in greater detail in

Appendix C.
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gregate value added (column 5) is about the same as the standard deviation
of the growth rates of aggregate value from the NBER-CES productivity
database (4.7 versus 4.6 percentage points, respectively). The correlation
between our measure of aggregate value-added from continuing ASM plants
and manufacturing aggregate real value-added from the NIPA (for the years
for which we have real value-added from the NIPA) is 0.97.

Our estimate of PL-APG from t− 1 to t is given by

P̂LG,t =
∑

i

D
v
it ∆lnV ADD

it −
∑

i

∑
k

sikt ∆lnXikt (26)

where we redefine Dit and sikt in terms of the ASM sampling weights, with

Dv
it =

witV A
DD
it

V ADD
t

, (27)

D
v
it =

Dv
it +Dv

i,t−1

2
, (28)

sikt =
witWiktXikt

V ADD
t

, (29)

and
sikt =

sikt + sik,t−1

2
. (30)

k indexes three primary inputs: production worker labor (LP ), non-production
worker labor (LNP ), and capital (K).

We observe the total wage bill both for production workers and non-
production workers separately and can thus compute sikt for them directly.
For capital expenditures we multiply the plant-level real stock of capital by
the 2-digit industry level nominal rental price of capital, denoted PK

t , and
then weight:

siKt =
witP

K
t Kit

V ADD
t

. (31)

For production workers ∆lnLP
t is the change in total hours from period t−1

to t. For non-production workers, ∆lnLNP
t is the change in the number of

laborers from period t− 1 to t. For the change in capital ∆lnKt we use the
change in the real value of the total capital stock at the plant, constructed
using the perpetual inventory method.
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The decomposition is straightforward to calculate given the production
function estimates. In the gross output case, the estimate for the change in
aggregate technical efficiency is∑

i

Dit∆lnω̂it (32)

where
Dit =

∑
iwitPitQit

V ADD
t

. (33)

As noted in PL, a lower bound on aggregate reallocation is given by

P̂LG,t −
∑

i

Dit∆lnω̂it (34)

For any specific input Xijt - either primary or intermediate - the reallocation
term is ∑

i

(Ditε̂j· − sijt)∆lnXijt. (35)

The decomposition for reallocation for value added follows the same
approach.The change in aggregate technical efficiency is given by∑

i

D
v
it∆lnω̂v

it, (36)

and for any primary input Xijt the reallocation term is given by∑
i

(Dv
itε̂

v
j· − sijt) ∆lnXijt. (37)

The Domar weight adjusts because the value-added production function
coefficients are different from the gross output coefficients unless there are
no intermediate inputs used in production.

We close by discussing our treatment of entry and exit. Entrants and
exiters pose no conceptual challenges for the theory, and in the discrete time
setting they can be directly included in PL-APG. Decomposing changes in
aggregate productivity with entry and exit is straightforward. Decomposing
growth rates with entry and exit is a bit trickier, but we can also address
this in the PL-APG framework. Note that here we are referring to the one-
period contribution of entrants and exiters. As noted above, we have an
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unbalanced panel, so we are already including the contribution of entrants
after their first year and exiters in all but their last year. We can also
measure the cumulative contribution of, for example, plants that entered in
1980. In future work we plan to present more complete empirical results for
entrants and exiters.18

6 Estimates of PL-APG using the ASM

In this section we present estimates of PL-APG from the ASM data and
compare these results to estimates of aggregate productivity growth using
other indexes and other more aggregate data.

6.1 PL-APG and Its Decomposition Using Gross Output

Production Functions

Table 2 shows estimated PL-APG and its decomposition (using (26)) for
the entire U.S. manufacturing sector. This includes changes in aggregate
value-added and changes in the aggregate costs of capital, production-worker
labor, and non-production-worker labor. While aggregate value-added in
manufacturing grew by an average of 2.3% per year, aggregate costs of capi-
tal and non-production labor grew very little over this period.19 The growth
rate of aggregate value-added was also much more volatile than the growth
rates of aggregate primary input costs.

The final column of table 2 shows our estimates of aggregate productivity
growth, PL-APG. Since the growth rates of aggregate primary input costs
are close to zero in most years, PL-APG basically follows the growth rate of
aggregate value-added. The mean is approximately the same (2.2% for PL-
APG) and the contemporaneous correlation between aggregate value-added
growth and PL-APG is 0.98.

18See Appendix C for empirical results for the effect of entry and exit on measures of

the growth rates of aggregate value added in manufacturing.
19The biggest outlier is 1982, when our measure of aggregate production labor costs

declined by 3.6%.
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Next we decompose PL-APG into productivity growth due to within-
plant technical efficiency growth and growth due to the reallocation and
fixed cost terms. Column 3 of Table 3 shows the contribution of technical
efficiency growth to PL-APG, where plant-level technical efficiency is esti-
mated from the gross-output specification in equation (23). We estimate the
production functions by LP, OLS, and the Wooldridge (2005) modification
of LP, respectively. Table 3 shows the results from the Wooldridge estima-
tor.20 For comparison, Table 3 also includes the growth rates of aggregate
real value-added from the ASM (the Tornqvist index from column 5 of Table
1). Total reallocation (column 4) is the sum of the reallocation “gap” terms
for primary and intermediate inputs in equation 16. The contribution of
total reallocation is positive in all but 3 years. Intuitively this makes sense.
In any reasonably well-functioning market economy one expects inputs to
be reallocated over time to activities that on average consumers value more
highly. Both technical efficiency and reallocation make important contribu-
tions to aggregate productivity growth, both in terms of the average growth
rate and the volatility of aggregate productivity growth. Reallocation makes
a larger contribution on average, whereas most of the volatility in aggregate
productivity growth is coming from aggregate technical efficiency growth.
As noted above, our plant-level technical efficiency estimates include mea-
surement error due to differences between the growth rates of plant-specific
output prices and the growth rates of industry-level price indexes. In future
work we plan to use BLS transaction prices to try to determine how much
of the volatility in measured technical efficiency is due to volatility in these
prices.

The final column of Table 3 shows the the difference between PL-APG
and the sum of the technical efficiency and total reallocation terms. This
residual term includes any fixed costs which are not already captured by the
technical efficiency term as well as any discrete-time approximation error.21

20Results for the LP and OLS estimators are presented in tables A3a and A3b in the

appendix.
21It turns out that in most years almost all of this term is explained by approximation

error. See Appendix D for details.
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In almost all years, the fixed costs residual term is small relative to the
total reallocation term in column (1), indicating that the reallocation “gap”
terms explain most of the growth of aggregate productivity that is not due
to technical efficiency growth.

In Table 4 we present our decompositions of aggregate productivity
growth due to reallocation into the contributions of the “gap” terms as-
sociated with each factor of production.22 The largest share of the annual
variation in aggregate productivity growth due to reallocation is coming
from variation in the intermediate materials gap term, although production
worker labor reallocation is important in some years. Capital’s contribu-
tion is relatively stable and almost always positive.23 The growth rates of
the individual gap terms are also less volatile than the aggregate technical
efficiency terms in Tables 3.

We are currently investigating the sources of the variation in these gap
terms. A particular input for a plant can contribute positively to the real-
location term because of a positive gap and a positive growth rate of that
input or because of a negative gap and a decline in the use of that input.
Similarly, the importance of reallocation can change over time if the gaps
are changing over time or if the gaps are non-zero but constant over time,
and only the growth rates of inputs are changing. A priori we think that
fixed costs and adjustment costs are less important in the reallocation of
intermediate materials than for reallocation of labor and capital. However,
imperfect competition can also drive a wedge between the marginal prod-
uct and the marginal cost of intermediate materials. We suspect that the
large fluctuations in the contribution of reallocation of intermediate materi-

22Table 4 presents the results for the Wooldridge production function estimator. The

results for the LP and OLS estimators are presented in table A4a and A4b in the appendix.
23Recall that for the LP estimator (Appendix Table A4a) we used energy as a proxy

variable and did not estimate the output elasticities for energy. We did this because this

specification gave us more reasonable (i.e., non-negative) production function parameter

estimates for most industries. Ex ante this seemed harmless, since energy has a relatively

small cost share in most industries. However, the results in Table 4 and Appendix Table

A4b for the Wooldridge and OLS estimators show that despite its relatively small cost

share, reallocation of energy makes a significant contribution to aggregate productivity

growth in some years.
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als is due to large fluctuations in the growth rates of intermediate materials
and relatively constant gaps between the output elasticities and input cost
shares.

6.2 Value-added Results

The results in Tables 3 and 4 are constructed from gross-output production
functions. For macroeconomic analysis, value-added production functions
are more convenient, but they require stronger conditions on the production
technology (e.g. separability of intermediate inputs). For the U.S. Manufac-
turing data, value-added production functions have another advantage. For
the gross-output specifications, we need energy deflators, because we used
the real cost of energy when we estimated the production fuctions. We do
not have energy deflators for the SIC industry coding system after 1996. For
value-added production functions this does not pose a problem, and thus we
can use more years of data. Furthermore, for the gross-output specification
many plant-year observations are dropped from the sample because some
of the energy data is zero or missing. Thus for the value-added specifica-
tion we can use a larger sample of plants. How much do the value-added
specification and the different sample change our results?

While aggregate value-added and PL-APG are invariant to the speci-
fication of the production function, we want to use the same samples for
aggregate value-added and PL-APG that we use for the decompositions.
Therefore we re-estimate aggregate final demand and each of the compo-
nents of PL-APG for the value-added production functions sample for 1977-
1999. The results are presented in tables A1 and A2 in the appendix. Not
surprisingly, these results are similar to the results presented in Tables 1
and 2.

Columns 3 and 4 of Table 5 present the results of the decomposition of
PL-APG into aggregate technical efficiency and total reallocation, where the
value-added production functions are estimated by the Wooldridge (2005)
modification of the LP estimator.24 Comparing these results to the gross-

24Unlike the gross-output productivity decompositions, in our value-added productivity

decompositions, the reallocation terms and the technical efficiency term sum to aggregate
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output results in Table 3, the most striking difference is that for the value-
added specification the total reallocation term (column 4) is even more sta-
ble: its standard deviation is only 0.5 (compared to 1.7 in the gross-output
specification), and it is (slightly) negative in only 1 year–1982. As in the
gross-output case, the total reallocation term makes a significant contribu-
tion to aggregate productivity growth–about 1 percentage point per year.
In the value-added specification, aggregate technical efficiency (column 3) is
much more volatile than reallocation–the standard deviation is 2.6–and it
also contributes about 1.6 percentage points per year to PL-APG over the
period 1976-1999.

