
Abnormal Pain Modulation in Patients with Spatially Distributed
Chronic Pain: Fibromyalgia

Roland Staud, M.D.
Department of Medicine, University of Florida, Gainesville, Florida 32610

Abstract
Many chronic pain syndromes including fibromyalgia, irritable bowel syndrome, chronic fatigue
syndrome, migraine headache, chronic back pain, and complex regional pain syndrome are associated
with hypersensitivity to painful stimuli and with reduced endogenous pain inhibition. These findings
suggest that modulation of pain-related information may be related to the onset and/or maintenance
of chronic pain. Although pain sensitivity and pain inhibition are normally distributed in the general
population, they are not useful as reliable predictors of future pain. The combination of heightened
pain sensitivity and reduced pain-inhibition, however, appears to predispose individuals to greater
risk for increased acute clinical pain (e.g., postoperative pain). It is unknown at this time whether
such pain processing abnormalities may also place individuals at increased risk for chronic pain.
Psychophysical methods, including heat sensory and pressure pain testing have become increasingly
available and can be used for the evaluation of pain sensitivity and pain inhibition. However, long-
term prospective studies in the general population are lacking which could yield insight into the role
of heightened pain sensitivity and pain disinhibition for the development of chronic pain disorders
like fibromyalgia.

Keywords
Modulation; Fibromyalgia; Chronic pain; DNIC; Analgesia

Introduction
Population surveys estimate the prevalence of chronic pain in the United States at more than
45% of the general population [25] with minimal recovery rates over 4-year follow-up periods
[24]. Furthermore, the total cost of chronic pain is estimated at more than 100 billion dollars
annually [88]. Rheumatologists are frequently involved in the treatment of chronic pain
syndromes, including various neuropathic and musculoskeletal pain syndromes such as
complex regional pain syndrome (CRPS), postherpetic neuralgia (PHN), headache, facial pain,
back pain, chronic fatigue syndrome, and fibromyalgia (FM), as well as the painful aspects of
conditions such as rheumatoid arthritis and osteoarthritis.

Although many chronic pain syndromes are defined by their anatomic location, they often share
similar pathophysiological mechanisms [52,96]. Many patients with chronic pain syndromes
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(e.g., FM, chronic headache, low back pain, temporomandibular disorder [TMD]), report
insidious onsets and their physical findings are often poor predictors of their symptoms,
specifically pain. Similarly, easily apparent tissue damage (e.g., in patients with osteoarthritis,
PHN, chronic postsurgical pain) often bears only a modest relationship to reported symptoms,
including pain. Thus inter-individual differences in pain sensitivity seem to play an important
role for clinical pain which is best illustrated by many patients with PHN, post-surgical pain,
or severe osteoarthritis, who present with similar extents of tissue damage but may have either
no pain at all or severe disabling pain. Such discrepancies in pain sensitivity suggest profound
differences in pain processing of noxious stimulation.

Continuing nociceptive input can have many biological, psychological, and functional
consequences, ranging from receptor modification and central sensitization to depressed affect,
inappropriate cognition, and social disruption. Thus persistent pain states may represent a
disease entity in its own right [74]. Like any disease, the extent of experienced symptoms is
greatly influenced by internal and external factors, in particular the environment, i.e. genetic,
psychological and social factors strongly contribute to the perception and severity of persistent
pain. Therefore persistent pain states cannot solely be defined by their associated tissue
damage, but are influenced by many other relevant contributors. Several characteristic features
of many chronic pain patients are of special importance: First, there is substantial overlap
amongst many pain conditions [2], suggesting common pathophysiological mechanisms;
second, many chronic pain syndromes are characterized by hyperalgesia and abnormal
endogenous pain-inhibition [64]. These pain conditions are often associated with secondary
hyperalgesia at sites distant from the affected area, suggesting sensitization of the central
nervous system (CNS) (e.g., diabetic neuropathy, PHN) [76].

Individual differences in endogenous pain modulation may place people at increased or reduced
risk for the development of chronic pain (e.g., FM pain, headache, visceral pain); specifically
individuals who are highly pain-sensitive and who show the lowest degree of endogenous pain
inhibition, may be at greater risk for the onset and persistence of chronic pain.

