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Abstract

The BFS method for alloys is applied to the study of the Cu-Pd system. A variety of issues are
analyzed and discussed, including the properties of pure Cu or Pd crystals (surface energies, surface
relaxations), Pd/Cu and Cu/Pd surface alloys, segregation of Pd (or Cu) in Cu (or Pd), concentration
dependence of the lattice parameter of the high temperature fcc CuPd solid solution, the formation
and properties of low temperature ordered phases, and order-disorder transition temperatures.
Emphasis is made on the ability of the method to describe these properties on the basis of a mini-
mum set of BFS universal parameters that uniquely characterize the Cu-Pd system.
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1. INTRODUCTION

In the last few years, there has been an increasing demand for precisely designed materials with
very specific properties. The current method for developing new materials, based on a painstaking

empirical approach, is both time-consuming and extremely costly. While the virtual design of new
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materials through complex computer simulations is still many years away, they already play a sig-
nificant role in materials design, and offer several advantages over a strictly laboratory style
development program. Their success depends on the availability of a unified approach that pro-
vides the same level of simplicity and accuracy for any possible application, whether it is directed
to surface and/or bulk analysis. The trend to incorporate atomistic simulations as a standard tool
in the analysis of complex systems has imposed high expectations on the range of applicability of
such methods, their computational efficiency, their ease of implementation, and the type of output
that they provide. While it seems possible that no new approach will be widely accepted until it is
shown to work reliably in the broadest sense, it is important to understand that the starting point
is, in itself, the strongest requirement imposed: materials design is a very complicated issue
involving many variables, including time, temperature, pressure, and all the possibie combina-
tions of elements in the periodic table [1].

With these requirements in mind, efficient quantum approximate methods (QAM?’s) [2-6] have
been developed, each offering a fresh outlook on important issues commonly unavailable experi-
mentally or too demanding, computationally, for accurate first-principles methods. Almost inde-
pendently of their foundation and formulation, QAM’s rely on simplifications which, as a result,
inevitably require the introduction of parameters. This is a common feature to all methods,
besides any other assumption on the mathematical expressions for potentials or any other function
that might appear in the theory as a result of an approximation. Additional restrictions generally
apply, resulting in limitations on the efficiency or accuracy of the method in terms of type of lat-
tice structure, number and type of element. More important than these common restrictions, one
basic limitation shared by all these methods consists of the ability of these parameters to repro-
duce physical properties of the system at hand regardless of the particular feature under study. For
example, it is not unusual that most methods rely on parameters derived from experimentally
determined bulk properties. While this fact alone is not a limitation, it becomes one when the
underlying formalism does not support the use of these same parameters for the study of, for
example, surface problems. In some other cases, the parameters have a low level of transferability,
in the sense that parameters determined for a specific element from a specific source might require
an adjustment when that same element is in a different chemical or structural environment. New
fitting or adjustment is then required, thus particularizing the resulting parameters for the one spe-

cific application at hand. As a result, and in order to keep the delicate but necessary balance



between accuracy and efficiency, different methods are therefore generally used to deal with bulk
crystals, surfaces or interfaces, defects, temperature effects, etc., or, as is sometimes the case,
changes in the formulation of a given method are needed when dealing with one type of problem
or another are made. One way to solve the problem of transferability is to develop the operational
equations of the methods, and the underlying concepts from which they are derived, in a way such
that the parameters enter these equations without any particular dependence on any specific situa-
tion, whether it involves structural or chemical defects. To that effect, a new QAM, the BFS
method for alloys [4], was recently introduced, providing an alternative approach for performing
atomistic simulations, by overcoming most of the limitations mentioned above, as nothing in its
formulation imposes restrictions on the number and type of elements or the structure under study.

The BFS method overcomes these difficulties simply because of its interpretation and model-
ing of the alloy formation process [4]. While a mathematical description of the method will be
given in the next section, in this section we concentrate on the underlying concepts and their
meaning. In BFS, any given system, regardless of its composition and structure is always modeled
in terms of two independent virtual processes which, properly coupled, are meant to result in the
final state that is being studied. One of these virtual processes relates to the structural changes in
the environment of any given atom (strain), and it consists of defining, for every atom, a virtual
(perfect) monatomic equivalent crystal of its own species in a state of isotropic compression or
expansion with respect to equilibrium. The amount of compression or expansion is defined so that
the electron density in the vicinity of the atom in the real crystal resembles, in average, the corre-
sponding one in the expanded or compressed perfect equivalent crystal [5]. The availability of a
universal binding energy relationship (UBER) [5,7] to describe such isotropic transformations
ensures an accurate and energetically correct description of the process, particularly for small
departures from equilibrium. The other virtual process accounts for changes in the chemical envi-
ronment of that same atom (chemical). Once again, another virtual perfect crystal, in a state of
isotropic compression or expansion, is assigned. To decouple structural and chemical effects, it is
necessary to introduce additional restrictions in the definition of these processes. In the first case,
all atoms surrounding a given reference atom are considered as being of the same atomic species
as the reference atom, thus freezing compositional degrees of freedom in the determination of the
equivalent crystal associated with structural changes. In the second case, the surrounding atoms

retain their chemical identity, but are forced to occupy equilibrium lattice sites of a lattice charac-