As shown in equation (19), if the elasticity of output with respect to
intermediates is not equal to the ratio of the expenditure on intermediates
to total revenues, then the residuals from the value-added production func-
tion includes a term related to this gap. As we saw in column 4 of table 4,
these intermediate “gap” terms are important in several years. This may
explain why the aggregate technical efficiency term from the value-added
production function specification (column 3 of Table 5) is so much more
volatile than the total reallocation term (column 4 of Table 5)–some of the
volatility in the valued-added “technical efficiency” is actually due to re-
allocation of intermediates. Tables A5a and A5b show that these results
are robust to estimating the value-added production functions by OLS and
the LP estimator: aggregate technical efficiency is more volatile than aggre-
gate reallocation, and aggregate reallocation usually contributes positively
to aggregate productivity growth.

Table 6 presents the results of the reallocation decomposition in equation
(12). The main difference from the gross output results in Table 4 is that
there are no reallocation terms for intermediate inputs in Table 6. In light
of equation (19), and the results for the intermediates materials gap term in
Table 4, we may want to interpret the results in Tables 5 and 6 with some
caution.

productivity growth. In other words, there is no fixed costs residual/approximation error

residual. The approximation error discussed in Appendix D does not arise when we use

value-added production functions.
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6.3 Comparing PL-APG to Productivity Measures Based on

More Aggregate Data

We are the first to estimate PL-APG using plant-level U.S. manufacturing
data. However, Basu and Fernald (2002) have estimated aggregate produc-
tivity growth and a similar decomposition using annual industry-level data
for the entire U.S. private business economy. Over the period most com-
parable to ours (1974-1989), they compute an average annual productivity
growth rate of 0.32 and a standard deviation of 2.22. The mean and stan-
dard deviation of our aggregate productivity growth over the period 1976 to
1996 are 2.2% and 3.7%. Their estimates of the average annual growth rate
of technical efficiency range from 0.14% to 0.22%, and the standard devi-
ations of their technical efficiency growth rate range from 1.49% to 1.60%.
Our estimates of the mean of aggregate technical efficiency growth range
from 0.2% to 0.6% and our estimates of the standard deviation range from
2.6% to 3.0%.

Our total reallocation term is generally positive, averaging 1.7% to 2.1%
growth per year in the gross output specification. This result–a generally
positive reallocation term–makes sense: in a market economy populated by
profit-maximizing firms, on average, in the long run, one expects resources
to be reallocated from uses with lower marginal products to uses with higher
marginal products. However, this result contrasts with Basu and Fernald’s
(2002) results using a similar decomposition. Over the period 1959 to 1989,
their estimates of the average annual growth rate due to reallocation range
from -0.082 percent to -0.16 percent. As noted above, Basu and Fernald’s
results are not directly comparable to ours, because they study a different
time period, and they use data covering the entire private business economy,
whereas we study only manufacturing. However, our results are much less
likely to suffer from aggregation bias as we are working at the plant level.
Furthermore, in a well-functioning market economy populated by profit-
maximizing firms, it is difficult to understand why aggregate reallocation
would contribute negatively to aggregate productivity growth on average
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over a period of many years.25 Despite these differences, like us, Basu and
Fernald find that the reallocation term is less volatile than the technical
efficiency term (which they call the “corrected technology residual”). Their
estimates of the standard deviation of their reallocation term range from
0.99 to 1.11, whereas the standard deviation of their technical efficiency
term is about 1.65.

6.4 Comparing PL-APG to Productivity Measures Based

Only on Technical Efficiency Change

While we are the first to apply the PL-APG decomposition to U.S. data,
many studies have used the ASM and CMF to decompose aggregate pro-
ductivity growth using some variant of the BHC productivity index, like
those found in Foster, Haltiwanger, and Krizan (2001) and Olley and Pakes
(1996). These indices are defined completely in terms of the plant-level
technical efficiency residual. In continuous time the BHC index is given as:

BHC ≡ d
∑

i

(si lnωi) =
∑

i

si dlnωi +
∑

i

lnωidsi, (38)

where si is either the gross-output share or the labor share for plant i. The
BHC measure decomposes into the two right-hand-side terms. The first term
is referred to as the technical efficiency or “within” term and the second term
is known as the reallocation or “between” term.

BHC growth measured with discrete time data and the Tornquist-Divisia
approximation is then

BHCt =
∑

i

sitlnωit −
∑

i

si,t−1lnωi,t−1 (39)

25The fact that Basu and Fernald’s data covers the entire economy makes their generally

negative reallocation result even more surprising. When an industry or sector is in decline,

resources are reallocated away from that industry. If one measures reallocation only for

that industry, then it may be negative because resources are being reallocated from uses

with positive marginal products to uses with zero marginal product (because the uses are

outside that particular industry and therefore not measured). But it is difficult to make

this argument for the entire U.S. economy over the period 1959 to 1989–aggregate labor,

capital, and intermediate inputs were all growing in the U.S. over this period.
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with decomposition

BHCt =
∑

i

(sit + si,t−1)
2

∆lnωit +
∑

i

(lnωit + lnωi,t−1)
2

∗∆sit. (40)

On the technical efficiency term, the BHC-type indexes use either labor
share or gross output share as the weight, where PL-APG weights by the
Domar weight. The only case in which the Domar weight will equal the
gross output share is when there are no intermediate input deliveries in
the economy. Otherwise the difference between the two is increasing in the
fraction of gross output that goes to intermediate input use. For example, if
every plant has a ratio of materials expenditures to revenues of 50% (typical
for manufacturing), then the BHC technical efficiency growth is exactly half
of PL-APG technical efficiency growth.

Empirically we want to focus on the differences in reallocation between
BHC and PL-APG, so we abstract from differences in technical efficiency
by using the Domar weight for both BHC and PL-APG technical efficiency
growth. To compare the BHC index to PL-APG, we computed BHC and
the BHC reallocation term using the same set of plants that we used for PL-
APG and its decompositions. The results are presented in columns 5 and
6 of Tables A10a-c. The Domar-weighted BHC index is much more volatile
than PL-APG. Since we abstract from differences in the weights used to
aggregate technical efficiency, the BHC technical efficiency term is the same
as the technical efficiency term in the PL-APG decomposition. Therefore all
of the excess volatility in the BHC index relative to PL-APG is because of the
reallocation term. The BHC reallocation term also frequently takes negative
values, in some cases large negative values. In a market economy populated
by profit-maximizing firms, it is difficult to see why reallocation of primary
inputs should have such large negative effects on aggregate productivity
growth. This finding of excess volatility and large negative values in the
BHC reallocation term is robust to different production function estimators
and different economies (see Petrin and Levinsohn, 2008 and Kwon, Narita,
and Narita (2009)).
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7 Implications for Models of Business Cycle Fluc-

tuations

What are the implications of these results for models of business cycle fluc-
tuations? We distinguish between two sources of aggregate productivity
growth: growth of plants’ output for a given level of inputs–technical ef-
ficiency growth–versus reallocation across plants (and industries). We find
that most of the aggregate volatility can be directly attributed to the former.
However, in all of our gross-output specifications we find that reallocation
makes a significant contribution to aggregate volatility, with a standard
deviation ranging from 1.1 to 1.7 percentage points, depending on the esti-
mator. Under perfect competition with no adjustment costs or distortions,
in equilibrium reallocation makes no contribution to aggregate productivity
growth, because marginal revenue products are always set equal to marginal
costs. Thus our findings suggest that imperfect competition, frictions or
distortions of some sort play an important role in aggregate fluctuations at
business cycle frequencies.

As emphasized by Rotemberg and Woodford (1995) and Basu and Fer-
nald (2003), under imperfect competition, reallocation can serve to prop-
agate technology shocks. What begins as a pure technology shock may
have lagged effects on aggregate productivity through the reallocation of
resources across plants and industries. But aggregate demand shocks such
as changes in government purchases may also affect aggregate productivity
through the reallocation channel. Therefore our results do not force us to
take a stand on the ultimate sources of business cycle fluctuations. We do
take a stand on appropriate models of business cycle fluctuations. As shown
in equation 19, if the elasticity of output with respect to an intermediate
input is not equal to the ratio of expenditure on the input to total revenues,
then residuals from value-added production functions are not pure technol-
ogy shocks.26 In addition to the technology shock, the value-added residuals

26Rotemberg and Woodford (1995) and Basu and Fernald (2003) and emphasize the

same problem with using value-added production functions to measure productivity in

the presence of imperfect competition.
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include a “gap” term for the effect of intermediate inputs. Our results in
Tables 4 and A4a-b indicate that the intermediate input “gap” terms are
quite important. Comparing the gross-output results in Tables 3 and A3a-b
to the value-added results in Tables 5 and A5a-b, the value-added specifica-
tion seems to attribute too much of the volatility in aggregate productivity
growth to technical efficiency growth, and too little to reallocation. Our
results indicate that business cycle models that assume the existence of a
valued-added production function in an economy with perfect competition
and no frictions or distortions attribute too much to the direct effect of
technology shocks and miss an important channel for the propagation of
business cycles.

8 Conclusions and Suggestions for Further Research

We provide the first application of the Petrin and Levinsohn (2008) ag-
gregate productivity growth statistic and decomposition to U.S. data. We
adopt this definition because it insists that micro-level changes add up to
changes in aggregate final demand holding primary inputs constant. We de-
compose aggregate productivity growth into the contributions of technical
efficiency and reallocation. Over the period 1976-1996, in the U.S. manu-
facturing sector we find that both contributions are important. On average
reallocation was responsible for about 1.7 to 2.1 percentage points per year,
and it was positive in all but 3 years. Technical efficiency growth was re-
sponsible for only 0.2 to 0.6 percentage points per year, but it was more
volatile: our estimates of the standard deviation of the annual growth rate
range from 2.6 to 3.0 percentage points, compared to 1.1 to 1.7 percentage
points for reallocation. While these results are robust to several different
production function estimators, they are not robust to using the popular
BHC index on annual data. We argue that this is because the BHC index
does not accurately measure aggregate productivity growth in an economy
with distortions and imperfection competition.

