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Abstract  
 
 

Positron Emission Tomography (PET) is a significant advance in cancer imaging with 

great potential for optimizing radiation therapy (RT) treatment planning and thereby 

improving outcomes for patients. The use of PET and PET/CT in RT planning was 

reviewed by an international panel. The International Atomic Energy Agency (IAEA) 

organized two synchronized and overlapping consultants’ meetings with experts from 

different regions of the world in Vienna in July 2006.  Nine experts and three IAEA 

staff evaluated the available data on the use of PET in RT planning and considered 

practical methods for integrating it into routine practice. For RT planning, 18F 

fluourodeoxyglucose (FDG) was the most valuable pharmaceutical. Numerous studies 

supported the routine use of FDG-PET for RT target volume determination in non-

small cell lung cancer (NSCLC). There was also evidence for utility of PET in head 

and neck cancers, lymphoma and esophageal cancers, with promising preliminary 

data in many other cancers. The best available approach employs integrated PET/CT 

images, acquired on a dual scanner in the radiotherapy treatment position after 

administration of tracer according to a standardized protocol, with careful 
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optimization of images within the RT planning system and carefully considered rules 

for contouring tumor volumes. PET scans that are not recent or were acquired without 

proper patient positioning should be repeated for RT planning. PET will play an 

increasing valuable role in RT planning for a wide range of cancers. When requesting 

PET scans, physicians should be aware of their potential role in RT planning. 

 

Key Words.  positron emission tomography, computed tomography, radiation therapy, chemotherapy, 

treatment planning 
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Introduction 

Positron Emission Tomography (PET) scanning is a significant advance in cancer 

imaging [1]. When combined with structural imaging, such as computed tomography 

(CT), 18F-fluorodeoxyglucose (FDG)-PET provides the best available information on 

tumor extent for many common cancers [2]. Significant experience with PET in 

radiation therapy (RT) planning is largely confined to academic centres. The Applied 

Radiation Biology and Radiotherapy (ARBR) and Nuclear Medicine (NM) sections of 

the International Atomic Energy Authority (IAEA) assembled a group of experts in 

radiation oncology and nuclear medicine to review the use of PET in RT planning. 

The experts were chosen by the IAEA following a process of international 

consultation with leaders in nuclear medicine and radiation oncology. Criteria for 

selection included specific technical expertise and/or a track record of relevant 

publications. This paper summarizes discussions of the group, reviews relevant 

literature and provides suggestions for the use of PET for RT planning. After two 

overlapping meetings in Vienna in 2006, discussions continued by correspondence in 

2006-2007 and written contributions were made by the participants. These 

contributions were combined and a synthesis was circulated to all co-authors for 

revision until no further amendments were required. The final report represents a 

consensus of opinion of the group in 2007. 

 

RT plays a central role in the management of many potentially-curable malignancies, 

often in combination with other modalities. In curative RT, the target volume of tissue 

irradiated to high dose must encompass the entire tumor and any microscopic 

extensions of disease but should be kept as small as possible to minimize damage to 

normal tissues. Advances in computer assisted 3D planning such as three-dimensional 
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conformal radiotherapy (3DCRT), intensity modulated radiation therapy (IMRT) [3]  

and image guided radiation therapy (IGRT) facilitate delivery of higher radiation 

doses to the tumor [4, 5] and increase normal tissue sparing. To exploit these 

advances, accurate target delineation is essential. PET-based staging has proven to be 

more accurate than non-PET staging for many cancers and it is therefore rational to 

use PET for RT planning in situations where it is known to more accurate than 

conventional imaging. However, high quality evidence, specifically supporting the 

use of PET in RT planning, is lacking. The potential benefits of PET in RT planning 

are generally inferred from studies of staging or patient selection that show the 

superior accuracy of PET in specific clinical situations. For many patients, a single 

PET scan is used for all three purposes ( staging, selection and treatment planning). 