teristic of the reference atom. More details on the nature, characteristics, and modeling of these
processes, will be provided in the following section. Here, it is just worth noting that, regardless
of the details, both processes share one particular feature: any system is described in the same
way, i.e., by means of virtal, ideal bulk crystals. Whether the system involves the presence of
surfaces or other extended defects, or a varying chemical composition, etc., the modeling of the
formation process is done by means of these virtual crystals which, in their definition (their com-
position and structure), account for the particular features of the real system that they represent.
The environment seen by an atom in the real crystal is translated into an equivalent, perfect crys-
tal. The parameters used in the BFS method describe the virtual processes and the properties of
these virtual crystals. As such, they are somewhat blind to the otherwise different systems that
they describe, as they are always applied to the energetics of perfect, virtual, crystals. In all cases
they describe deviations from an equilibrium state of the equivalent crystal, thus eliminating a
direct correlation with the nature of the actual situation which they are meant to represent. For
example, the formation of a single vacancy is, in terms of the parameters used, no different from
the substitution of a neighboring atom for one of a different species, or a surface defect. There-
fore, it is expected that if the theory allows for an unequivocal definition of these virtual crystals,
properly endowed with the necessary information on the real crystals that they represent, the
parameters will then have the same level of reliability, or be able to extract the same amount and
quality of information via the equations of the method, in any kind of situation.

It is also worth noting that the parameterization of the BFS method implies a somewhat differ-
ent approach for the interaction between different atoms. In general, most approaches deal with
this issue by introducing some sort of interaction potential with any parameter describing each
constituent remaining unchanged. In BFS, it is precisely the set of parameters describing the pure
element what is perturbed in order to account for the distortions introduced by the nearby pres-
ence of a different element or defect. In doing so, an additional advantage is thus introduced in the
methodology, as the number of parameters is reduced to a minimum and their transferability is
therefore guaranteed. It is, however, an additional burden on the method, as too much critical
information must then be carried by a very small number of parameters. From a practical stand-
point, however, it is obviously a matter of balance between the advantages and disadvantages

what ultimately translates into an efficient and accurate method with a maximum range of appli-

cability.



Meant as a contribution to the process of linking modeling to experimental analysis, the pur-
pose of this work is to illustrate, with a thorough application of BFS to the study of a binary sys-
tem, the power as well as the limitations of procuring such balance between physical accuracy and
flexibility in the spectrum of possible applications. At the same time, this work is meant to pro-
vide a general view of the variety of issues that can be tackled with quantum approximate meth-
ods. In what follows, we will show that the implementation of a simple and straightforward
unified approach to single crystals, alloys, surfaces and bulk properties, is possible and, to a great
extent, agreeable with current available experimental evidence.

Taking the binary Cu-Pd system as an example, and representing the basic features of the
binary systems by means of its phase diagram, this article covers a large number of them, includ-
ing: 1) application to the analysis of single crystals and their buik and surface properties, includ-
ing surface energies, surface structure, and multilayer relaxation, 2) identification of the
segregating species, 3) application to the formation of surface alloys for arbitrary coverage, thin
film growth patterns, and interdiffusion, 4) description of ordered phases, their bulk structure,
symmetry, defect structure, surface energies and segregation patterns, analysis of order-disorder
transitions and determination of critical temperatures, 5) prediction and analysis of metastable
structures and their alternative ordering patterns, and 6) description of the physical properties of
the solid solution. In a schematic way, Fig. 1 summarizes the applications studied in this work, as
well as other applications that can also be modeled, in the framework of the accepted phase dia-
gram for the Cu-Pd binary system.

The paper is organized as follows. Section 2 describes the BFS method for alloys [4], includ-
ing a brief description of Equivalent Crystal Theory (ECT) [5], the methodology used for the cal-
culation of pure element properties. With the purpose of validating the single element parameters
used as input in BFS, Section 3 deals with a brief review of ECT calculations of single element
properties, including surface energies, surface structure and relaxation. Section 4 presents the

main results of this paper, covering the different aspects of the Cu-Pd system listed above.

2. THE BFS METHOD

The BES method has been applied to a variety of problems, ranging from bulk properties of

solid solution fcc alloys [9] and the defect structure in ordered bec alloys [10,11] to more specific



applications including detailed studies of the structure and composition of alloy surfaces and sur-
face alloys [12]. These studies provide confidence in the method for application to the problem of
site substitution in ordered B2 compounds [13]. In what follows, we provide a brief description of
the operational equations of BFS. The reader is encouraged to seek further details in previous
papers where a detailed presentation of the foundation of the method, its basis in perturbation the-
ory and a discussion of the approximations made are clearly shown [9-13].

The BFS method provides a simple algorithm for the calculation of the energy of formation
AH of an arbitrary alloy (the difference between the energy of the alloy and that of its individual

constituents). In BFS, the energy of formation is written as the superposition of elemental contri-

butions of all the atoms in the alloy

AH = Y'g, (D
i

For each atom, we partition the energy into two parts: a strain energy, eis, and a chemical

energy, z—:iC, contribution. The first specifically relates to the atomic positions of the neighboring
atoms to atom i, regardless of their chemical identity. For its calculation, we use the actual geo-
metrical distribution of the atoms in the alloy surrounding atom i, computed as if all of its neigh-
bors were of the same species as atom i. The BFS strain energy differs from the commonly
defined strain energy in that the actual chemical environment is replaced by that of a monoatomic
crystal. Its calculation is then straightforward, even amenable to first-principles techniques.

The chemical environment of atom i is considered in the computation of the BFS chemical
energy contribution, where the surrounding atoms maintain their identity but are forced to occupy
equilibrium lattice sites corresponding to the reference atom i. A straightforward approach for the
calculation of the chemical energy is defined, properly parameterizing the interaction between
dissimilar atoms.