We have found that reallocation has been an important factor in aggre-
gate productivity growth and aggregate fluctuations in U.S. manufacturing.
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We suspect that reallocation is even more important in other economies, es-
pecially economies transitioning from communism to capitalism or economies
with less factor mobility or more distortions than the U.S. economy. In these
economies, we expect to find larger gaps between marginal revenue products
and marginal costs, and thus reallocations should have larger effects on ag-
gregate productivity growth. Based on economic theory and the empirical
evidence presented here, we argue that the PL-APG measure would provide
a better measure of aggregate productivity growth and the contribution of
reallocation to aggregate productivity in these economies.
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Appendix A: Data

We use the Census Bureau’s confidential Census of Manufactures (CMF,
conducted in years ending in 2 and 7), the Annual Survey of Manufac-
tures (ASM), and the Bureau’s Longitudinal Business Database (LBD).
In Census years we use only the plants receiving the ASM questionnaire,
since that survey instrument askes more detailed questions about costs than
the non-ASM questionnaire sent to other plants in the Census years. The
LBD is described in Jarmin and Miranda (2002). For deflators and depre-
ciation rates we use the dataset available on John Haltiwanger’s web site:
http://www.econ.umd.edu/ haltiwan/capital/CRIWNBER/external.sas7bdat
(last accessed on October 1, 2008).

Our unit of analysis is the plant. This is consistent with the way inputs and
outputs are measured in the surveys–respondents are asked to treat each
plant as a separate economic unit. Consistent with most researchers who
use this microdata, we drop administrative records plants from the sample,
because most of the cost data for these plants is imputed.

Industry coding. We use SIC industry codes at the 4-digit level. The SIC
system of coding industries has changed over time, most notably in 1987
and in 1997. Since we are estimating production functions by industry, we
need to have consistent industries over time (or greatly reduce our sample
size for some industries). The Census Bureau makes its greatest effort at
accurate plant level industry coding in the census years. There was a major
revision of the SIC coding system in 1987. However, in the CMF years, the
plants have been recoded using the 1987 SIC system based on the 7-digit
products that the plants were producing in each CMF year. Thus we use the
1987 SIC coding system and the Census years to create consistent 4-digit
SIC industries across time using the microdata. In cases where we could not
recode industries this way, we use a concordance from the 1977/1982 SIC
system to recode the plants into the 1987 SIC system. Our coding scheme
gives us 459 industries.

Production-worker hours. Thousands of total annual plant hours worked
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by production workers at a plant are measured directly in the ASM and
CMF. For production worker costs in the numerator of equation (8), we
use total annual production worker wages at the plant. The ASM only col-
lects total non-wage costs of labor for an entire plant–it does not disaggregate
non-wage labor costs into non-wage costs for production and non-production
workers. Furthermore, non-wage labor costs in the ASM have a high item
non-response rate and thus many plants have imputed data for this item
(see Dunne and Roberts (1993)). Non-production-worker hours are not
measured directly in the surveys. We construct a measure of thousands of
total non-production-worker hours by subtracting the number of production
workers at the plant from the total number of employees at the plant and
then multiplying the difference by 50 weeks times 40 hours per week and
dividing by 1,000. For non-production worker costs we use total salaries
and wages less total production worker wages at the plant.

Value-added. Nominal value-added is nominal total value of output minus
the nominal value of intermediate inputs (VM). Our measure of double-
deflated real value-added is the real total output minus the real total cost
of intermediates. See below for our measures of output and intermediate
inputs.

Output. The nominal dollar total value of shipments, TVS, is observed in
the ASM/CMF. Note that the surveys ask multi-plant firms to report the
operations of each plant as a separate economic unit. Thus the shipments
from one plant to another plant in the same firm are supposed to be included
in the total value of shipments of the shipping plant, and they are supposed
to be included in the total cost of materials of the receiving plant. We also
observe inventories for finished goods and work-in-progress at the begin-
ning and end of the year (FIB, FIE, WIB, and WIE). Our measure of real
gross output is (TVS+(FIE-FIB)+(WIE-WIB))/PISHIP, where PISHIP is
the 4-digit SIC industry-level shipments deflator from the NBER/CES Pro-
ductivity database.

Intermediate inputs. The total cost of intermediate inputs (VM) is the
sum of the cost of materials and parts (CP), the cost of fuels (CF), the
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cost of purchased electricity (EE), the cost of resales (CR), and the cost
of contract work (CW), all measured in nominal dollars. The real total
cost of intermediates is VM/PIMAT, where PIMAT is the 4-digit industry-
level deflator for materials from NBER-CES productivity database. For the
gross-output production functions, we also break out intermediate inputs
into the real cost of materials, (CP+CR+CW)/PIMAT, and the real cost
of energy, (CF+EE)/PIEN, where PIEN is the energy deflator from the
NBER-CES productivity database.

Capital. We use the perpetual inventory method to construct a measure
of total real capital stock for each plant using the book value of the plant’s
assets (appropriately deflated), the plant’s real capital expenditures (in-
cluding rentals of equipment and structures), and industry-specific capital
depreciation rates. For each plant we construct separate stocks for machin-
ery/equipment and building/structures, and then we sum them to get the
total capital stock for the plant.

The initial capital stock is the book value of assets at the beginning of the
year deflated to thousands of 1987 dollars using industry-level asset deflators.
For example, for equipment, the real initial capital stock is computed as: ini-
tial stock = (initial nominal book value)*(nkceq/gkheq)*(piinve87/piinve96),
where nkceq = the real value of net equipment capital stock in millions of
1996 dollars for a given year for an entire 2-digit SIC industry; gkheq =
the book value of gross equipment capital stocks (in millions of historical
dollars) for a given year for an entire 2-digit SIC industry; piinve96 = the
3-digit industry equipment investment deflator (PIINVE) for 1996, where
1987 is the base year; piinve87= 1. We follow an analogous procedure for
buildings or structures. After the initial year, the plant’s capital stock is
the undepreciated stock from the previous year plus total real capital ex-
penditures from the previous year. To construct the capital cost shares in
equation (8), we need an estimate of the user cost of capital. We use equip-
ment (“machinery”) capital rental prices (at the 2-digit SIC industry level)
and the structures (“buildings”) capital rental prices constructed from BLS
data.

In later years we have to deal with several missing data issues to construct
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our capital stocks measures. In 1986 the ASM stopped collecting the book
value of assets in non-census years. For plants that enter the ASM after 1986
and survive until a census year, we construct initial capital stocks using
backwards and forwards perpetual inventory, starting in the first census
year that the plant is observed. Furthermore, after 1992, the ASM only
collected the total book value of assets, rather than separate book values
for machinery and buildings. To impute the book value machinery assets in
1997, we accumulate the plant’s expenditures on machinery over all the years
of the plant’s existence prior to 1997 and multiply the total assets variable
by the ratio of cumulated machinery investment to total investment over the
same period. We follow the analogous procedure for investment in buildings.
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Appendix B: BHC Discussion
Several previous studies have used the U.S. plant-level manufacturing

data to compute variants of the BHC index and the technical efficiency
growth. How do our results for the BHC index compare? Lee (2005) uses
the Annual Surveys of Manufactures to study the entire manufacturing sec-
tor. Using the Bailey, Bartelsman, and Haltiwanger (1996) variant of the
BHC index, Lee finds that reallocation is at least as volatile as technical
efficiency growth. In contrast, using only the quinquennial censuses and 23
manufacturing industries, Baily, Hulten, and Campbell find that on aver-
age the reallocation term (which they call the “share effect”) is much less
volatile than the technical efficiency term. Furthermore, for given 5-year pe-
riods and single industries, BHC find that their reallocation term is always
positive, and almost always smaller in absolute value than their technical
efficiency growth term. Similarly, Foster, Haltiwanger, and Krizan (2001,
table 7, panel B) report that among continuing plants, technical efficiency
growth (the “within share”) explains a much higher percentage of the overall
growth in total factor productivity than reallocation (the “between share”).

What explains the discrepancy between our BHC results in table 3 and
Lee (2005) on the one hand, and, on the other hand, the results of BHC and
Foster, Haltiwanger, and Krizan? One obvious difference is that we (and
Lee) use annual data, whereas the other studies use quinquennial data. As
mentioned above, at higher frequencies, factor utilization probably has more
of an effect on measured total factor productivity. Our measure of produc-
tion worker labor is hours. So for this input, we do measure utilization,
however imperfectly. Utilization of non-production workers and capital is
not measured in the ASM/CMF data. Therefore, some of the variation in
our measure of technical efficiency is probably variation in factor utiliza-
tion. For example, suppose that plant-level technical efficiency does not
change from year t to t+1, but because of a negative demand shock, the
plant manager runs fewer shifts per week, or runs the machinery at a slower
rate. Since we do not directly measure utilization of capital, the BHC in-
dex would show an increase in within-plant technical efficiency growth even
though there was none. Since factor utilization and (measured) aggregate
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productivity are both procyclical, mismeasurement of capital utilization may
explain why the BHC index is not highly correlated with aggregate final de-
mand growth in our annual data (see table 3). Note, however, that the
PL-APG measure in equation (26) suffers from the same measurement error
in capital services. Thus it is not clear that capital utilization can explain
the discrepancies between PL-APG and the BHC measure in annual data.

Another difference between our BHC results and those of previous studies
is that most previous studies have used output-share weights or labor-share
weights, whereas we use Domar weights to construct our BHC-like index.
The consensus in the literature is that Domar weights are the correct weights
to use if you want to measure aggregate productivity. However, our use of
Domar weights may explain some of the difference between our results for
the BHC-like index and previous results in the literature.

Another explanation for the discrepancy between our BHC estimates
from annual data and estimates from other studies using quinquennial data
is that this is exactly what we should expect. At the 5-year interval, only
plants that survive for 5 years are considered continuers. These tend to be
bigger plants, which are less likely to experience large growth rates. Thus
the weight-change dDv

it in the second term in equation (39) is less likely to be
large at the 5-year interval than at the 1-year interval. On the other hand,
entry and exit become more important at longer intervals. Indeed, FHK
(table 7, panel B) find that at the 5-year interval, net entry’s contribution to
their BHC-like index is as large or larger than the contribution of reallocation
among continuing plants. In contrast, using annual ASM data, Lee (2005)
finds that the contribution of net entry is small compared to the contribution
of reallocation among continuing plants.