Inter-individual differences of pain in animals and humans
Individual differences in the perception and modulation of pain have been reported in animals
[54] and humans [50,59]. Most commonly pain sensitivity is evaluated by psychophysical
testing, including mechanical, thermal, and electrical threshold and suprathreshold stimuli
[23]. Subjects usually rate the pain intensity of the stimulus using a validated pain rating scale,
like the visual analogue scale (VAS) [66] or the numerical pain scale [66]. Endogenous pain
modulation can be assessed with phasic or tonic heat stimuli, spatial summation [84], or by
simultaneous administering two noxious stimuli [counter-irritation or diffuse noxious
inhibitory controls (DNIC)] and measuring the resultant pain inhibition (“pain inhibits pain”)
[21,82]. Importantly, high pain sensitivity and low endogenous pain inhibition have been
observed in many patients with chronic pain syndromes like FM [48]. Whereas pain thresholds
and endogenous analgesia show only minor correlations [22], the combination of high pain
sensitivity with low endogenous pain inhibition seem to confer cumulative risk. Overall,
individual differences in endogenous pain inhibition are better predictors of future chronic pain
than increased pain sensitivity [36].

What are the mechanisms for individual differences of pain sensitivity?
The measures described above are important indexes of central nervous system (CNS) pain
processing. As pain is actively modulated by the nervous system at multiple levels of the pain
pathways, testing individual differences in the endogenous modulation of pain is crucial for
understanding the variability of pain responses [17]. Well defined psychophysical methods,
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including heat and pressure stimuli have been increasingly used to characterize inter-individual
differences in pain sensitivity [59].

Individual differences in pain responses are normally distributed in the general population
[34,97] and reflect a combination of genetic and environmental factors related to CNS pain
processing. Human twin studies found heritability estimates for pain sensitivity ranging from
22% to 55% for a number of different pain stimuli [60]. Of specific interest were genetic effects
on pain sensitivity that explained 60% of the variance in cold-pressor pain and 26% of the
variance in contact-heat pain. Importantly, there were distinct genetic and environmental
factors influencing these two pain modalities. Only 6% of the variance in cold-pressor pain
and 3% of the variance in heat pain was attributable to genetic factors that were common to
both pain modalities. Similarly, only 5% of the variance in cold-pressor pain and 8% of the
variance in heat pain was attributable by environmental factors that were common to both pain
modalities.

Furthermore, genetic studies in human subjects show that single-nucleotide polymorphisms
(SNP) of several pain related genes significantly contribute to basal pain sensitivity, including
polymorphisms of the mu and delta-opioid receptor genes [30,44], the catechol-O-
methyltransferase (COMT) gene [15], as well as the GTP cyclohydrolase-1 gene [87]. These
findings are supported by rodent studies [56] which also emphasized the important effects of
pain genes on sensitivity to noxious stimuli [56] and on analgesia [55]. Environmental
influences can strongly influence pain sensitivity in animals as well as in humans [51]. In
particular, exposure to strong and prolonged pain [86] seems to alter individuals subsequent
pain sensitivity and increases their risk for more severe acute [31] and chronic pain [1,32,45,
69].

In addition to genetic and environmental factors, pain sensitivity is influenced by cognitive
factors such as catastrophizing. Specifically, high levels of catastrophizing seem to be
associated with lower pain thresholds [85] and enhanced pain related brain activation [33].
Therefore, individual differences in pain responsiveness may not only reflect the influence of
genetic and environmental factors, but also may impact an individual's risk for developing a
variety of persistent pain conditions, including FM.