Thus defined, the BFS strain and chemical energy contributions take into account different
effects, i.e., geometry and composition, computing them as isolated effects. A coupling function,
g, restores the relationship between the two terms. This factor is defined in such a way as to prop-

erly consider the asymptotic behavior of the chemical energy, where chemical effects are negligi-



ble for large separations between dissimilar atoms. Summarizing, the contribution to the energy of

formation of atom i is then

€. = E.; +g.£. : (2)

2.1 CALCULATION OF THE BFS STRAIN ENERGY

The BFS strain energy can be computed by any method appropriate for the calculation of pure
element crystals. As in previous applications of BFS, however, we use Equivalent Crystal Theory
(ECT) [5] for its computation, due to its proven ability to provide accurate and computationally
economical answers to most general situations. ECT is based on an exact relationship between the
total energy and atomic locations and applies to surfaces and defects in both simple and transition
metals as in covalent solids. Lattice defects and surface energies are determined via perturbation
theory on a fictitious, equivalent single crystal whose lattice parameter is chosen to minimize the
perturbation. The energy of the equivalent crystal as a function of its lattice constant, is given by a
universal binding energy relationship [7]. ECT is based on the concept that there exists, for each
atom i, a certain perfect equivalent crystal with its lattice parameter fixed at a value so that the
energy of atom i in the equivalent crystal is the BFS strain energy contribution eis. This equivalent
crystal differs from the actual ground state crystal only in that its lattice constant may be different
from the ground state value. We compute eis via perturbation theory, where the perturbation arises
from the difference in the ion core electronic potentials of the actual defect solid and those of the

effective bulk single crystal. The simplified perturbation series for eis is of the form [5]

4
€, = EC{F[aIasz[aZ(i, N1+ Flayli, j, )1+ 3 Flagli, p, q)]} =Yoo, O
j J’k P9 n=1
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and E, is the cohesive energy of element i. Four different contributions to the energy of atom i,
which find their origin in four different perturbations, are singled out. The linear independence
attributed between these four terms is consistent with the limit of small perturbations which is
assumed in the formulation of ECT. The first term, o, = ECF[a;(i)], contributes when average
neighbor distances are altered via defect or surface formation (i.e., changes in coordination). It
can be thought as representing local atom density changes, In most cases, this “volume” term is
the leading contribution to €; and in the case of isotropic volume deformations, it gives eis to the
accuracy of the UBER [7], given by Eq. 4. The higher order terms are relevant for the case of
anisotropic deformations [4]. The second term, o, = E_Flay(i, /)], is a two-body term which
accounts for the increase in energy when N bonds are compressed below their equilibrium value.
The third term, o; = ECF[a;(i, k)], accounts for the increase in energy that arises when bond
angles deviate from their equilibrium values of the undistorted single crystal, and the fourth term,
o, = E,Flay(i, p, 9)], describes face diagonal anisotropies (see Ref. 5). In all cases considered in this
work, a rigorous application of ECT is reduced to that of its two leading terms, which describe
average density contributions and bond-compression anisotropies. We neglect the three- and four-
body terms dealing with the bond angle and face-diagonal anisotropies, except for one single
example (surface energy and relaxation of monatomic crystals), where it will be shown that, for
metals, their contribution is exceedingly small [5].

We now apply this formalism to the calculation of the BFS strain energy contribution, eis, of
atom i. To do so, the ECT perturbation equation [5] is written in terms of the distances r; between
atom i and its NN and NNN,

—to;+ %)Rz

i

NRf'éﬂiR1 + MRgie = erie—(ai + 3D (5
J

where N and M are the number of NN and NNN respectively, and where p, /, o and A are ECT

parameters that describe element i, r denotes the distance between the reference atom and its

neighbors, S(r) describes a screening function [4] and the sum runs over all NN and NNN. R; and

R, denote the NN and NNN distances in this equivalent crystal. This equation determines the lat-

tice parameter of a perfect equivalent crystal where the reference atom i has the same energy as it

has in the geometrical environment of the alloy under study.



Once the lattice parameter of the (strain) equivalent crystal, aS, is determined, the BFS strain

energy contribution is computed using the UBER [7], which contains all the relevant information

concerning a single-component system:

g

e = Eic(l—(l +a ye " ) (6)

l

where the scaled lattice parameter a;>

" is given by

5 i
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where g is the ratio between the equilibrium Wigner-Seitz radius and the equilibrium lattice
parameter aei. When ECT is applied to the study of surfaces of monatomic crystals (Cu and Pd),
all four terms should be included in the calculations. However, when considering rigid surfaces
(i.e., no interlayer relaxation) all bond lengths and angles retain their bulk equilibrium values, thus
Fla,] = Flay] = Fla,) = 0. The rigid surface energy is therefore obtained by solving for the “vol-
ume” term represented by Fla;] only. If we consider a rigid displacement of the surface layer
towards the bulk, as is the case in most metallic surfaces, the higher-order terms become finite:
some bonds are compressed, contributing to F[a;], the bond angles near the surface are distorted
as well as the difference in length between face diagonals in some cases, generating an increase in
energy via Fla;) and Fla,], respectively. For the cases studied in this paper, those additional
contributions to eis are generally small, usually representing 1% to 2% of the total energy. The

corresponding energy contribution G, is directly computed using {14]