The participants in this review were therefore free to consider all data that they 

considered relevant to the use of PET in RT planning. Levels of evidence were not 

formally assessed because no high level evidence (for example randomized controlled 

trials) has been published on the use of PET in RT planning. In addition to explicit 

studies of RT planning, relevant investigations of patient selection, tumour staging, 

tumor movement and tumor biology were reviewed. Of all the common cancers, lung 

cancer has been most intensively studied with PET and a significant proportion of the 

published RT planning literature concerns this group of malignancies. For this reason, 

the use of PET in RT patients with lung cancer is considered in most detail. There is a 

growing body of evidence concerning the use of PET  for RT planning in head and 

neck (H&N) tumors, esophageal tumors and lymphoma and these are each discussed 

briefly as they represent different challenges. There are many other cancers for which 

PET may play a role in RT planning but a detailed discussion of each of these is 

beyond the scope of this review.   
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The central role of imaging in Radiation Therapy Planning 

 

Structural Imaging  

RT planning is critically dependent on imaging. Soon after its introduction in the 

1980’s, CT-based conformal RT (CRT) planning became a routine part of cancer 

management. While modalities such as magnetic resonance (MR) imaging can 

sometimes provide superior tumor imaging (e.g. in brain tumors [6]), CT remains 

essential for dosimetry and for imaging dose-limiting normal organs. Nevertheless, 

structural imaging has significant limitations for imaging some tumors and lymph 

node metastases. These shortcomings can lead to significant interobserver variability 

when contouring tumors for RT [7]. Failure to encompass the tumor resulting from 

inadequate imaging cannot be compensated for by dose escalation [8]. 

 

The advent of PET 

 

With PET and PET/CT, sensitive, quantifiable and accurate molecular information on 

the biology and extent of many common cancers became available. PET often 

provides superior sensitivity, specificity and accuracy, compared to conventional 

staging. With the increasing availability of integrated PET/CT [9] exciting new 

possibilities now exist for RT planning [10].  Some of the most important include: 

 

a) Imaging of lesions not apparent on CT or MR, such as 

unsuspected lymph node or distant metastases 
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b) Prevention of futile irradiation of abnormalities that do not 

contain tumour, such as atelectasis.  

c) Imaging of biologically diverse tumor sub-volumes could 

potentially allow dose painting (administration of different 

radiation doses to different tumor regions based on suspected 

tumor burden or radiosensitivity of the region of interest)  

d) Superior evaluation of tumor masses during or after 

chemotherapy (CHT) 

e) Development of “response adapted therapy”, in which changes 

to target volumes could potentially be made be  made during a 

treatment course [11, 12] 

 

 
 
 
PET Radiopharmaceuticals  

The scope for developing new PET tracers is vast, but currently only a few 

radiopharmaceuticals have the combination of high tumor uptake and favorable 

pharmacokinetics required to provide the high sensitivity and specificity at low cost 

needed for tumor imaging in busy clinical settings in radiation oncology. 

 

 

Flourodeoxyglucose  

 

Many malignancies have higher uptake of FDG than nearby normal tissues 

[13] This allows FDG-PET to image them, although FDG uptake is not cancer-

specific.  Uptake of FDG in tumors is affected by a range of factors, including tumour 
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blood flow [14], activity of glucose transporters [15] and hexokinase, and by glucose 

consumption [16].  

 

FDG-PET is invaluable in many cancers for differential-diagnosis, staging, 

evaluation of therapeutic response and for restaging. FDG-PET is superior to CT for 

assessment of response to RT-CHT in non-small cell lung cancer (NSCLC) and CHT 

response assessment in the Hodgkin and non-Hodgkin lymphomas. PET-assisted 

staging is more accurate than conventional staging in a wide range of cancers 

commonly treated with RT. For these cancers it is rational to use FDG-PET/CT [17] 

for RT planning.  

 

 

Other Radiopharmaceuticals 

 

The amino acid  11C-methionine [18] is one of the most widely used PET 

radiopharmaceuticals in oncology [19]. In brain tumors 11C-methionine is more 

sensitive than FDG, because of high glucose utilisation by normal brain and is 

currently the best available PET tracer for delineating brain tumor contours. Initial 

studies indicate, that 18F-labeled amino acids [20] such as 18F-alphamethyl-tyrosine 

[21] and 18F-ethyl-tyrosine [22] may have potential for RT planning in patients with 

brain tumors [23].  