Acute pain intensity as predictor of chronic pain
Several studies provide evidence that high pre-operative pain sensitivity can be used to predict
post-operative pain, in particular pain related to cesarean section [36], hysterectomy [8], limb
amputation [61], and cholecystectomy [7]. Experimental pain responses prior to surgery
significantly predicted the magnitude of postoperative pain for several weeks after surgery.
Specifically, patients who were highly sensitive to noxious heat or cold stimuli reported more
severe pain following cesarean section [36]. These patients' preoperative ratings of noxious
heat stimuli predicted more than 50% of the variance in their postoperative pain. This study
also showed that suprathreshold heat stimuli seem to have clinical relevance as predictors of
post-surgical pain [23]. Severe acute pain has been consistently demonstrated as a risk factor
for the development of chronic pain after injury. For example, more than 50% of patients after
spinal cord injury (SCI) or herpes zoster infection will develop chronic pain syndromes [63,
68]. High pain ratings following surgery, like mastectomy, cholecystectomy, amputations,
thoracotomy, herniorraphy, prostatectomy, and total knee arthroplasty also seem to increase
the risk for developing persistent pain syndromes [37,63,77,93]. Some of the possible
mechanisms contributing to future chronic pain may involve sensitization of the CNS [63] and
inadequate pain modulation. Specifically, high pain sensitivity seems to predispose individuals
to higher levels of acute pain after tissue traumas, resulting in sensitization of the CNS and
subsequent chronic pain.
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Several studies of healthy adults who were free of chronic pain demonstrated a significant
relationship between increased pain sensitivity and frequent pain complaints like headaches,
backaches, muscle aches, etc. and impaired functional status [19] [20] [28]. These highly
sensitive individuals not only rated noxious thermal stimuli as more painful [19], but also
showed the lowest levels of pain tolerance [28], the greatest temporal summation of pain
(central sensitization)
[20],http://www.neurology.org/cgi/content/full/65/3/437?cookietest=yes - R27-20 and the
lowest levels of endogenous pain inhibition [22]. Similarly, high sensitivity to experimental
pain also predicted more clinical pain and lower levels of physical functioning in chronic pain
patients [11,18].

Variability of analgesic responses
In animals and humans, the effect of genetic factors on pain sensitivity and analgesia seems to
be moderate [46,47,54,59]. However, there appears to be a strong relationship between high
pain sensitivity and low analgesic responsiveness to opioid analgesics in animals [26,56,57]
and humans, particularly in men [29]. These findings suggest concordance between high pain
sensitivity and reduced analgesic responsiveness both of which may predispose individuals to
chronic pain while making them insensitive to opioids therapy.

Predictor for new-onset chronic musculoskeletal pain
Most research of risk factors for new-onset chronic musculoskeletal pain has been done in
patients with low back pain (LBP) [38] or knee pain [42]. Mechanical factors, including lifting
and pulling heavy weights seem to be important predictors of new-onset LBP and knee pain.
Psychosocial and physical environment factors also appear to significantly predict future pain
in both conditions, including monotonous work and poor working conditions. However, work-
related psychosocial and environmental factors seem to be most relevant in predicting new
symptom onset.

Few studies have addressed the interaction of genetic and/or environmental factors with future
FM pain [3,53]. One case-controlled study of previously healthy individuals found that 22%
of patients with neck injury, and 2% of patients with leg injury, developed FM one year after
a motor vehicle accident [9], suggesting that neck trauma increases the risk for FM more than
10-fold in predisposed patients. Using individual differences in pain sensitivity as a predictor
of new-onset TMD a recent prospective study followed a large number of pain-free female
participants over three years [15], detecting new-onset TMD in 7.43 % of study participants
who were not only highly pain sensitive at study entry but also shared mutations of the COMT
gene (high or average pain sensitivity haplotypes). Because of considerable overlap between
TMD and FM, the results of this study suggest that similar genetic mutations may also
contribute to the risk of predisposed individuals for future FM. Thus, multiple lines of evidence
indicate that increased pain sensitivity may increase individuals' risk for the development of
future chronic pain, including FM.

Abnormal pain modulation of FM patients
Several studies have provided psychophysical evidence that pain processing is abnormal in
FM patients [67,78-80,83,89], showing that perceived pain from experimental stimuli
(mechanical, heat, cold, or electricity) was greater for FM patients compared to normal controls
(NC), as was the amount of temporal summation of pain or wind-up (WU) within a series of
heat stimuli (Figure 1). WU was used as a non-invasive method of assessing C-fiber dependent
central sensitization in human subjects. Following multiple stimuli, WU after-sensations were
greater in magnitude, lasted longer and were more frequently painful in FM subjects. These
results indicate both augmentation and prolonged decay of nociceptive input in FM patients
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and provide convincing evidence for central sensitization in this syndrome. Several points
related to central sensitization appear relevant for understanding FM pain. A) When central
sensitization has occurred in chronic pain patients, including FM patients, little additional
nociceptive input is required to maintain the sensitized state. Thus, seemingly innocuous daily
activities may contribute to the maintenance of the chronic pain state. B) The decay of painful
sensations is very prolonged in FM and therefore patients may not experience robust changes
of their pain levels during brief therapeutic interventions. Many frequently used analgesic
medications do not improve central sensitization, and some medications, including opioids
have been shown to maintain or even worsen this CNS phenomenon [10,16]. However, there
is evidence that the anti-epileptic pregabalin which was recently approved for the treatment of
FM, can reduce central sensitization [41].