While no economic theory maps the BHC index or the BHC reallocation
term to aggregate productivity growth, many researchers have interpreted
it this way. For example, in their excellent review and synthesis of studies
using several variants of the BHC index and its decomposition, Foster, Halti-
wanger and Krizan (1998) provide the following summary:“the contribution
of reallocation of outputs and inputs from less productive to more productive
establishments plays a significant role in accounting for aggregate productiv-
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ity growth.” Foster et al. are not alone. Other studies interpreting changes
in the BHC index and its variants as measures of aggregate productivity
growth include Baily, Hulten, and Campbell (1992, p. 208), Baily, Bartels-
man, and Haltiwanger (2001, p. 422), Lee (2005, p. 8), and Brown and
Earle (2008, p. 1). The point is not to single out these papers. The point is
that variants of the BHC index and its reallocation term have been widely
interpreted as measuring aggregate productivity growth. Petrin and Levin-
sohn (2008) show that this interpretation is problematic from the standpoint
of economic theory: the BHC index can diverge significantly from aggregate
productivity growth. With the caveat that both PL-APG and BHC-like
indexes are subject to the measurement issues mentioned above, the results
in Tables A10a-c show that in annual U.S. manufacturing data, the Domar-
weighted BHC index does significantly diverge from aggregate productivity
growth.
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Appendix C: Entry and Exit
As mentioned in the main text, although we can compute the contribu-

tion of entrants and exiters to aggregate productivity growth, we can only
compute the plant-level growth rate decompositions for plants that continue
from one year to the next. Plants that enter in year 1, continue to year 3
and exit in year 4 are included in the productivity growth decompositions
years 2 and 3, but excluded in years 1 and 4. Dealing with entry and exit is
further complicated by the fact that about half the ASM–typically smaller
plants–is a 5-year rotating panel. For these smaller plants, we want to dis-
tinguish between a plant actually starting up or closing down versus panel
rotation. To do this, we use the LBD. The LBD does not contain measures
of value-added or detailed cost measures, but in principle it covers all em-
ployer establishments in every year. We define a plant as a “true” entrant
in year t if its first year in the LBD was year t or t− 1. “False” entrants in
year t are thus plants that enter the ASM in year t but were in the LBD in
year t− 2 or earlier. Similarly, “false” exits are plants that exit the ASM in
year t, but continue in the LBD in year t+ 2 or later.27

27Davis, Haltiwanger, and Schuh (1996, DHS hereafter) describe an alternative method

for identifying false entry and exit in the ASM. Using only the ASM data and knowledge of

Census Bureau industry coverage codes, they create a set of linkage files that identify each

plant-year as a birth, a continuer, or a death. DHS created files for 1972-1988. The linkage

files were extended by C.J. Krizan and John Haltiwanger to cover 1989-1993 and Foster,

Haltiwanger, and Kim (2006) extended the files to 1994-1998. Unfortunately, because of a

change in the way the Census Bureau deals with entrants in the ASM, in 1989 the linkage

files include only a fraction of the plants that are in the ASM. In addition, these linkage

files were created before Ron Jarmin and Javier Miranda constructed the Longitudinal

Business Database. The extended DHS linkage files use the Permanent Plant Number

(PPN) as the longitudinal identifier, rather than the LBD’s longitudinal identifer, the

lbdnum. Jarmin and Miranda (2002) argue that as a longitudinal identifier, the PPN

is sometimes problematic. For example, the PPN sometimes changes when ownership

status of the plant changes, either because of mergers and acquisitions or because of a

change in the legal form of ownership (partnership, corporation, etc.). In these cases, the

longitudinal linkage of the PPN will be broken even though the plant continues to produce

the same goods in the same location. Jarmin and Miranda use the PPN linkages as the

starting point for the lbdnum, but they fix the broken PPN linkages by supplementing it

with name and address matching. For these reasons we decided to use the lbdnum rather
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In the first column of Table A5, we reproduce our estimates from column
(4) of Table 1. These are the growth rates of aggregate real value-added
estimated using every ASM plant with non-missing value-added. Next we
select only the plants for which we can construct input costs–call this the
estimation sample–and we include only plants that continue from year t− 1
to year t. Then we estimate the aggregate growth rate in the same way that
we did in column (1): we aggregate up within each year and compute the
growth rates of this aggregate. These estimates are shown in column (2).

The biggest differences between columns (1) and (2) occur at the begin-
ning of the ASM panels–years ending in 4 or 9–and in 1992. The beginning
of each ASM panel includes both “true” entry and exit and panel rotation.
So it seems likely that excluding entrants and exits in these years causes
sample selection bias–although the bias changes signs. To check this hy-
pothesis, we start with the same estimation sample, but then instead of
excluding all entry and exit, we only exclude plants that are “true” exits in
year t− 1 or “true” entrants in year t. Then we construct the growth rates
in the same way as before. Column (3) shows the results.

As expected, now the growth rate at the beginning of each ASM panel is
much closer to the growth rate computed using all ASM plants. Surprisingly,
in 1992 the growth rate is also much closer, indicating that “false” entrants
and exits explain most of the difference between the growth rates from the
full sample versus the sample of continuers. Another surprise appears in
column (3): in 1980, the growth rate is much lower than the rates in both
columns (1) and (2), and in 1981 it is much higher. This appears to be
caused by selecting the estimation sample. When we compute aggregate
value-added based on the entire estimation sample (i.e., excluding plants
with zero or missing values for output or input measures, but including
entrants and exiters for which we can compute these measures), then we get
the results shown in column (4).

Finally, in column (5) of Table A5 we reproduce the estimates shown in
column (5) of Table 1 and column (1) of Table 2. Recall that these estimates

than the extended DHS linkage files to distinguish between “true” and “false” entry and

exit in the ASM.
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are constructed as in the first term in equation (26): first we compute the
first-difference of the log of real value-added for each continuing plant, and
then we aggregate using the two-year averages of the plant’s value-added
share weights. Note that the samples used to construct the estimates in
column (5) are exactly the same as the samples used in column (2). Although
there are significant differences in other years, the largest differences between
columns (2) and (5) occur in 1994-96. These are also the years when the
quality-adjusted price indices for the computer-related industries begin to
show huge declines and these industries simultaneously contribute a greater
share of aggregate value-added in manufacturing. Plants in these industries
experienced huge growth rates in real value-added in these years. It seems
that the approximation error caused by the log-difference approximation to
the plant level growth rates was large enough in these years to cause the
growth rate of the Tornqvist index (column 5) to diverge from the growth
rates computed as in column (2).
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Appendix D: Approximation Error
In continuous time, equation (9) shows that PL-APG equals its decom-

position into technical efficiency growth, growth due to reallocation, and the
growth of fixed costs. The discrete-time approximations to PL-APG and its
decomposition both include approximation error which adds an error term
to equation (16). Since we do not observe fixed costs, this approximation
error is included in the “fixed costs” term. To see the source of this ap-
proximation error, note that the discrete-time approximation of PL-APG is
given by:
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∑
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The discrete-time approximation of the decomposition of PL-APG is:
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where we estimate lnωit by:

lnω̂it = lnPitQit

Pjt
− (ε̂jP lnLP

it + ε̂jNP lnL
NP
it + ε̂jK lnKit

+ ε̂jM lnMit + ε̂jE lnEit)
(44)

The elasticities multiplied by their respective inputs in (44) exactly cancel
out their respective terms in the reallocation “gap” terms, leaving us with:

PLG,t =
∑

iDit∆lnPitQit

Pjt
−
∑

iDit
∑

k cikt∆lnXikt −
∑

iDit
∑

j cijt∆lnMijt

−
∑

iDit∆lnFit,
(45)

In continuous time, the Domar weight times the revenue share of input j
is equal to the share of input j’s cost in aggregate value-added: Ditcikt =
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sijt. In practice, it turns out that the discrete-time approximations of these
objects are very close to zero in almost all years. So, in almost all years, the
cost-share weighted primary inputs in (43) essentially cancel out the Domar-
weight times the revenue-share weight times the primary input growth rates
in (45). Once we cancel these terms in both equations and rearrange terms,
this leaves us with the following approximation:
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Under our assumptions the continuous-time version of the first three sum-
mation terms on the right hand side of equation 46 equal the last summation
term. In discrete time, due to approximation error, these two expressions
are not necessarily equal. Any differences between the first three terms on
the right hand side and the last term on the right hand side will be dumped
into our “fixed costs” residual term. Table A6 shows that our “fixed costs”
residual term is almost completely explained by this discrete-time approxi-
mation error. Column 1 shows the fixed costs residual term from the gross-
output specification, where the production functions are estimated by the
Wooldridge-LP estimator. That is, these residuals are constructed by com-
puting PL-APG and subtracting aggregate technical efficiency growth and
the sum of the reallocation “gap” terms, just as in column 7 of table 4c.
Column 2 of Table A6 shows the discrete-time versions of the right hand
side of equation 46. Column 3 shows the difference between columns 1 and
2.
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Appendix E: Capacity Utilization–the Case of Production Worker
Labor

Previous research (see, for example, Basu (1996) and Burnside, Eichen-
baum, and Rebelo (1995)) has found that variation in capacity utilization
over the business cycle can affect estimates of aggregate technical efficiency
growth. For example, suppose we use the number of production workers
at a plant as our measure of production worker labor input. Suppose the
number of workers at a plant stays constant while the number of hours
per worker increases when demand is high. Then, other things equal, our
measure of plant-level level productivity would attribute too much of the
increase in output to an increase in productivity. The same measurement
error can occur if utilization of the plant’s capital stock varies with output.
As mentioned in the main text, we do not currently have measures of capital
utilization. However, we can address the issue of utilization of production
worker labor, since we observe both the number of production workers and
the number of production worker hours at the plant.

In all the results in the main text of the paper, we used production
worker hours as our measure of production worker labor. To see how much
of a difference labor utilization makes, we also constructed estimates of PL-
APG using the number of production workers as our measure of production
worker labor. Column 1 of Table A7 presents the results. For comparison,
column 2 of Table A7 repeats the results from column 5 of Table 2–using
production worker hours as the measure of production worker labor. With
the exception of one or two years, we find that utilization of production
workers has very little effect on our estimates of aggregate productivity
growth.