 

For imaging pelvic tumors, 11C-choline is promising because it has limited 

urinary uptake. Tumor uptake is related to the metabolic activity of phospholipids in 

the cell membrane and is increased in proliferating tumour cells. Some promise for 
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18F-labeled choline has been reported in prostate cancer [24-27] . Recent data show 

significant overlap in uptake between malignant and benign diseases of the prostate 

[28].  

 

Imaging of proliferation and tumour hypoxia [29] using PET/CT is promising 

[30], but not yet useful in treatment planning. For some tracers [31], dynamic data, 

that take account of diiferent tracer kinetics in different physiological compartments,  

could help define target volumes [32]. Agents such as, 62Cu-ATSM and 68Ga-ATSM, 

60Cu-ATSM, 18F-FAZA and 18F-misonidazole can image hypoxic tumour cells [33]. 

18F-misonidazole uptake predicts for responsiveness to the hypoxic cell cytotoxin 

tirapazemine in head and neck (H&N) cancers [34]. Thymidine kinase activity, a 

surrogate for proliferation, can be imaged using18F-fluorothymidine [35].  

 

How should PET be incorporated into Radiotherapy Planning? 

 

Some Key Concepts in Radiation Therapy Planning 

 

Gross tumor volume (GTV) definition is the critical step in conformal RT planning 

[36]. All subsequent steps depend the accurate delineation of the primary tumor and 

involved lymph nodes. The clinical target volume (CTV), derived from the GTV by 

adding margins around it, accounts for subclinical disease extension. The planning 

target volume (PTV) is usually an expansion of the CTV and includes factors such as 

movement of organs and tissues and set-up errors.  
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Need for meticulous Imaging Protocols for PET in RT Planning 

 

PET or PET/CT imaging protocols used in RT planning must be rigorous and 

consistently applied [37]. The PET suite effectively becomes a link in the chain of RT 

quality control [38]. Patient positioning tools and procedures used on simulators and 

linear accelerators should be used equally conscientiously in the PET suite. These 

tools include a firm flat couch top, immobilization devices, laser beams for patient 

alignment and a wide-bore scanner (70 cm or more). Quality control processes [39], 

especially geometrical alignment, must include the PET scanner. Software for 

contouring and image quantification must be linked with the RT planning system. If 

the software is part of the PET/CT console, it must be able to provide Radiation 

Therapy Structure Set (RTSS) data (DICOM). If incorporated directly into the RT 

planning system workstation, PET images should be checked for correct 

normalization and quantification (e.g. Standardised Uptake Value, or SUV) [40].  

 

Unfortunately, many diagnostic PET scans are carried out with the patient in an 

unsuitable position for RT delivery and without immobilisation or other measures 

needed for RT planning. Most health-care providers disallow reimbursements for 

separate RT planning PET scans despite the fact that technically unsatisfactory studies 

must be repeated for RT planning. To avoid this problem, PET scans that potentially 

could serve the dual purposes of staging and RT planning should be coordinated with 

the radiation therapy team in advance. A recent  study from Germany suggests that a 

separate PET scan in the RT planning position is required if only a diagnostic PET is 

available [41]. Methods for combining poorly-matched, separately-acquired PET and 

CT studies include deforming or “warping” one image so that it lines up better with 
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the other [42]. However, for PET/CT planning, warping is an unproven approach. 

Images used for RT planning must be contemporaneous or very recent, especially in 

rapidly-progressive malignancies such as NSCLC or epithelial H&N cancers.  

 

 

Target volume definition with PET/CT: General Principles 

 

Most published RT planning studies involve FDG and NSCLC is the most 

commonly studied cancer [43]. PET dramatically reduces the extreme variability that 

is observed when tumors are contoured in the same patient by different radiation 

oncologists [44-46].  Target volume delineation is influenced by the lower resolution 

of PET compared to CT (approximately 4.5 mm in the last generation PET/CT 

scanners). PET positive lesions are almost always detected if they are larger than 1 cm 

and tracer uptake is >4 times that of the surrounding background. Aggressive cancers 

often have high FDG uptake and lesions of <5mm can be detected. The margins of 

PET-detected lesions can appear fuzzy and visual definition of the volume depends on 

the experience of the operator. Lesion margins are influenced by the display (e.g. 