WU Measures as Predictors of FM Pain Intensity
The important role of central pain mechanisms for clinical pain is also supported by their
usefulness as predictors of clinical pain intensity of FM patients. Heat WU ratings correlate
well with clinical pain intensity (Peason's r = 0.53), thus emphasizing the important role of this
pain mechanism for FM. In addition, hierarchical regression models that include tender point
count, pain related negative affect, and WU ratings have been shown to account for 50% of
the variance in FM clinical pain intensity [81].

Mechanisms Underlying Abnormal Pain Sensitivity in FM
The mechanisms underlying central sensitization that occurs in patients with FM relies on
hyperexcitability of spinal dorsal horn neurons that transmit nociceptive input to the brain. As
a consequence, low intensity stimuli delivered to the skin or deep muscle tissue generate high
levels of nociceptive input to the brain as well as the perception of pain. Specifically, intense
or prolonged impulse input from A-δ and C afferents sufficiently depolarizes the dorsal horn
neurons and results in the removal of the Mg2+ block of NMDA-gated ion channels. This is
followed by the influx of extracellular Ca2+ and production of nitric oxide which diffuses out
of the dorsal horn neurons [12]. Nitric oxide, in turn, promotes the exaggerated release of
excitatory amino acids and substance P from presynaptic afferent terminals and causes the
dorsal horn neurons to become hyperexcitable [58]. Subsequently, low intensity stimuli evoked
by minor physical activity may be amplified in the spinal cord resulting in painful sensations
[35].

Role of Glia in Central Sensitization
Accumulating evidence suggests that dorsal horn glia cells might have an important role in
producing and maintaining abnormal pain sensitivity [92,94]. Synapses within the CNS are
encapsulated by glia that do not normally respond to nociceptive input from local sites.
Following the initiation of central sensitization, however, spinal glia cells are activated by a
wide array of factors that contribute to hyperalgesia, such as immune activation within the
spinal cord, substance P, excitatory amino acids, nitric oxide, and prostaglandins. Precipitating
events known to induce glial activation include viral infections, including HIV, Hepatitis C,
and influenza [40]. Once activated, glia cells release proinflammatory cytokines, including
tumor necrosis factor, IL-6 and IL-1, substance P, nitric oxide, prostaglandins, excitatory amino
acids, ATP, and fractalkine [95] that, in turn, further increase the discharge of excitatory amino
acids and substance P from the A-δ and C afferents that synapse in the dorsal horn and also
enhance the hyper-excitability of the dorsal horn neurons [91,92]. Recent evidence also points
towards a possible role of NMDA receptors in glial activation and pain [72]
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Possible Causes of Central Sensitization in FM
As a normal response to tissue trauma, injury is followed by repair and healing. Inflammation
occurs, which results in a cascade of electrophysiological and chemical events that resolve over
time and the patient becomes pain free. In persistent pain, however, the local, spinal, and even
supraspinal responses are considerably different from those that occur during acute pain. While
defining the relationship between tissue events and pain is necessary for understanding the
clinical context of these pathologies, defining the relationship between injury and specific and
relevant nociceptive responses is crucial for understanding the central mechanisms of persistent
pain in FM. It must be emphasized however, that specific abnormalities in persons with FM
have not been identified that might produce the prolonged impulse input that is necessary to
initiate the events underlying the development of central sensitization and/or spinal glia cell
activation. After central sensitization has occurred, low threshold A-β afferents, which
normally do not serve to transmit a pain response, are recruited to transmit spontaneous and
movement-induced pain. This central hyperexcitability is characterized by a “windup”
response of repetitive C fiber stimulation, expanding receptive field areas, and spinal neurons
taking on properties of wide dynamic range neurons [13]. Ultimately, A-β fibers stimulate
postsynaptic neurons to transmit pain, where these A-β fibers previously had no role in pain
transmission, all leading to central sensitization. Nociceptive information is transmitted from
the spinal cord to supraspinal sites, such as the thalamus and cerebral cortex by ascending
pathways.