Ny M, 0
oy =Ec ) 2 7 F(am) ®)
n=lm=1 ™

where N, is the number of atoms in the solid, 6, = 1 if a,,<0 and 8,, = 0 otherwise, M, is the

number of NN of atom n, L,,,, is the number of NN of atom m or n, whichever is smaller, and an

is given by
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where R,,, is the distance between atoms m and n, and c is the ratio between the equilibrium NN

distance and the equilibirum Wigner-Seitz radius.
2.2 CALCULATION OF THE BFS CHEMICAL ENERGY

The BFS chemical energy is obtained by a similar procedure. As opposed to the strain energy
term, the surrounding atoms retain their chemical identity, but are forced to be in equilibrium lat-

v

tice sites of an equilibrium (otherwise monoatomic) crystal i. The BFS equation for the chemical

energy is given by

(o)

R,

N Rf‘e_a‘ ( 10)
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where Ny, and M, are the number of NN and NNN of species k of atom i in the actual alloy. The

chemical environment surrounding atomn i is reflected in the parameters 0, given by

oy = o+ Ay, (11)

where the BFS parameters A (a perturbation on the single-element ECT parameter ;) describe the
changes of the wave function in the overlap region between atoms i and k. Once Eg. 10 is solved

for the equivalent chemical lattice parameter aic, the BFS chemical energy is then

C*

el = yiEiC(l —(1+a )™ ) (12)
where y; = 1 if at™>0and vy, = -1if a;*"< 0 and where the scaled chemical lattice parameter is

given by
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C = E‘_f_) (13)

It is worth noting that the BFS parameter Ay; is, in a sense, as much a single-element parame-
ter that describes element i as any of the parameters previously introduced. It describes changes in
the electron density in the vicinity of atom i due to the presence of atom k. It is, figuratively, a con-
ditioned response of atom i to the presence of atom k and it does not depend on the relative loca-
tion of these two atoms, as would be the case in the context of a traditional potential approach,
where there would be a distance-dependent interaction. The definition of the chemical defect, rep-
resented by the r.h.s of Eq. 10, requires all atoms to be located at equilibrium nearest-neighbor
distance a;.

Finally, as mentioned above, the BFS chemical and strain energy contributions are linked by a
coupling function g; which describes the influence of the geometrical distribution of the surround-

ing atoms in relation to the chemical effects and is given by

g; = exp(-a} ) (14)

where the scaled lattice parameter aiS* is defined in Eq. 7.

In this work we used the BFS perturbative parameters A determined following the procedure
outlined in Ref. 9. The pure element parameters a,, E,, I, &, A and the BFS parameters Apyc, and

Ac,pqused in this study are listed in Table 1.
3. DESCRIPTION OF SINGLE ELEMENT PROPERTIES

The accuracy of the BFS method relies heavily on the few parameters that describe each sin-
~ gle element (including the perturbative parameters A necessary in the description of the alloys).
With the objective of validating these parameters, we devote this section to review the perfor-
mance of the method in a number of applications regarding the surface structure of single element
crystals of Cu and Pd. The rest of the paper is devoted to examine the behavior of the BFS param-

eters Ac,pg 20d Apyc, through several applications to Cu-Pd alloys.

3.1 SURFACE ENERGIES AND SINGLE CRYSTAL SURFACE RELAXATION
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The energy of a free surface plays an important role in several physical and chemical pro-
cesses such as fracture, catalysis, etc. Experimental measurements of the surface energy are usu-
ally at or above room temperature and are subject to errors due to surface-active contaminants and
thus have a degree of uncertainty. Lately, there has been an increasing effort on first-principles
calculations [15-21] as well as in the area of quantum approximate methods. Both EAM [6] and
ECT have been applied to this and other surface properties, with the latter method providing
excellent agreement with available experimental data [5,14].

Table 2 lists, for the low roughness faces, the different contributions to the surface energy as
defined by ECT. These results are compared with several experimental estimates [28,29] as well
as the surface energies obtained by other approaches and first-principles calculations [17,22-27].
The ‘rigid’ results contain only one contribution, 6. This ‘volume’ term decreases substantially
once the top layers are allowed to relax, but some of the decrease in energy is balanced by the
finite contributions of the anisotropic terms 05, G5 and 6,. Of these three terms, the largest contri-
bution is provided by the bond-length anisotropy term represented by G, which arises from the
contraction of the first interlayer spacing. In all cases, the many-body terms due to bond-angle and
face-diagonal anisotropies are very small compared to the leading terms and have no effect on the
overall behavior of the relaxation patterns as well as the resulting surface energies [5,30].

Multilayer relaxation means that planes in the surface region display shifts perpendicular to
the surface, directed both inward and outward, with or without distortion of the two-dimensional
mesh cell. In most cases the relaxation pattern is of an oscillatory character, with the alternating
compressions and expansions following trends that depend on the stacking (ABAB..,
ABCABC,.., etc.) and whose magnitude decreases in approaching the bulk. The results shown in
this section indicate that a quantitative comparison with experiment is often difficult, in that there
is a substantial range of results for a given material and surface, even regarding the sign of the
change. Similarly, quantitative comparisons with first-principles calculations suffer from a spar-
sity of results. Therefore, the bulk of our assertions about success in predicting surface relaxation
is based mostly on agreement with the magnitude and sign of the changes. Several experimental
and theoretical studies have concentrated on the Cu and Pd low index surface relaxations
[6,23,31-56]. Table 3 summarizes the experimental [31,41,50-52] and theoretical
[6,22,23,40,41,44,45] results for low-index faces of Cu and Pd. The agreement between the ECT
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predictions and other theoretical and experimental results [31,35-39,42,43,50-52] is consistent for
all faces of Cu and Pd.