windowing, colour scale), contrast between the lesion and the background and by 

artefacts including spill-over. Some deficiencies of PET are well-compensated for by 

anatomical data provided by CT in fused PET/CT images. The semi-quantitative 

nature of PET invites attempts to use mathematical modelling to define the edges of 

tumors. An alternative approach to this problem is the application of the human eye 

and intelligence to estimate the most likely border of the tumor, based on a synthesis 

of experience and available clinical information.  
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Target Volume definition using a Visual assessment 

 

Visual tumor contouring is commonly used in clinical practice, despite the fact 

that visual methods are not well reported in the literature. Without careful 

consideration, ad hoc and poorly designed planning procedures may become 

established in RT centers. A detailed protocol should be followed, keeping as 

consistent as possible the numerous parameters that can influence the apparent 

contours of the tumour on PET. Before commencing the visual planning process, the 

correctness of the co-registration must be checked and a diagnostically-adequate 

window must be adjusted for the image display, ideally in consultation with the 

nuclear medicine physician.   

 

A rigorous visual contouring protocol using predefined widow and colour 

settings and with input from the nuclear medicine physician can give highly 

reproducible results in NSCLC. This method was used in a prospective study of RT 

planning in esophageal cancer [46]. Visual planning methodology relies on human 

intelligence and experience to recognise various processes that lead to physiological 

uptake of FDG in the human body. Nevertheless, without a carefully-designed 

contouring protocol, it is likely that significant variations in GTV will occur. In lung 

cancer, PET defined GTV’s are often larger than CT-defined GTV’s because PET 

captures the location of the tumor at all phases of the respiratory cycle [47]. Even 

when using a standardised software-based contouring protocol there may still be 

significant inter-observer variation [48]. 
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Target Volume definition using automated or semi-automated methods 

 

               To reduce inter-observer variability in FDG-based GTV definition, various 

automatic or semi-automatic methods have been proposed. These must be used with 

caution, because none can distinguish between FDG uptake caused by neoplastic 

processes and common physiological or inflammatory process. FDG uptake occurs 

within macrophages and granulation tissue, thymic hyperplasia, brown fat, fat 

necrosis, smooth muscle, skeletal muscle and cardiac muscle [49].  A true gold 

standard for studies of 3D or 4D tumor contouring is unavailable so careful 

observation of local failure patterns is essential.  

 

 

SUV-based contouring 

 

Estimation of the maximum standardized uptake value (SUVmax) in a lesion can help 

distinguish between malignant and benign tissue [50]. SUV contours have commonly 

been used in attempts to define the edges of tumors for RT planning [51]. To define 

the PET-GTV, many investigators have chosen a threshold, or cut-off value [51]. 

Some authors employ a percentage of the maximum or peak SUV concentration, 

whereas others recommend an absolute SUV value (e.g. an SUV contour of 2.5 [52]  

to represent the edge of the lesion). However, SUV measurement can be unreliable 

and can suffer from problems with accuracy and  reproducibility [53]. By itself, an 

SUV cut-off may be inadequate for RT planning. 
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Thresholding  

The most widely used thresholding [54] approach involves outlining the lesion as the 

region encompassed by a given fixed percent intensity level relative to the maximum 

activity in the tumour lesion. However, a fixed threshold value in the commonly-

reported range of 40-50%, can lead to significant errors in the volume estimation [55]. 

This approach may render significantly too small GTVs in large inhomogenous 

primary lung cancers [47]. Therefore, contrast dependent adaptive thresholding 

methods have been proposed. 

 

Background Cut-off 

Another automated approach involves defining a cut-off with respect to the 

background and contouring the region with intensity above the cut-off (e.g. intensity 

greater than three standard deviations above the background level or a SUV above 

2.5). This approach is independent of heterogeneity of lesional tracer uptake, which 

could hamper the application of threshold methods. The assessment of activity in the 

lesion and in the background is strongly affected by statistical fluctuations. 

Furthermore, the robustness of the contour definition may also be affected by 

statistical noise. Three-dimensional (3D) PET acquisition has the potential to reduce 

image noise [56] compared to 2D acquisition.  