Labor utilization can affect our estimates of aggregate productivity growth
through two channels–the effect on our estimates of aggregate technical effi-
ciency growth and the effect on reallocation. To see the effect on aggregate
technical efficiency growth, we re-estimated each plant’s technical efficiency
growth using the number of production workers at the plant as the measure
of production worker labor. The results for the Levinsohn-Petrin production
function estimator are presented in column 4 of Table A7. For comparison,
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column 5 of Table A7 repeats our results for aggregate technical efficiency
growth when we used production worker hours as the measure of produc-
tion worker labor. For all but three years (1980, 1982, and 1983), using the
number of production workers instead of production worker hours has very
little effect on our estimates of aggregate technical efficiency growth.
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Table 1: Percentage Growth Rates of Real GDP

and Real Value-Added in Manufacturing, 1977-1996

Real Value-Added in Manufacturing

(1) (2) (3) (4) (5)

Plant-level Plant-level

Real From NBER-CES ASM ASM

Year GDP NIPA aggregates (all) (continuers)

1977 4.5 n/a 5.6 6.1 6.2

1978 5.0 n/a 5.2 4.7 5.5

1979 0.3 n/a 3.8 3.3 6.4

1980 -4.1 n/a -4.5 -6.0 -6.2

1981 1.7 n/a 1.9 0.8 2.7

1982 -2.0 n/a -3.5 -7.2 -8.0

1983 5.3 n/a 3.6 3.1 5.9

1984 6.6 n/a 5.8 11.0 8.6

1985 3.6 n/a 2.2 -0.3 0.5

1986 3.8 n/a 0.5 -0.3 -0.3

1987 2.5 n/a 9.2 7.0 6.7

1988 3.4 5.7 4.2 4.0 5.1

1989 2.5 1.3 -0.9 4.5 -0.7

1990 0.4 -1.1 -0.7 -1.5 -3.1

1991 -0.8 -1.4 -2.3 -3.9 -2.4

1992 2.6 3.3 7.2 9.9 3.4

1993 2.0 4.2 3.4 -1.4 1.9

1994 3.6 7.7 8.5 11.7 6.9

1995 1.7 4.5 11.1 12.0 4.7

1996 2.6 3.7 12.3 12.5 2.9

Mean 2.5 3.1 3.6 3.5 2.3

std. dev. 2.4 3.0 4.7 6.0 4.6

Correlations of Growth Rates

GDP NIPA MFG NBER All ASM plants

ASM continuers 0.78 0.97 0.78 0.79

Sources: Bureau of Economic Analysis, Annual Survey of Manufactures,

NBER-CES productivity database, and authors’ calculations.
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Table 2: Percentage Growth Rates of Value-Added,

Primary Input Costs and Aggregate Productivity

in U.S. Manufacturing, 1977–1996.

(1) (2) (3) (4) (5)

Aggregate

Value Production Non-production Capital Productivity

Year Added labor costs labor costs costs (PL APG)

1977 6.2 1.1 0.4 0.3 4.3

1978 5.5 0.9 0.5 0.4 3.6

1979 6.4 0.0 0.5 0.4 5.3

1980 -6.2 -2.1 0.6 0.4 -5.1

1981 2.7 -0.5 -0.0 0.5 2.7

1982 -8.0 -3.6 -0.4 0.5 -4.5

1983 5.9 0.0 -0.4 0.3 5.9

1984 8.6 1.4 0.2 0.1 6.8

1985 0.5 -0.5 0.3 0.4 0.3

1986 -0.3 -0.6 0.1 0.4 -0.3

1987 6.7 0.0 -0.3 0.3 6.7

1988 5.1 0.4 0.0 0.3 4.4

1989 -0.7 -0.2 0.0 0.3 -0.9

1990 -3.1 -0.7 -0.2 0.4 -2.5

1991 -2.4 -0.8 -0.1 0.4 -2.0

1992 3.4 -0.0 -0.5 0.2 3.7

1993 1.9 0.0 -0.3 0.3 1.9

1994 6.9 0.4 -0.2 0.2 6.5

1995 4.7 0.0 0.0 0.3 4.2

1996 2.9 0.0 -0.1 0.5 2.5

Mean 2.3 -0.2 0.0 0.3 2.2

s.d. 4.6 1.1 0.3 0.1 3.7

Note: (1) - (2) - (3) - (4)= (5)
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Table 3: Aggregate Productivity Growth Decomposition

Technical Efficiency and Reallocation. U.S. Manufacturing 1977–1996

Percentage Growth Rates of ...

(2)=(3)+(4)-(5)

(1) (2) (3) (4) (5)

Fixed

PL Aggregate Technical PL Costs +

Value Productivity Efficiency Reallocation Approximation

Year Added (PL APG) (TE) (PL RE) Error

1977 6.2 4.3 -0.5 4.6 -0.3

1978 5.5 3.6 1.0 2.4 -0.2

1979 6.4 5.4 3.1 1.0 -1.3

1980 -6.2 -5.1 -3.9 -0.3 0.9

1981 2.7 2.8 -0.1 1.4 -1.4

1982 -8.0 -4.5 -2.9 -1.4 0.2

1983 5.9 5.9 4.2 1.6 -0.1

1984 8.6 6.8 1.9 4.9 -0.1

1985 0.5 0.3 -3.5 3.5 -0.4

1986 -0.3 -0.2 -4.3 3.9 -0.2

1987 6.7 6.7 3.1 2.9 -0.7

1988 5.1 4.4 2.1 2.4 0.0

1989 -0.7 -0.9 -2.3 1.7 0.2

1990 -3.1 -2.5 -0.4 -1.1 0.9

1991 -2.5 -2.0 -2.7 1.9 1.2

1992 3.4 3.7 3.0 1.2 0.5

1993 1.9 1.9 0.1 2.6 0.7

1994 6.9 6.5 3.9 3.0 0.4

1995 4.7 4.2 2.2 2.4 0.4

1996 2.9 2.5 0.6 3.2 1.3

Mean 2.3 2.2 0.2 2.1 0.1

s.d. 4.6 3.7 2.7 1.7 0.7

Gross Output Production Functions estimated by Wooldridge (2005) modification of

Levinsohn and Petrin (2003) estimator.

Correlation of Annual Growth Rates

TE PL RE

PL APG 0.86 0.61
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Table 4: Decomposition of Reallocation Term (equation 11):

U.S. Manufacturing, 1977–1996

Percentage Growth Rates of ...

(1) (2) (3) (4) (5) (6)

Reallocation “Gap” terms

PL Non-

Reallocation Production Production Materials Energy Capital

Year (PL RE) workers workers

1977 4.6 0.8 0.1 2.2 0.6 0.9

1978 2.4 0.5 0.1 1.5 0.0 0.2

1979 1.0 0.2 0.1 0.5 -0.4 0.6

1980 -0.3 -0.5 0.1 -0.5 -0.4 1.1

1981 1.4 0.0 0.0 -0.1 0.8 0.7

1982 -1.4 -0.6 0.2 -2.0 1.4 -0.4

1983 1.6 0.4 0.1 0.2 1.2 -0.3

1984 4.9 0.7 -0.1 3.4 0.7 0.1

1985 3.5 0.3 -0.1 0.9 1.1 1.3

1986 3.9 0.3 0.1 0.7 1.1 1.7

1987 2.9 0.2 0.2 1.0 0.3 1.2

1988 2.4 0.5 0.1 1.2 0.6 0.0

1989 1.7 0.7 0.0 0.4 0.1 0.5

1990 -1.1 0.8 0.1 -1.8 -1.7 1.5

1991 1.9 0.6 0.1 -0.7 -0.1 2.0

1992 1.2 0.4 0.1 0.9 -0.6 0.5

1993 2.6 0.5 0.1 0.2 0.4 1.3

1994 3.0 0.1 0.0 1.9 0.2 0.8

1995 2.4 0.1 0.1 1.3 -0.3 1.3

1996 3.2 -0.0 0.0 2.1 -0.1 1.2

Mean 2.1 0.3 0.1 0.7 0.2 0.8

s.d. 1.7 0.4 0.1 1.3 0.7 0.7

Note: (1) = (2) + (3) + (4) + (5) + (6) (numbers may not add up exactly due to rounding.)

Gross Output Production Functions estimated by Wooldridge (2005) modification of

Levinsohn and Petrin (2003) estimator.
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Table 5: Aggregate Productivity Growth Decomposition

Technical Efficiency and Reallocation. U.S. Manufacturing 1977–1999

(Value-Added Production Functions)

Percentage Growth Rates of ...

PL APG=TE+PL RE

(1) (2) (3) (4)

PL Aggregate Technical PL

Value Productivity Efficiency Reallocation

Year Added (PL APG) (TE) (PL RE)

1977 5.4 4.2 3.9 0.3

1978 5.0 3.7 2.8 0.9

1979 4.4 3.8 3.3 0.5

1980 -4.6 -3.4 -3.9 0.5

1981 2.5 2.7 1.7 1.0

1982 -6.0 -2.4 -2.1 -0.3

1983 5.8 5.9 5.6 0.3

1984 4.4 3.2 2.3 0.9

1985 3.4 3.3 1.8 1.5

1986 0.3 0.5 -0.9 1.4

1987 5.4 5.5 4.4 1.0

1988 4.5 4.0 2.9 1.0

1989 -0.2 -0.1 -1.0 0.9

1990 -2.1 -1.8 -3.0 1.2

1991 -1.1 -0.5 -1.7 1.2

1992 2.7 3.2 1.9 1.3

1993 1.6 1.7 0.6 1.1

1994 4.3 3.9 3.3 0.7

1995 5.2 4.8 3.1 1.7

1996 2.6 2.2 0.2 2.0

1997 8.4 6.6 5.0 1.6

1998 5.8 5.5 3.9 1.6

1999 4.7 4.5 3.4 1.1

Mean 2.7 2.7 1.6 1.0

s.d. 3.5 2.7 2.6 0.5

Value-added Production Functions estimated by Wooldrige (2005) modification of

Levinsohn and Petrin (2003) estimator.
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Table 6: Decomposition of Reallocation Term (equation 12):

U.S. Manufacturing, 1977–1999

(Value-Added Production Functions)

Percentage Growth Rates of . . .