It is important to address the issue of uncertainties in the prediction of multilayer relaxation.
All quantum approximate methods used for simulations of surface structure (ECT, EAM, etc.)
[3,4,22] rely either on input data (generally experimentally determined) or on certain approxima-
tions for some of the variables of relevance. First principles methods have been used to provide
input data when experimental results are inaccurate or unavailable. Either way, the uncertainties
in the experimental data used or the choices made in the implementation of first-principles calcu-
lations should translate into some degree of uncertainty in the results obtained with the chosen
quantum approximate method. In order to estimate the impact of such experimental or theoretical
uncertainties in the parameterization of the quantum approximate methods, we will attach an esti-
mate of the possible errors due to any of the reasons mentioned above. Although there is no cer-
tain way to determine such errors (after all, the predictions are, within their own framework,
exact), we will see that even small changes, of the order of 1%, in the surface energy can generate
quite interesting variations in the relaxation schemes predicted. In particular, within the frame-
work of ECT (I [5,14] or II [4]), such small changes in the surface energy can be easily obtained
by changing any of the input parameters (lattice constant, cohesive energy, bulk modulus) by
comparable amounts, well below the usual experimental errors in the determination of such quan-
tities.

We thus define ‘error bars’ in such a way that all the intermediate values so obtained predict
variations in surface energies within a certain tolerance. As an example, we set the tolerance at
1% of the equilibrium surface energy, G,. This defines a ‘surface’ 0(Ad;;,Ad,3) and the allowed
values for these parameters are such that 0.996, < 6(Ad;2,Ady3) < 1.01Ge, where Ad,,, denotes
the change in separation between planes n and m. We take, as an example, the case of Cu for
which there is a consistent agreement between experiment, ECT and other theoretical approaches.
In Table 4, we compare results for the multilayer relaxations of the first two interlayer spacings
for those cases for which data are available [33,38,42]. The inclusion of the theoretical ‘error bar’,
as mentioned above, allows for a better comparison with experiment as it shows that for most

cases, small changes in the input parameters of the method may account for the whole range of

possible experimental results.
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For completeness, and due to the considerable experimental interest in stepped and kinked
surfaces, we include predictions on multilayer relaxations for Cu(210) and Cu(311), including
both perpendicular and parallel relaxations. as percentages of the corresponding bulk spacings in

Table 5, including recent experimental results [57].
4. BFS ANALYSIS OF THE Cu-Pd SYSTEM

Having established the validity of the parameterization of Cu and Pd by means of a detailed anal-
ysis of the surface properties of pure crystals, we now proceed to study the Cu-Pd system using
BES. It should be noted that every single application of BFS to the interaction of Cu and Pd atoms

relies on just one pair of parameters, listed in Table 1, and that no correction or adjustment is

made when dealing with different types of applications.
4.1 HEAT OF SEGREGATION OF SINGLE SUBSTITUTIONAL ADDITIONS

Surface and interfacial segregation are phemomena with great technological importance
[58,59] as they affect both the chemistry of surfaces and the strength of interfaces. In addition to
the considerable experimental effort devoted to segregation [60-71], theoretical studies covering a
wide range of techniques [6,22,72-76] have been applied to seek further understanding on the
driving mechanisms for segregation. A thorough review of experimental and theoretical results for
the surface composition and structure for a large number of binary alloys can be found in Ref. 77.

The heat of segregation is defined as the difference between the heat of formation of a semi-
infinite A crystal with an impurity of atomic species B located at a lattice site on plane p (p=0 is
the surface plane) parallel to the surface and the same structure, but with the atom B located in a
lattice site in the bulk (p = b). For the derivation of an analytical result, we ignore relaxation
effects around the impurity as well as surface relaxation of the host crystal, as detailed in the pre-
vious section. This is clearly unrealistic, but it is justified in that it allows for the derivation of
simple expressions describing the fundamental process. We consider a cell containing the impu-
rity atom such that the host atoms on the boundary of this cell are ‘insensitive’ to the presence of
the impurity (i.e., the distance is large enough to exceed the range of interactions included in the

BFS calculation of the energy). The cell is a sufficiently large piece of the crystal which includes
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the impurity atom in layer p, its surrounding neighbors, and several other atoms located in inter-
mediate layers ¢ (¢ = 0,1,...,p, ... p, ). The heat of segregation can then be understood as the
exchange of an impurity atom in layer p with a host atom in the bulk. If this exchange lowers the
energy, then the impurity does not segregate to the surface.

If AE[, x) denote the energy of formation of the computational cell when the atom X is located

in layer p, then the heat of segregation is

(p)

After some algebra, an expression which depends only on individual strain and chemical

R R
’ —ag ~ap
AEEJ’) = €p —eB —eA +Ze "[fqu +gqu ]—NSA Mei +e "egp—e b8§b(16)

where eip (e,C(P) is the strain (chemical) energy of an atom X in layer p, 7 (g} ) denotes the num-
ber of NN (NNN) than an atom in layer p has in layer g and where &} (5. ) is the chemical

energy of an atom X in layer p that is a NN (NNN) of the impurity atom B. The scaled lattice con-

stant @>" is given by

s (ay ~a)
ay, = —’-’Z—— 17)
X
Including relaxation would render this expression unmanageable, as it would include every
atom in the cell as well as a substantial number of variables (interplanar spacings for the surface
planes and interatomic relaxations around the impurity in the bulk). It is interesting to examine
this simplified result as it provides a simple, analytical way to isolate the different mechanisms

involved in segregation and their influence in the heat of segregation. Eq. 16 shows that two dis-

tinct contributions are responsible for segregation: a strain term,

ASY = & ~ep -4 (18)
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and a chemical term