 

Source / background algorithms 

Phantom studies with varying “lesion” and background activities were conducted to 

derive the relationship between the true volume of homogenously-filled, (usually 

spherical) “lesions” and various thresholds applied to the PET images [57] [58]. 
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Optimum thresholds varied according to the signal-to-background (S/B) ratios. This 

relationship is described by relatively simple equations, which render the threshold 

value depending on the mean background accumulation and the signal of the lesion. 

Thresholds vary depending on the background definition in patient datasets. Gradient-

based methods rely on a model that determines the appropriate threshold of activity 

on the basis of the signal-to-background ratio [59]. This method was shown to be 

accurate for segmenting PET images in a study of pharyngeal–laryngeal tumors  [60]. 

In that study, a quantitative comparison of CT, MRI, and FDG-PET showed that 

automatic segmentation of PET images led to tumor volumes that were significantly 

smaller than those obtained by either CT or MRI. Moreover, these FDG-PET 

determined volumes were by far the closest to the reference volume assessed from the 

surgical laryngectomy specimens. A comparison of methods [47] in primary NSCLC 

showed, that the application of S/B ratios led to reasonable volumes, compared with 

breath-expanded CT volumes. S/B algorithms may be applied to very low contrast 

lesions [61]. In another study auto-contouring, using source to background ratios, 

reduced interobserver variability compared to visual contouring and the estimated 

maximum tumor width was closely  correlated with tumour diameter determined by 

pathology [62].  

 

 

The availability of multiple automated methods for contouring tumors and the 

absence of any reliable intercomparisons makes it difficult to recommend any single 

technique. However, automated methods that employ a single crude parameter, such 

as a particular SUV contour, are too simplistic and rigid to be useful across a wide 

variety of clinical scenarios and are therefore not recommended.   
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Tumor Movement 

 

Tumors usually undergo physiological movement. In NSCLC movement with 

respiration can be dramatic [63]. Motion can be compensated for by gating, which 

uses a physical trigger, such as motion of the chest wall or changes in airflow from 

respiration to instruct the scanner when to acquire images or how to sort them after 

acquisition. If a single CT planning image is acquired without breath-holding [64] or 

gating , it portrays a random instant in the respiratory cycle. PET is performed over 

many respiratory cycles and provides an image of the lesion representing the integral 

over the whole volume within which the lesion moves. The resulting image may show 

an apparent increase in lesion size and a decrease in the maximum activity 

concentration. Target volume definition in non-gated PET should take tumour motion 

into account and the thresholding level should be carefully chosen when automated 

methods are used. When planning using a visual method, the intensity of FDG uptake 

will seem less intense at the extremes of movement of a mobile tumour. Phantom 

studies show that, in the case of a moving object, a lower threshold should be used for 

an accurate assessment of its volume than for a static one [44, 54].Unlike a single 

random CT scan, PET helps define the volume within which the lesion moves, 

defining the Internal Target Volume (ITV). CRT must account for organ motion [65], 

because tumor movement can carry parts of the target into areas of low dose. Normal 

tissue doses may be decreased by implementation of 4D gated PET/CT acquisition 

protocols, synchronized to the patient’s respiratory cycle [66]. An ideal treatment 
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would  continuously adapt beam delivery to changes in the tumour position (real time 

tracking [67]) or deliver radiation at only one specific phase of the movement cycle.  

 

Role of PET in RT Planning for Specific Tumor Types 

 

A summary of published studies, which contain evaluations of treatment volume 

changes caused by incorporating PET information into the RT planning process, is 

shown in Table I. Studies were included if they contained an estimation of the actual 

or potential effect of PET on treatment or target volumes in patients planned for 

treatment with RT. 

 

NSCLC 

 

When available, FDG-PET should be used to select patients with NSCLC for 

treatment with definitive RT. It frequently detects unsuspected distant metastasis 

(>20% of pre-PET stage III) and identifies patients with very advanced locoregional 

disease [68] unsuitable for radical therapy. Inclusion of PET in the staging workup 

improves the apparent survival of patients treated with RT or RT-CHT [69], by 

excluding incurable patients. In a large prospective trial, 30% patients who were 

candidates for high dose RT on the basis of conventional staging received only 

palliative therapies after PET, because of unexpected distant metastasis (20%) or very 

extensive intrathoracic disease (10%) [70]. PET stage accurately predicted survival 

and patients denied radical therapy had a very short survival. Ideally, FDG-PET 

staging scans for potential RT candidates should be performed in the RT treatment 

position, to enable dual use of PET images for staging and RT planning.  Integrated 
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PET/CT [71] is best but PET/CT image coregistration, ideally using fiducial markers, 

can be used [72].  