(1) (2) (3) (4) (5)

Non-

PL Production Production

Value Reallocation worker worker Capital

Year Added (PL RE) “gap” term “gap” term “gap” term

1977 5.4 0.3 0.4 0.2 -0.3

1978 5.0 0.9 0.5 0.2 0.2

1979 4.4 0.5 0.1 0.1 0.3

1980 -4.6 0.5 -0.4 0.1 0.8

1981 2.5 1.0 0.1 0.0 0.9

1982 -6.0 -0.3 -1.0 0.0 0.7

1983 5.8 0.3 -0.3 0.0 0.7

1984 4.4 0.9 0.4 -0.1 0.6

1985 3.4 1.5 0.1 0.1 1.4

1986 0.3 1.4 0.1 0.1 1.2

1987 5.4 1.0 0.1 0.1 0.8

1988 4.5 1.0 0.3 0.0 0.7

1989 -0.2 0.9 0.1 0.1 0.7

1990 -2.1 1.2 -0.3 0.1 1.4

1991 -1.1 1.2 -0.2 0.2 1.2

1992 2.7 1.3 0.1 0.0 1.2

1993 1.6 1.1 -0.2 0.0 1.3

1994 4.3 0.7 0.0 -0.3 1.0

1995 5.2 1.7 0.0 0.1 1.5

1996 2.6 2.0 0.1 0.1 1.8

1997 8.4 1.6 0.2 0.0 1.4

1998 5.8 1.6 -0.2 0.0 1.9

1999 4.7 1.1 0.0 0.1 1.1

Mean 2.7 1.0 0.0 0.0 1.0

s.d. 3.5 0.5 0.3 0.1 0.5

Value-added Production functions estimated by Wooldridge (2005), modification of

Levinsohn and Petrin (2003) estimator.
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Table A1: Growth Rates of Real GDP

and Real Value-Added in Manufacturing, 1977-1999

% Growth in Manufacturing

Real Value-Added Value-Added Share

% Growth in In Manufacturing of GDP (levels,

Year Real GDP (from ASM) from NIPA)

1977 4.5 5.4 0.21

1978 5.0 5.0 0.22

1979 0.3 4.4 0.21

1980 4.1 -4.6 0.21

1981 1.7 2.5 0.20

1982 -2.0 -6.0 0.19

1983 5.3 5.8 0.18

1984 6.6 4.4 0.18

1985 3.6 3.4 0.18

1986 3.8 0.3 0.17

1987 2.5 5.4 0.17

1988 3.4 4.5 0.17

1989 2.5 -0.2 0.17

1990 0.4 -2.1 0.16

1991 -0.8 -1.1 0.16

1992 2.6 2.7 0.16

1993 2.0 1.6 0.16

1994 3.6 4.3 0.16

1995 1.7 5.2 0.16

1996 2.6 2.6 0.15

1997 3.9 8.4 0.15

1998 3.7 5.8 0.15

1999 3.7 4.7 0.15

Mean 2.5 2.7

std. dev. 2.4 3.5

Note: This table uses the value-added sample used in Tables 5-6.

Source: Bureau of Economic Analysis, Annual Survey of Manufacure and authors’ calculations.
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Table A2: Growth Rates of Value Added,

Primary Input Costs, and Aggregate Productivity

in U.S. Manufacturing, 1977–1999

Percentage Growth Rates of . . .

Aggregate

Value Production Non-production Capital Productivity

Year Added labor costs labor costs costs (PL APG)

1977 5.4 1.0 0.4 -0.2 4.2

1978 5.0 0.8 0.5 0.0 3.7

1979 4.4 0.0 0.4 0.1 3.8

1980 -4.6 -2.0 0.6 0.2 -3.4

1981 2.5 -0.5 0.0 0.3 2.7

1982 -6.0 -3.5 -0.4 0.3 -2.4

1983 5.8 0.0 -0.2 0.1 5.9

1984 4.4 1.0 0.2 0.0 3.2

1985 3.4 -0.5 0.3 0.2 3.3

1986 0.3 -0.6 0.1 0.3 0.5

1987 5.4 0.0 -0.2 0.2 5.5

1988 4.5 0.3 0.1 0.1 4.0

1989 -0.2 -0.2 0.0 0.1 -0.1

1990 -2.1 -0.6 0.0 0.3 -1.8

1991 -1.1 -0.8 -0.1 0.3 -0.5

1992 2.7 -0.1 -0.5 0.2 3.2

1993 1.6 0.0 -0.3 0.2 1.7

1994 4.3 0.3 -0.1 0.2 3.9

1995 5.2 0.1 0.0 0.3 4.8

1996 2.6 0.0 -0.1 0.5 2.2

1997 8.4 0.1 0.4 1.4 6.6

1998 5.8 -0.2 0.0 0.4 5.5

1999 4.7 -0.1 0.0 0.3 4.5

Mean 2.7 -0.2 0.1 0.3 2.7

s.d. 3.5 0.9 0.3 0.3 2.7

Note: This table uses the value-added sample used in tables 5-6.
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Table A3a: Aggregate Productivity Growth Decomposition

Technical Efficiency and Reallocation. U.S. Manufacturing 1977–1996

Percentage Growth Rates of ...

PL APG=TE+PL RE

(1) (2) (3) (4)

PL Aggregate Technical PL

Value Productivity Efficiency Reallocation

Year Added (PL APG) (TE) (PL RE)

1977 6.2 4.3 0.8 3.4

1978 5.5 3.6 0.4 3.1

1979 6.4 5.4 1.4 2.6

1980 -6.2 -5.1 -5.3 0.7

1981 2.7 2.8 -0.1 1.6

1982 -8.0 -4.5 -4.1 -0.8

1983 5.9 5.9 4.8 1.2

1984 8.6 6.8 3.3 3.9

1985 0.5 0.3 -2.4 2.2

1986 -0.3 -0.2 -2.4 1.8

1987 6.7 6.7 4.1 1.9

1988 5.1 4.4 2.4 2.3

1989 -0.7 -0.9 -2.1 1.4

1990 -3.1 -2.5 -2.4 0.7

1991 -2.5 -2.0 -2.0 1.1

1992 3.4 3.7 2.7 1.5

1993 1.9 1.9 1.3 1.5

1994 6.9 6.5 5.1 2.0

1995 4.7 4.2 2.1 2.5

1996 2.9 2.5 0.7 3.0

Mean 2.3 2.2 0.4 1.9

s.d. 4.6 3.7 3.0 1.1

Gross Output Production Functions estimated by Levinsohn and Petrin (2003) estimator.
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Table A3b: Aggregate Productivity Growth Decomposition

Technical Efficiency and Reallocation. U.S. Manufacturing 1977–1996

Percentage Growth Rates of ...

PL APG=TE+PL RE

(1) (2) (3) (4)

PL Aggregate Technical PL

Value Productivity Efficiency

Year Added (PL APG) (TE) (PL RE)

1977 6.2 4.3 0.6 3.7

1978 5.5 3.6 0.5 3.1

1979 6.4 5.4 2.0 3.4

1980 -6.2 -5.1 -3.9 -1.2

1981 2.7 2.8 -0.3 3.1

1982 -8.0 -4.5 -3.0 -1.5

1983 5.9 5.9 4.4 1.5

1984 8.6 6.8 2.4 4.4

1985 0.5 0.3 -2.0 2.3

1986 -0.3 -0.2 -2.3 2.0

1987 6.7 6.7 4.2 2.4

1988 5.1 4.4 1.9 2.5

1989 -0.7 -0.9 -1.7 0.8

1990 -3.1 -2.5 -1.4 -1.1

1991 -2.5 -2.0 -1.5 -0.5

1992 3.4 3.7 2.9 0.8

1993 1.9 1.9 1.3 0.6

1994 6.9 6.5 4.7 1.8

1995 4.7 4.2 2.4 1.8

1996 2.9 2.5 1.6 0.9

Mean 2.3 2.2 0.6 1.6

s.d. 4.6 3.7 2.6 1.7

Gross Output Production Functions estimated by OLS.
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Table A4a: Decomposition of Reallocation Term (equation 11):

U.S. Manufacturing, 1977–1996

Percentage Growth Rates of ...

(1) (2) (3) (4) (5)

Reallocation “Gap” terms

PL Non-

Reallocation Production Production Materials Capital

Year (PL RE) workers workers

1977 3.4 0.8 0.2 1.5 0.8

1978 3.1 0.7 0.2 1.0 1.2

1979 2.6 0.1 0.2 1.0 1.4

1980 0.7 -1.1 0.1 0.1 1.6

1981 1.6 0.1 -0.0 -0.1 1.5

1982 -0.8 -1.5 0.1 -0.7 1.4

1983 1.2 0.2 0.1 -0.1 1.0

1984 3.9 0.8 -0.0 2.3 0.8

1985 2.2 0.1 0.0 0.6 1.5

1986 1.8 -0.1 0.1 0.4 1.3

1987 1.9 0.1 0.2 0.6 1.0

1988 2.3 0.5 0.1 0.8 0.8

1989 1.4 0.2 0.1 0.4 0.7

1990 0.7 -0.6 0.0 -0.2 1.4

1991 1.1 -0.2 0.2 -0.4 1.5

1992 1.5 0.3 -0.0 0.4 0.8

1993 1.5 0.2 0.1 0.3 1.0

1994 2.0 0.3 0.0 0.8 0.8

1995 2.5 0.0 0.2 1.2 1.1

1996 3.0 0.2 0.0 1.7 1.0

Mean 1.9 0.1 0.1 0.6 1.1

s.d. 1.1 0.6 0.1 0.7 0.3

Note: (1) = (2) + (3) + (4) + (5) (numbers may not add up exactly due to rounding.)

Gross Output Production Functions estimated by Levinsohn and Petrin (2003) estimator.
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Table A4b: Decomposition of Reallocation Term (equation 11):

U.S. Manufacturing, 1977–1996

Percentage Growth Rates of ...