ACY) = AEP —AsY (19)

both defined in the context of BFS. One immediate conclusion regarding the driving mechanism
is drawn from the predictions from these last two equations, which are summarized for a large
number of host-impurity systems in Table 6: the strain energy contribution consistently has the
same sign as the whole quantity, indicating that the segregation trends obtained from Eq. 16 are

dictated by the relative value of the strain energy, as one would expect. Moreover, two different

selected from the different terms that make up the strain energy: sfg 'Elsﬁ,’
P

<

contributions can b
directly related to the structural strain induced by the presence of the impurity, and sgp -¢, , which
indirectly reflects the difference in surface energies of the two participating species (note that, as
defined, these are not competing mechanisms). The first quantity does not follow the correct trend
for the total BFS energy in all cases, although it tends to do so as the lattice mismatch between
species A and B increases. We then conclude that only when the lattice mismatch is sufficiently
large so as to make Asy <0 this effect can be taken as the one responsible for identifying the seg-
regating species. The ‘surface energy’ terrn,egp—aip, consistently reproduces the same trends as
AEg as a whole, as well as experimental trends. These results are displayed in Table 6: the first
column shows typical experimental predictions [76] for the sign of Az{”. The second column dis-
plays the corresponding results obtained from Eq. 16 and the last three columns show the sign of
As, €5 -5 and €] -€; . A negative sign in the first two columns indicates that the impurity
atom segregates to the surface. It should be noted that as we move down to planes below the sur-
face, one would expect chemical effects to dominate as the influence of the surface is lessened,
resulting into a more delicate balance between AS and AC, which could translate into segregation
patterns where certain layers are enriched and other are not, sometimes in an oscillatory fashion.
Unlike most other systems for which theoretical or experimental evidence is available, Cu-Pd
is inherently uncertain: theory and experiment are equally divided with respect to the choice of the
segregating species. A recent theoretical study even finds a segregation reversal where for
Cu,Pd; , disordered alloys, the segregating species varies with composition [60]. However, the

overall agreement between BFS and experiments for other systems suggests that further experi-
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mental work might confirm the theoretical predictions. It should be noted, however, that small
variations in the input parameters A4 5 and Ag, are sufficient, in some cases when the heat of seg-
regation is small, to reverse the predicted behavior. For the particular case of Cu-Pd studied in this
work, the BFS parameters were obtained by fitting to the experimental heat of solution in the
dilute limit, which is directly related to the physical phenomenon represented by the heat of segre-
gation. We then suggest that when the heat of segregation predicted by BFS is small, uncertainties

in the experimental input used (and thus Asp and Ag,) must be questioned, before those predic-

tions are accepted.
4.2 SURFACE ALLOYS

The emerging field of surface alloys, i.e., alloys that form only on a surface typically including
from one to a few layers, provides a wealth of new and unexpected phenomena where atomistic
modeling can be of help in understanding the experimental observations [78-83]. The level of
detail needed to properly describe the observed features, or to predict the behavior of unknown
systems, imposes a severe requirement not only on the strength of the theory, but also on the
parameters used. Beyond the ability of any given method to properly describe surfaces with the
same accuracy with which it describes bulk features, it is also necessary that the method has
enough resolution to be able to successfully distinguish the complex patterns observed in surface
alloys, which clearly includes surface phenomena as well as the interactions between two or more
different elements. In this section, we focus on the deposition of Pd on Cu(100) and Cu(110), and
Cu on Pd(110), highlighting the fact that in spite of the nature of the problem, no changes or
adjustments are made on the parameters used. These three surface alloys, for which there is abun-
dant experimental work [84-90], display substantially different patterns: (a) Pd/Cu(100) is charac-
terized by a c(2x2) structure for low Pd coverage [84-87]; (b) Pd/ Cu(110) shows the formation of
Pd-Cu chains, resulting into a CusPd one-layer surface alloy [88] and (c) Cu/Pd(110) features
monoatomic linear chains oriented in the [110] direction for low Cu coverage [89,90].

The results shown in this section were obtained from implementing a calculational procedure
based on the determination of ‘catalogues’ of atomic configurations describing a large portion of
the substrate and the adlayer [91,92]. The energy of each configuration is computed with the BFS

method and the surface alloy formation process is then reconstructed by linking the states with
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lower energy, as the coverage increases. As information on higher energy states is also available,
an advantage of this procedure lies in the insight that it provides on metastable states and therefore
on alternate ordering patterns. However, being that there is no specific set of rules for constructing
such catalogues, the effectiveness of this approach is directly related to our ability to include in
these catalogues all the relevant configurations.

A catalogue of configurations is built focusing on the symmetries of the substrate, but general
enough to include most of the possible growth patterns. For the sake of simplicity, these configu-
rations do not include individual or collective atomic relaxations, and all the calculations are per-
formed at zero temperature. Both conditions can be relaxed but, given the objective of this paper
(i.e., the transferability of the BFS parameters for Cu and Pd to any bulk or surface problem), a
fuil treatment of relaxations and thermal effects would distract from the main goal.