 

PET/CT should be used for RT planning in NSCLC because it more accurately 

images tumor extent than CT alone [73], This is proven by a large surgical literature 

on the accuracy of FDG-PET in the lymph node staging of NSCLC [10, 68, 74, 75]. 

Average sensitivities and specificities for FDG-PET in series with pathological 

confirmation have been reported as 83% and 91%, respectively, whereas for CT they 

were 64% and 74%, respectively [76]. Despite its higher accuracy, the limitations of 

PET should be remembered. The rate of false-negative lymph node station assessment 

(post-test probability) in NSCLC RT candidates is 5-10%[77] . In studies of solitary 

pulmonary nodules, a negative predictive value of about 90% is reported for FDG-

PET. Some factors [78] are associated with false negative findings, including 

carcinoid tumors or low-grade adeno-carcinomas including broncho-alveolar 

carcinomas. Very small lesions (<1cm) may not be seen and, in elevated blood 

glucose may cause false negative FDG-PET findings. False negative scans can occur 

soon after CHT [79], although a reduction in SUV is a positive prognostic factor [80]. 

PET is superior to CT for response-assessment after RT. In a prospective study, PET 

and CT assessments performed at a median of 70 days after RT, were concordant in 

only 40% of cases [81]. PET response was the best predictor of survival, was 

strongly-correlated with patterns of failure [82] and was not confounded by normal 

tissue reactions [83] . 

 

The two most important and consistent reasons for significant changes in 

target volumes in NSCLC with PET, cited in the literature [84] were: 
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1. FDG-PET significantly changed lymph node staging in the thorax, usually by 

showing more positive nodes than CT.  

2. In cases with atelectasis, PET helped to demarcate the border between tumor 

and collapsed lung, allowing a smaller volume of lung to be treated [85] 

(Figure 1). 

 

 

Figure 1 

 

Treatment of clinically uninvolved regional nodes remains controversial. 

Some centers routinely recommend elective nodal irradiation (ENI), while others 

prefer 3D CRT confined to gross disease [86], although ENI may occur by chance due 

to spillover from the adjacent high dose volume [87]. Significant portions of the 
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lymph node stations near the PTV would, in many 3-DCRT plans, incidentally receive 

useful doses of irradiation [88]. Some centers include high risk nodal tissue in the 

CTV in addition to the FDG-positive structures in the GTV. This may mean including 

lymph nodes which are enlarged on CT but FDG-negative [89]. Some authors 

advocate ENI for whole nodal stations because the diagnostic literature deals with N-

stage as whole, describing nodal stations rather than individual nodes [10, 68, 90]. 

The prospective RTOG 9311 study of conformal RT in NSCLC showed a failure rate 

of only 8% in elective nodes [91]. The elective nodal failure rate was 7% in the 

conformal arm of a randomized trial reported by Yuan et al [92], in which patients 

randomized to conformal therapy received higher doses and had better outcomes than 

those randomized to ENI. The role of ENI may be clarified in future clinical trials 

[93]. 

 

 

 Small Cell Lung Cancer (SCLC) 

 