(1) (2) (3) (4) (5) (6)

Reallocation “Gap” terms

PL Non-

Reallocation Production Production Materials Energy Capital

Year (PL RE) workers workers

1977 3.5 0.9 0.3 1.5 0.2 0.2

1978 2.9 0.7 0.2 1.0 0.1 0.8

1979 2.1 0.0 0.3 0.9 0.0 0.8

1980 -0.2 -1.1 0.1 0.1 -0.2 0.9

1981 1.7 0.1 -0.0 -0.1 0.7 0.9

1982 -1.3 -1.5 0.0 -0.8 0.2 0.7

1983 1.4 0.2 0.1 -0.1 0.7 0.5

1984 4.4 0.9 -0.0 2.3 0.7 0.5

1985 2.0 0.1 0.0 0.6 0.4 0.8

1986 1.9 -0.1 0.1 0.5 0.6 0.7

1987 1.7 0.1 0.2 0.6 0.3 0.6

1988 2.5 0.6 0.1 0.8 0.6 0.4

1989 1.1 0.2 0.1 0.5 -0.1 0.4

1990 -0.1 -0.6 0.1 -0.1 -0.4 0.9

1991 0.7 -0.2 0.2 -0.4 0.0 1.2

1992 1.3 0.3 -0.0 0.4 0.1 0.5

1993 1.4 0.2 0.1 0.3 0.3 0.6

1994 2.2 0.4 -0.1 0.8 0.6 0.5

1995 2.2 0.0 0.2 1.2 0.2 0.6

1996 2.2 0.2 -0.0 1.7 -0.3 0.5

Mean 1.7 0.1 0.1 0.6 0.2 0.7

s.d. 1.3 0.6 0.1 0.8 0.3 0.2

Note: (1) = (2) + (3) + (4) + (5) + (6) (numbers may not add up exactly due to rounding.)

Gross Output Production Functions estimated by OLS
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Table A5a: Aggregate Productivity Growth Decomposition

Technical Efficiency and Reallocation. U.S. Manufacturing 1977–1999

Percentage Growth Rates of ...

PL APG=TE+PL RE

(1) (2) (3) (4)

PL Aggregate Technical PL

Value Productivity Efficiency Reallocation

Year Added (PL APG) (TE) (PL RE)

1977 5.4 4.2 3.8 0.4

1978 5.0 3.7 2.8 0.9

1979 4.4 3.8 3.2 0.6

1980 -4.6 -3.4 -3.8 0.4

1981 2.5 2.7 1.8 0.9

1982 -6.0 -2.4 -1.9 -0.4

1983 5.8 5.9 5.6 0.3

1984 4.4 3.2 2.3 0.9

1985 3.4 3.3 1.9 1.4

1986 0.3 0.5 -0.9 1.3

1987 5.4 5.5 4.5 1.0

1988 4.5 4.0 3.0 1.0

1989 -0.2 -0.1 -0.9 0.8

1990 -2.1 -1.8 -2.9 1.1

1991 -1.1 -0.5 -1.6 1.1

1992 2.7 3.2 1.8 1.3

1993 1.6 1.7 0.7 0.9

1994 4.3 3.9 3.2 0.7

1995 5.2 4.8 3.0 1.8

1996 2.6 2.2 0.2 2.0

1997 8.4 6.6 4.8 1.8

1998 5.8 5.5 4.0 1.5

1999 4.7 4.5 3.4 1.1

Mean 2.7 2.7 1.7 1.0

s.d. 3.5 2.7 2.6 0.6

Value-added Production Functions estimated by Levinsohn and Petrin (2003) estimator.
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Table A5b: Aggregate Productivity Growth Decomposition:

Technical Efficiency and Reallocation. U.S. Manufacturing, 1977–1999

Percentage Growth Rates of ...

PL APG=TE+PL RE

(1) (2) (3) (4)

PL Aggregate Technical PL

Value Productivity Efficiency Reallocation

Year Added (PL APG) (TE) (PL RE)

1977 5.4 4.2 2.6 1.6

1978 5.0 3.7 1.9 1.8

1979 4.4 3.8 3.0 0.8

1980 -4.6 -3.4 -2.8 -0.6

1981 2.5 2.7 2.0 0.7

1982 -6.0 -2.4 0.1 -2.5

1983 5.8 5.9 5.7 0.1

1984 4.4 3.2 1.7 1.6

1985 3.4 3.3 2.0 1.3

1986 0.3 0.5 -0.4 0.9

1987 5.4 5.5 4.7 0.8

1988 4.5 4.0 2.7 1.3

1989 -0.2 -0.1 -0.8 0.6

1990 -2.1 -1.8 -2.2 0.4

1991 -1.1 -0.5 -0.8 0.3

1992 2.7 3.2 2.3 0.9

1993 1.6 1.7 1.0 0.7

1994 4.3 3.9 3.1 0.8

1995 5.2 4.8 2.7 2.1

1996 2.6 2.2 0.3 1.9

1997 8.4 6.6 4.9 1.7

1998 5.8 5.5 4.5 1.0

1999 4.7 4.5 3.7 0.9

Mean 2.7 2.7 1.8 0.8

s.d. 3.5 2.7 2.2 1.0

Value-added Production Functions estimated by OLS.
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Table A6a: Decomposition of Reallocation Term (equation 12):

U.S. Manufacturing, 1977–1999

Percentage Growth Rates of . . .

(1) (2) (3) (4) (5)

Non-

PL Production Production

Value Reallocation worker worker Capital

Year Added (PL RE) “gap” term “gap” term “gap” term

1977 5.4 0.4 1.2 0.4 -0.1

1978 5.0 0.9 1.0 0.5 0.2

1979 4.4 0.6 0.1 0.5 0.3

1980 -4.6 0.4 -1.8 0.4 0.8

1981 2.5 0.9 -0.2 0.1 0.8

1982 -6.0 -0.4 -3.0 -0.1 0.6

1983 5.8 0.3 -0.3 -0.2 0.6

1984 4.4 0.9 1.0 0.1 0.5

1985 3.4 1.4 -0.2 0.3 1.2

1986 0.3 1.3 -0.4 0.1 1.2

1987 5.4 1.0 0.1 -0.1 0.8

1988 4.5 1.0 0.6 0.1 0.6

1989 -0.2 0.8 0.0 0.0 0.6

1990 -2.1 1.1 -1.0 0.1 1.3

1991 -1.1 1.1 -0.9 0.1 1.1

1992 2.7 1.3 0.0 -0.4 1.2

1993 1.6 0.9 -0.3 -0.2 1.2

1994 4.3 0.7 0.3 -0.3 0.9

1995 5.2 1.8 0.2 0.5 1.4

1996 2.6 2.0 0.1 0.2 1.6

1997 8.4 1.8 0.3 0.4 1.0

1998 5.8 1.5 -0.7 0.1 1.6

1999 4.7 1.1 -0.1 0.0 1.0

mean 2.7 1.0 0.0 0.0 1.0

s.d. 3.5 0.6 0.4 0.1 0.5

Value-added Production functions estimated by the Levinsohn and Petrin (2003) estimator
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Table A6b: Decomposition of Reallocation Term (equation 12):

U.S. Manufacturing, 1977–1999

Percentage Growth Rates of . . .

(1) (2) (3) (4) (5)

Non-

PL Production Production

Value Reallocation worker worker Capital

Year Added (PL RE) “gap” term “gap” term “gap” term

1977 5.4 1.2 0.4 -0.1 0.1

1978 5.0 1.8 1.0 0.5 0.2

1979 4.4 0.8 0.1 0.5 0.3

1980 -4.6 -0.6 -1.8 0.4 0.8

1981 2.5 0.7 -0.2 0.1 0.8

1982 -6.0 -2.5 -3.0 -0.1 0.6

1983 5.8 0.1 -0.3 -0.2 0.6

1984 4.4 1.6 1.0 0.1 0.5

1985 3.4 1.3 -0.2 0.3 1.2

1986 0.3 0.9 -0.4 0.1 1.2

1987 5.4 0.8 0.1 -0.1 0.8

1988 4.5 1.3 0.6 0.1 0.6

1989 -0.2 0.6 0.0 0.0 0.6

1990 -2.1 0.4 -1.0 0.1 1.3

1991 -1.1 0.3 -0.9 0.1 1.1

1992 2.7 0.9 0.0 -0.4 1.2

1993 1.6 0.7 -0.3 -0.2 1.2

1994 4.3 0.8 0.3 -0.3 0.9

1995 5.2 2.1 0.2 0.5 1.4

1996 2.6 1.9 0.1 0.2 1.6

1997 8.4 1.7 0.3 0.4 1.0

1998 5.8 1.0 -0.7 0.1 1.6

1999 4.7 0.9 -0.1 0.0 1.0

mean 2.7 0.8 -0.2 0.1 0.9

s.d. 3.5 1.0 0.9 0.3 0.4

Value-added Production functions estimated by OLS
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Table A7: Percentage Growth Rates of

Real Value-Added in U.S. Manufacturing, 1977-1996

(1) (2) (3) (4) (5)

All Continuers Continuers + Entire Continuers

ASM in estimation “false” entrants estimation in estimation

plants, sample, & exits in sample, sample,

Aggregates Aggregates estimation sample, Aggregates Tornqvist

Year Aggregates index

1977 6.1 4.9 5.4 6.9 6.2

1978 4.7 4.8 4.1 4.4 5.5

1979 3.3 8.7 4.5 4.1 6.4

1980 -6.0 -5.8 -10.4 -10.5 -6.2

1981 0.8 0.3 3.9 3.8 2.7

1982 -7.2 -8.0 -7.4 -7.4 -8.0

1983 3.1 5.0 3.8 3.2 5.9

1984 11.0 5.1 11.3 11.3 8.6

1985 -0.3 0.6 0.0 -0.3 0.5

1986 -0.3 -0.4 -0.1 -0.6 -0.3

1987 7.0 6.2 7.5 7.1 6.7

1988 4.0 4.7 3.2 3.5 5.1

1989 4.5 0.2 3.2 4.0 -0.7

1990 -1.5 -1.7 -2.1 -1.8 -3.1

1991 -3.9 -2.4 -3.3 -3.5 -2.5

1992 9.9 4.2 10.6 10.4 3.4

1993 -1.4 -1.4 -2.1 -2.1 1.9

1994 11.7 11.0 12.0 11.5 6.9

1995 12.0 11.6 10.5 12.1 4.7

1996 12.5 13.4 12.2 12.1 2.9

Mean 3.5 3.0 3.3 3.4 2.3

std. dev. 6.0 5.7 6.4 6.5 4.6

Source: Annual Survey of Manufactures
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Table A8: Fixed Costs Term and Discrete-time

Approximation Error, 1977-1996

(1) (2) (3)

“Fixed Costs” term Approximation error Difference

(see equation 16) (RHS of equation 46 ) (1) - (2)

Year % growth rate

1977 -0.27 -0.24 -0.03

1978 -0.23 -0.18 -0.05

1979 -1.29 -1.30 0.00

1980 0.93 0.94 -0.01

1981 -1.45 -1.48 0.03

1982 0.22 0.11 0.10

1983 -0.11 -0.11 0.00

1984 -0.08 -0.05 -0.02

1985 -0.36 -0.37 0.01

1986 -0.18 -0.14 -0.03

1987 -0.67 -0.65 -0.02

1988 -0.01 0.01 -0.02

1989 0.24 0.23 0.01

1990 0.93 0.60 0.32

1991 1.22 0.51 0.71

1992 0.50 0.50 0.00

1993 0.74 0.77 -0.03

1994 0.40 0.40 0.00

1995 0.41 0.44 -0.03

1996 1.28 1.28 0.00

Mean 0.11 0.06 0.05

std. dev. 0.74 0.68 0.17

Source: Annual Survey of Manufactures

Gross Output Production Functions estimated by Wooldridge (2005) modification of

Levinsohn and Petrin (2003) estimator.
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Table A9: Aggregate Productivity Growth and Technical Efficiency Growth

Production Workers vs. Production Worker Hours, 1977-1996

Percentage Growth Rates of ...