(a) Pd/Cu(100): A catalogue of configurations for Pd coverage up to 0.5 ML was built, includ-
ing states with Pd atoms in surface sites substituting for surface Cu atoms, as well as sites in the
overlayer [91]. Starting with low Pd coverage, it is seen that Pd atoms insert themselves in the
(100) surface layer in nearest-neighbor sites along the [010] and [100] directions, leading to a
¢(2x2) structure at higher coverages. The ejected Cu atoms either migrate to nearby steps or
nucleate on top of alloyed areas resulting in subsurface Pd. The preference for the formation of a
Pd c(2x2) structure is highlighted by the fact that alternative ordering patterns (even those that
show a slight departure from the c(2x2) ordering) are much higher in energy and therefore
unlikely to occur. However, the low-lying energy states (all including c(2x2)-like patterns) also
include states where some Pd atoms interdiffuse below the surface layer, a trend enhanced for
higher Pd coverage. While this feature hints to the possibility of much more complex alloying pat-
terns for Pd coverage close to 0.5 ML, it also establishes a limit for the validity of the restrictions
imposed in the current calculation, as subsurface Pd penetration would require a full treatment of
collective atomic relaxations. In fact, experiment indicates a clock-rotated phase with the c(2x2)-
p4g symmetry [84], consistent with a substantial displacement of the subsurface atoms [84]. In
spite of the fact that these are static calculations, the motion of Cu islands or Cu atoms in the
adlayer can be modeled by analyzing configurations where Cu resides on top of surface Pd atoms,
attached to a nearby step, or somewhere in between. The results show that Cu migrates to nearby

steps, with decreased mobility for increasing Pd coverage (i.e., the difference in energy between
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alloyed spots and steps decreases). Summarizing the results for Pd/Cu(100), the BES calculations
successfully reproduce all the features observed experimentally up to 0.5 ML Pd coverage
[84,85]: the alloying of Pd atoms in the surface in the [010] and [100] directions, the nucleation of
Cu islands on top of alloyed areas, the decreased mobility of Cu islands with increasing Pd cover-
age, the formation of a ¢(2x2) phase as the chains converge, and the interplay between the c(2x2)
phase and the initiation of second layer growth at increasing coverages before the c(2x2) is fully
completed. Fig. 2 illustrates this last feature, by studying the evolution of the energy of formation
of selected states, namely, the c(2x2) ground state and the configurations corresponding to the Pd
atom in the near-surface layers.

(b) Pd/Cu(110): Once again, it is seen that Pd atoms exchange sites with Cu surface atoms
[88-92]. However, the particular features of an fcc (110) surface turn this Pd surface atom into a
strong nucleation point for Cu atoms in the overlayer, which in turn stimulates the formation of
Cu chains in the overlayer, as opposed to Cu islands attached to alloyed surface regions. An
energy level diagram representing this process is shown in Fig. 3. Configurations with neighbor-
ing Pd atoms in surface sites are substantially higher in energy than those where Pd atoms interact
only through Cu adatoms. In agreement with experiment, no additional features, like Pd penetra-
tion in subsurface layers, are observed. For increasing Pd coverages the growth pattern remains
the same, resulting in the formation of Cu chains in the adlayer, coupled with alternating Cu-Pd-
Cu surface atoms. Not surprisingly, this experimentally observed pattern [88] corresponds to the
[010] direction in a (110) termination of an L1, CusPd alloy. The lack of alternate orderiﬁg pat-
terns that compete energetically with the one observed, leads to the conclusion that for higher Pd
coverages, the Cu-Pd chains observed will eventually coalesce into what amounts to a Cu;Pd
(110) surface, with full coverage of Cu with a 2:1 Cu:Pd ratio, as observed experimentally.

(c) Cu/Pd(110): Experimental results for this system clearly show that the observed growth
pattern is substantially different from the systems where Pd is deposited on a Cu substrate [89,90].
The energy level diagram shown in Fig. 4 indicates that Cu does not substitute for Pd surface
atoms. Instead, the state of minimum energy corresponds to the Cu atom attached to a Pd step
edge in the [110] direction, with the step edge acting as a nucleation center favoring the growth of
1D Cu chains. While this trend is also observed at higher coverages, the preference for separate
anchoring points in the step edge is diminished at higher coverages, suggesting a 2D growth of the

linear chains. Still, it is expected that a clear separation between 1D chains will dominate the low
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coverage regime. The energy levels in Fig. 4 correspond to selected configurations with increasing
Cu coverage, clearly showing that Cu atoms are always trapped by a substrate edge or existing Cu
islands. The Cu ‘fingers’ in the [110] direction are observed experimentally for room temperature

and low (<0.1 ML) Cu coverage, as well as the formation of 2D islands for higher Cu coverages,

consistent with the modeling results.

4.3 CuPd SOLID SOLUTION

As shown in Fig. 1, a continuous solid solution is found at high temperatures. Measurements
of the lattice spacings of the solid solution date back to 1932 [93]. Lattice spacings were said to be
accurate to ~0.05%. In order to obtain BFS predictions for the lattice parameter of the solid soiu-
tion, it is convenient to use a simple algorithm based on the cluster expansion method [94], which
allows for the calculation of finite temperature lattice parameter values from information describ-
ing certain zero-temperature ordered structures (regardless of the fact if these structures are found
in nature or not). In this approach, the equilibrium properties of Cu;Pd, CuPd and CuPdj; in the
L1,, L1g and L1, structures, respectively, are compﬁted with the BFS method as a function of vol-
ume. Following the Connolly-Williams scheme [95], these results yield information of the differ-
ent many-body interactions that characterize the system. Once these potentials are known, it is
straightforward to obtain the energy vs. volume curve for the disordered solid solution.