SCLC is well imaged by FDG-PET [94] but few studies have directly 

addressed the role of PET in RT planning. Potential roles for PET include selection 

for radical RT-CHT, RT planning and selection of patients for prophylactic cranial 

irradiation (PCI). In one prospective study [95], FDG-PET demonstrated findings 

consistent with extensive disease (ED) in three of 24 patients thought to have limited 

disease on the basis of conventional staging. FDG-PET correctly upstaged 8.3% 

patients to ED. PET had a lesion-based sensitivity relative to CT of 100%. PET 

identified unsuspected regional nodal metastasis in 25% patients, and the RT plan was 

significantly altered to include the PET-positive/CT-negative nodes within the high-
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dose region in each of these patients. In another study 36 consecutive SCLC patients 

underwent 47 PET studies for either staging (n = 11), restaging after therapy (n = 21), 

or both (n = 4) [96]. Of 15 patients who had PET for staging, 5 (33%) were upstaged 

from LD to ED and treated without thoracic RT. In 13 patients, 14 untreated 

discordant lesions were evaluable; PET was confirmed accurate in 11 (79%) sites by 

last follow-up. These results are similar to those reported by other groups [97-99], 

suggesting that PET may have a role to play in selecting patients for RT and in 

designing the RT fields. PET. Prospective studies are required to clarify the role of 

PET in SCLC. 

 
 
 
H&N cancers 

 

Use of FDG-PET planning in H&N cancers is complex [100]. The boundaries of 

primary tumors can differ significantly from one another in the same patient when 

determined using PET, CT or MRI, making it difficult to decide where exactly to 

draw the GTV for RT planning. This is an especially important issue when very high 

does (70Gy) are delivered to lesions close to radiosensitive vital structures (e.g. 

brainstem or optic chiasm) and margins are often tight around tumour [101]. 
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Figure 2 

 

The greatest impact of PET on patients with H&N cancer usually results from 

changes in nodal status [102] and/or the detection of distant metastasis. Changes in 

target volume delineation occur often when FDG-PET information is added to CT 

[103], mainly due to different nodal staging [101] (Figure 2). However FDG-PET-

based RT planning is not yet ready for routine clinical practice. Recently, significant 

differences in GTV delineation were found between multiple observers contouring on 

PET/CT fused images, mainly due to the lack of a delineation protocol [104]. PET 

may impact delineation of nodes more than delineation of primary tumours [105]. 

 

Careful comparison of FDG-PET, MRI and CT scans with the histopathology 

of resected tumour specimens shows that none of these three imaging modalities is 
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100% accurate [60]. However FDG-PET may be the most accurate of the three for the 

detection of head and neck cancer [106]. Tumour volume determined by FDG-PET 

tends to be smaller on average than the volume determined by the other modalities but 

most closely approximates the true tumour volume [60]. Nevertheless some tumour 

regions that are apparent on CT or MRI may not be imaged on PET and in these cases 

an exclusive reliance on PET would potentially lead to geographic miss.  

 

Changes in RT volumes due to PET occurred in 41% of  patients in one 

prospective study [107]. Nevertheless, despite the great promise of PET in RT 

planning in H&N cancer [108], one must proceed cautiously. Uncontrolled local 

recurrence in the head and neck region can lead to prolonged misery and 

disfigurement.  The results of PET studies of hypoxia imaging in H&N tumours [109-

112] are provocative. A significant correlation between PET hypoxia-tracer uptake 

and treatment response has been reported.  

 

 

Lymphoma 

 

The lymphomas are a large and heterogeneous group of diseases [113]. Early 

stage disease is commonly treated with “involved field” RT. PET is increasingly 

being used to select lymphoma patients for RT and to delineate RT fields [114]. FDG-

PET is significantly more accurate in both staging [115] and treatment response 

assessment [116] in both Hodgkin and non-Hodgkin [117] lymphomas than 

conventional structural imaging. PET data are increasingly being incorporated into the 

RT planning process [118]. PET commonly influences RT fields in lymphoma by 
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upstaging small nodes that are negative by structural imaging criteria or by 

demonstrating disease in sites where low lesion/background contrast limits the 

efficacy of CT. PET can have a significant impact on design of involved RT fields in 

Hodgkin lymphoma [119].  Failure to include FDG avid lesions in RT fields may lead 

to relapse. 

 

PET is also used to assess the response of lymphomas to CHT [120], either at 

the end of therapy, or as an interim measure, after e.g. 1-3 cycles [121-124]. Persistent 

interim tumor FDG uptake is a powerful negative prognostic factor in patients with 

Hodgkin lymphoma [125] and aggressive non-Hodgkin lymphoma [122] but early 

complete response cannot yet identify patients who do not require RT as part of 

combined modality therapy. Baseline PET scans may help determine what sites will 

require consolidation RT.  