Muscle Tissue as a Source of Nociceptive Input
A potential source of nociceptive input that might account for FM pain is muscle tissue [39].
Several types of muscle abnormalities have been reported in FM patients including the
appearance of ragged red fibers, inflammatory infiltrates, and moth-eaten fibers [4,5,65].
Possible mechanisms for such muscle changes might include repetitive muscle microtrauma,
which could contribute to the postexertional pain and other painful symptoms experienced by
these patients. In addition, prolonged muscle tension and ischemia was found in muscles of
FM patients [6,27,49]. Changes in muscle pH related to ischemia [14] might provide a powerful
mechanisms for the sensitization of spinal and supraspinal pain pathways [75]. Investigations
using 31P nuclear magnetic resonance (NMR) spectroscopy have shown that FM patients
display significantly lower phosphorylation potential and total oxidative capacity in the
quadriceps muscle during rest and exercise [62]. FM patients also exhibit significantly lower
levels of muscle phosphocreatine and ATP, as well as a lower phosphocreatine/inorganic
phosphate ratio [4,5]. Furthermore, NMR testing of muscles in FM patients showed an
increased prevalence of phosphodiester peaks which have been associated with sarcolemmal
membrane damage [43,62].

Focal muscle abnormalities, including trigger points (TrP) are frequently detectable in FM
patients and may play an important role as pain generators. Using sensitive microdialysis
techniques, concentrations of protons, bradykinin, calcitonin gene-related peptide, substance
P, TNF-α, IL-1b, serotonin, and norepinephrine have been found to be significantly higher in
TrP of myofascial pain patients than normal muscle tissue [70,73]. Recent studies have shown
that advanced glycation end products (AGE) may also be relevant for FM pain. AGE can trigger
the synthesis of cytokines particularly IL-1b and TNF-α and elevated AGE levels have been
detected in interstitial connective tissue of muscles and in serum of FM patients [71]. All these
biochemical mediators can sensitize muscle nociceptors and thus indirectly contribute to
central sensitization and chronic pain. Because nociceptive input from muscles is very powerful
in inducing and maintaining central sensitization [90] FM muscle abnormalities may strongly
contribute to pain through important mechanism of pain amplification.
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Conclusions
Many different factors seem to contribute to current pain in chronic pain patients and may
affect previously healthy individuals' risk for future musculoskeletal pain. These factors
include individual variability of pain-facilitatory and analgesic mechanisms, like temporal
summation and analgesia from counter-irritation (DNIC). Such individual differences in pain
sensitivity/modulation can be readily assessed in the laboratory and could be used as sensitive
biomarkers of current pain sensitivity as well as risk factors for future chronic pain. What
specific abnormalities, however, are critical for maintenance of the chronic pain state is unclear
at this time. They most likely include a host of psychological and physical stressors. There is
accumulating evidence for genetic risk factors for chronic pain, specifically COMT and GTP
cyclohydrolase-1 polymorphisms, which may interfere with pain modulation in chronic pain
patients, including FM sufferers. Because the effectiveness of treatments for chronic
musculoskeletal pain is limited at this time, emphasis should be placed on prevention and/or
modification of risk factors that may result in worsening of current pain as well as occurrence
of future chronic pain disorders. Specifically, highly pain-sensitive individuals should be
identified, evaluated, and counseled about risk modifications for future chronic pain.
Psychophysical test methods, including WU and DNIC play an increasingly important role in
the assessment of chronic pain patients and may become useful biomarkers for individual pain
sensitivity and ability to modulate pain.
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Figure 1.
WU pain ratings of NC and FM patients. All subjects received 15 mechanical stimuli to the
adductor pollicis muscles of the hands at interstimulatory intervals (ISI) of 3 sec and 5 sec. FM
patients showed mechanical hyperalgesia during the first tap and greater temporal summation
than NC at both ISIs. A numerical pain scale was used (0 – 100). The shaded area represents
pain threshold. FM, fibromyalgia syndrome; ISI, interstimulatory interval; NC, normal control;
T, mechanical tap
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