(1) (2) (3) (4) (5) (6)

PL Aggregate PL Aggregate Technical Technical

Productivity, Productivity, Difference Efficiency, Efficiency, Difference

using number using (1) - (2) using number using (4)-(5)

of production production production production

Year workers worker hours workers worker hours

1977 4.5 4.3 0.2 1.2 0.8 0.4

1978 3.6 3.6 0.0 0.4 0.4 0.0

1979 5.1 5.4 -0.2 1.0 1.4 -0.4

1980 -5.5 -5.1 -0.4 -6.1 -5.3 -0.8

1981 2.9 2.8 0.1 0.2 0.1 0.1

1982 -5.2 -4.5 -0.7 -5.2 -4.1 -1.1

1983 6.5 5.9 0.5 5.7 4.8 0.9

1984 7.2 6.8 0.4 3.9 3.3 0.6

1985 0.3 0.3 -0.1 -2.5 -2.4 -0.1

1986 -0.1 -0.3 0.2 -2.2 -2.4 0.1

1987 6.8 6.7 0.1 4.3 4.1 0.2

1988 4.5 4.4 0.1 2.6 2.4 0.2

1989 -0.9 -0.9 0.0 -2.2 -2.1 -0.1

1990 -2.6 -2.5 -0.1 -2.6 -2.4 -0.2

1991 -2.0 -2.0 0.0 -2.1 -2.0 -0.1

1992 3.8 3.7 0.1 2.9 2.7 0.2

1993 2.1 1.9 0.2 1.5 1.3 0.2

1994 6.7 6.5 0.2 5.5 5.1 0.4

1995 4.0 4.2 -0.2 1.8 2.1 -0.3

1996 2.6 2.5 0.1 1.0 0.7 0.2

Mean 2.2 2.2 0.0 0.4 0.4 0.0

std. dev. 3.9 3.7 0.3 3.3 3.0 0.5

Gross Output Production Functions estimated by Levinsohn and Petrin (2003) estimator.
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Table A10a: Aggregate Productivity Growth Decomposition

Baily, Hulten, & Campbell vs. Petrin-Levinsohn. U.S. Manufacturing 1977–1996

Percentage Growth Rates of ...

PL APG=TE+PL RE BHC=TE+BHC RE

(1) (2) (3) (4) (5) (6)

PL Aggregate Technical PL BHC Productivity BHC

Value Productivity Efficiency Reallocation Index Reallocation

Year Added (PL APG) (TE) (PL RE) (BHC) (BHC RE)

1977 6.2 4.3 0.8 3.5 1.4 0.5

1978 5.5 3.6 0.3 3.2 1.3 0.9

1979 6.4 5.4 1.3 4.0 3.4 2.0

1980 -6.2 -5.1 -5.3 0.2 3.1 8.5

1981 2.7 2.8 -0.1 2.7 3.4 3.3

1982 -8.0 -4.5 -4.1 -0.4 -21.0 -16.6

1983 5.9 5.9 4.8 1.1 -2.6 -7.4

1984 8.6 6.8 3.3 3.6 -0.2 -3.4

1985 0.5 0.3 -2.4 2.8 -9.1 -6.7

1986 -0.3 -0.2 -2.4 2.1 -20.3 -18.0

1987 6.7 6.7 4.1 2.6 0.5 -3.6

1988 5.1 4.4 2.4 2.1 5.8 3.4

1989 -0.7 -0.9 -2.1 1.2 2.3 4.3

1990 -3.1 -2.5 -2.4 -0.0 0.9 3.4

1991 -2.5 -2.0 -2.0 0.0 -9.9 -7.9

1992 3.4 3.7 2.7 1.0 -7.0 -9.7

1993 1.9 1.9 1.3 0.6 6.8 5.5

1994 6.9 6.5 5.1 1.4 1.8 -3.2

1995 4.7 4.2 2.1 2.1 6.5 4.6

1996 2.9 2.5 0.7 1.7 6.0 5.3

Mean 2.3 2.2 0.4 1.8 -1.3 -1.7

s.d. 4.6 3.7 3.0 1.3 8.1 7.4

Gross Output Production Functions estimated by Levinsohn and Petrin (2003) estimator.

Correlations of Annual Growth Rates

PL APG TE

TE 0.95

BHC Index 0.43 0.41
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Table A10b: Aggregate Productivity Growth Decomposition

Baily, Hulten, & Campbell vs. Petrin-Levinsohn. U.S. Manufacturing 1977–1996

Percentage Growth Rates of ...

PL APG=TE+PL RE BHC=TE+BHC RE

(1) (2) (3) (4) (5) (6)

PL Aggregate Technical PL BHC Productivity BHC

Value Productivity Efficiency Reallocation Index Reallocation

Year Added (PL APG) (TE) (PL RE) (BHC) (BHC RE)

1977 6.2 4.3 0.6 3.7 2.7 2.1

1978 5.5 3.6 0.5 3.1 2.4 1.9

1979 6.4 5.4 2.0 3.4 4.4 2.4

1980 -6.2 -5.1 -3.9 -1.2 3.8 7.8

1981 2.7 2.8 -0.3 3.1 1.3 1.6

1982 -8.0 -4.5 -3.0 -1.5 -14.3 -11.3

1983 5.9 5.9 4.4 1.5 -1.5 -5.9

1984 8.6 6.8 2.4 4.4 1.2 -1.2

1985 0.5 0.3 -2.0 2.3 -4.7 -2.8

1986 -0.3 -0.2 -2.3 2.0 -15.3 -13.0

1987 6.7 6.7 4.2 2.4 0.1 -4.2

1988 5.1 4.4 1.9 2.5 4.0 2.1

1989 -0.7 -0.9 -1.7 0.8 1.4 3.1

1990 -3.1 -2.5 -1.4 -1.1 0.5 2.0

1991 -2.5 -2.0 -1.5 -0.5 -6.3 -4.9

1992 3.4 3.7 2.9 0.8 -4.0 -7.0

1993 1.9 1.9 1.3 0.6 6.6 5.4

1994 6.9 6.5 4.7 1.8 2.3 -2.4

1995 4.7 4.2 2.4 1.8 6.1 3.7

1996 2.9 2.5 1.6 0.9 8.7 7.2

Mean 2.3 2.2 0.6 1.6 -0.0 -0.7

s.d. 4.6 3.7 2.6 1.7 6.3 5.7

Gross Output Production Functions estimated by OLS.

Correlations of Annual Growth Rates

PL APG TE

TE 0.92

BHC Index 0.42 0.43
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Table A10c: Aggregate Productivity Growth Decomposition

Baily, Hulten, & Campbell vs. Petrin-Levinsohn. U.S. Manufacturing 1977–1996

Percentage Growth Rates of ...

PL APG=TE+PL RE BHC=TE+BHC RE

(1) (2) (3) (4) (5) (6)

PL Aggregate Technical PL BHC Productivity BHC

Value Productivity Efficiency Reallocation Index Reallocation

Year Added (PL APG) (TE) (PL RE) (BHC) (BHC RE)

1977 6.2 4.3 -0.5 4.8 -3.5 -3.0

1978 5.5 3.6 1.0 2.6 1.4 0.4

1979 6.4 5.4 3.1 2.3 4.4 1.3

1980 -6.2 -5.1 -3.9 -1.2 10.0 14.0

1981 2.7 2.8 -0.1 2.9 1.4 1.4

1982 -8.0 -4.5 -2.9 -1.6 -0.4 2.5

1983 5.9 5.9 4.2 1.8 -5.1 -9.3

1984 8.6 6.8 1.9 4.9 -3.9 -5.8

1985 0.5 0.3 -3.5 3.8 -3.1 0.4

1986 -0.3 -0.2 -4.3 4.0 -13.7 -9.4

1987 6.7 6.7 3.1 3.6 6.2 3.1

1988 5.1 4.4 2.1 2.4 11.5 9.5

1989 -0.7 -0.9 -2.3 1.4 3.3 5.6

1990 -3.1 -2.5 -0.4 -2.1 -9.1 -8.7

1991 -2.5 -2.0 -2.7 -0.7 -1.0 1.7

1992 3.4 3.7 3.0 0.7 5.5 2.5

1993 1.9 1.9 0.1 1.8 -20.3 -20.4

1994 6.9 6.5 3.9 2.6 2.3 -1.6

1995 4.7 4.2 2.2 2.0 10.2 8.0

1996 2.9 2.5 0.6 1.9 5.4 4.9

Mean 2.3 2.2 0.2 2.0 0.1 -0.1

s.d. 4.6 3.7 2.7 1.9 8.0 7.8

Gross Output Production Functions estimated by Wooldridge (2005) modification of

Levinsohn and Petrin (2003) estimator.

Correlations of Annual Growth Rates

PL APG TE

TE 0.86

BHC Index 0.14 0.27
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