 

 

Esophageal cancer 

 

Combined RT-CHT, with or without surgery, is commonly used to treat 

esophageal carcinoma. PET can improve the accuracy of RT planning [126]. 

Clinicopathological studies in patients undergoing resection show that CT portrays the 

radial tumor extent well. PET, however, is significantly more accurate for nodal 

assessment [127], except those that lie adjacent to the esophagus, and shows the 

longitudinal extent of the tumor better than CT. The systematic review of PET staging 

for esophageal carcinoma by van Westreenen and colleagues confirmed that PET was 

quite accurate in its assessment of more distant  lymph nodes and for the detection of 
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distant metastases [128]. When endoscopy is compromised by stenosis, PET may be 

the only way to visualize the lower border of the tumor. A prospective trial of PET in 

RT planning for esophageal carcinoma [46]  showed that PET had a significant 

impact on GTV and PTV. PET often prevented geographic miss by identifying 

unsuspected lymph node involvement (Figure 3). Vrieze and colleagues found that 

incorporation of FDG-PET findings into RT planning would have led to a decrease of 

the irradiated volume in 3 of 30 patients.  However in 6 of 30 patients, 8 lymph node 

regions were found to be positive on PET but negative on CT and/ or endoscopic 

ultrasound examination. In three of these patients (10%) the influence of the FDG-

PET would have led to enlargement of the irradiated volume [129]. In another study, 

employing a coincidence scanner, use of fused FDG/CT scans altered the GTV in 19 

of 34 patients (56%) [130]. 

 

Figure 3 
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Conclusions 

 

Because of its remarkable accuracy in staging and the demonstration of a 

powerful effect on treatment volumes in all of the published RT planning studies, 

there is a strong case for the routine use of FDG-PET in RT planning for NSCLC. In 

malignancies such as the lymphomas, SCLC and cancers of the H&N and esophagus, 

the routine use of PET information in RT planning should be cautiously considered, 

although there are still limited supporting data.  There have been  promising studies in 

other tumor sites, such as prostate [27], cervix [131], colorectal [132], soft tissue 

[133] and locoregionally advanced malignant melanoma [134], for which PET is 

likely to prove valuable for RT planning. Incorporation of PET into three dimensional 

RT planning is technically challenging and requires careful attention to detail. No 

single methodology is recommended, but each technique must be carefully considered 

and implemented consistently, with attention to detail. 

 

At present there are no compelling data to prove that patient outcomes are superior as 

a result of the use of PET in RT planning. Absolute proof that PET-planning is 

superior would require randomized trials in which some patients were randomized to 

a less accurate (non-PET) staging workup, thereby presenting significant ethical 

challenges. Nevertheless, in the opinion of the IAEA expert group, radiotherapy 

planning should always be based on the most accurate available assessment of tumor 

extent. For many cancers PET/CT provides the best available assessment. 
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Legends for Figures 

 

Figure 1 

 

NSCLC arising in the left upper lobe. The associated atelectasis did not show FDG-

uptake, and was therefore excluded from the GTV. Axial (a) and sagittal (b) CT 

reconstruction fused with FDG-PET reconstruction. The GTV (red; c) was designed 

using a source/background algorithm. Recruited for the German PET-Plan study (pilot 

phase), the patient received radio-chemotherapy with radiation confined to the FDG-

positive area (treatment plan; d)) escalated up to 74 Gy (1,8 Gy daily). 

 

Figure 2 

 

RT-planning FDG-PET/CT scan of a patient with locoregionally-advanced squamous 

carcinoma of the base of tongue. PET identified unsuspected nodal disease in the left 

side of the neck, including a left supraclavicular node (indicated by cross-hairs) in 

addition to the known disease in the base of tongue and right neck. This had a 

significant effect on RT planning. 

 

Figure 3 

 

RT-planning FDG-PET/CT scan of a patient with esophageal carcinoma. In addition 

to showing the primary tumor and known lower mediastinal lymph node involvement, 

the scan showed previously unsuspected left sided superior mediastinal lymph node 

involvement (indicated by cross-hairs) that needed to be included in the RT target 

volume. Without PET, there would have been a geographic miss. 
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