We start by computing the formation energy of the five basis clusters needed, within the tetra-
hedron approximation (only clusters consisting of NN). These simple clusters are the building

blocks of the corresponding ordered fcc alloys A,,By.,,. The formation energy is then
m A B
AE,, = E,(r) + 7E4(a;) - (1 - %‘)Eo(ae) (20)
where o* and o are the equilibrium lattice constants of pure A and B metals, E ) = Ef, and
EyaP) = EL. With these definitions, E,,(r) represents the binding energy curve of the crdered alloy

as function lattice spacing. The energy of formation of the disordered structures A,Bq_, as a func-

tion of the ordered ones [95] can be computed with
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4
AEprx) = Y (;)xm(l—x)“""AEm(r) 1)

m=0

The lattice parameter for the disordered alloy A,B;._, is then given by the value of r which min-
imizes AEp, and the energy of formation is the corresponding minimum value of AEp,. The values

for the lattice parameter as a function of composition are shown in Table 7. Table 8 shows the

energy of formation as a function of concentration.

4.4 ORDERED STRUCTURES

The wealth of experimental studies of surface relaxation on pure metallic surfaces is not
matched for alloys [97]. However, in spite of the small number of experimental studies [98-102],

there seems to be a slow but sure progress in the field, as the available theoretical tools for model-

ing become more accurate.

The Cu-Pd phase diagram shown in Fig. 1 exhibits an L1, ordered phase at low temperatures. In

this section, we apply BFS to the calculation of the surface structure of CusPd.

4.4.1 Multilayer relaxation and surface structure of CuzPd

The lattice parameter of the CusPd phase, as a function of composition, can be computed
from the BFS predictions for AE,,(r), for m=3 (see Eq. 20). The calculation of the energy vs. vol-

ume curve is a straightforward calculation, as all Cu atoms are equivalent:

1 .
AE (r) = Z(3eCu+ePd) (22)

where e, and ep, represent the contributions of Cu and Pd atoms, respectively, computed
using the formalism introduced in Sec. 2. By minimizing AE with respect to the lattice parameter,

the equilibrium spacing of the L1, phase is thus obtained.
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The Cu;Pd phase is simple enough to allow for a straightforward application of BFS for the
determination of surface energies and multilayer relaxation patterns. Previous studies using BFS
of A3B structures (NizAl, CusAu) [103] have shown that the methodology provides reliable
results for the calculation of surface structure in comparison with experiment, in particular, the
determination of the individual displacement of surface atoms of different sizes in mixed-compo-
sition surfaces.

There are two possible terminations for the (100) L1, structure of a certain A3B alloy: a mixed
composition (1:1 A:B) plane alternating with a pure A (1:0 A:B) plane, giving an overall stoichi-
ometry (3:1 A:B), and a pure A plane alternating with mixed-composition planes. These two pos-
sible bulk truncations are also possible for the (110) surface, whereas the (111) truncation is
always stoichiometric (3:1 A:B). We will assume that the lattice parameter a is the one previously
determined for a bulk ordered alloy A3B.

While no experimental data for CusPd exist, we provide a foundation for the validity of our
predictions by discussing results for NizAl and CuzAu, which have a similar structure, in compar-
ison with other experimental or theoretical results.

For CusAu, relaxed surface energies are shown as obtained with Finnis-Sinclair many-body
potentials [104] and BFS. Both methods predict, as expected, lower surface energies for the mixed
composition (100) and (110) truncations. This feature has been experimentally proven via a low-
energy ion scattering study which detected equal parts of Cu and Au in the top layer [105]. BES
and FS results also agree on the relative change in surface energy once the topmost layers are
allowed to relax, in spite of the fact that the FS values are 50% smaller than the BFS ones. As is
also to be expected, the surface energies of (100) 1:0 and (110) 1:0 faces are comparable to the
corresponding values for single Cu crystals. In what follows, the relaxations are indicated as the
percentage change in interlayer spacing from the unrelaxed case to the one measured from the
relaxed position to the unrelaxed location of the plane immediately below. For the Cu3Au(100)
1:1 Cu:Au case, the results imply a rippling of 0.148 +/- 0.025 A, which amounts to 3.97% of the
lattice parameter determined for this alloy (3.73 A). This result compares very well with the
3.77% rippling obtained using FS potentials [104]. A similar situation is found for the (1 10) 1:1
Cu:Au surface, where we find the rippling to be 4.2% of the lattice parameter, whereas FS poten-
tials predict a rather small change of 1.9%. For the mixed composition (111) 3:1 Cu:Au surface,
BFS predicts a rippling of 4.6%, thus agreeing with FS results and experimental evidence that the
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Au atoms are farther out than the neighboring Cu atoms in mixed-composition surfaces. For
Ni;Al, the following values for the gap between Ni and Al atoms in the mixed composition (100),
(110) and (111) surfaces is found: 0.12 A, 0.09 A and 0.16 A, respectively. A similar trend, but
with somewhat smaller values for the rippling are obtained from EAM [106]: 0.09 A, 0.06 A and
0.07 A, respectively. A different EAM calculation [107] predicts a 0.06 A separation between Ni
and Al atoms in all three surfaces. Recent LEED data [99] predict a distance of 0.02 A between Ni
and Al atoms for the (100) surface. Based on the ability of BFS to describe the surface structure of

the L1, Ni;Al and CusAu, Table 9 lists similar predictions for CusPd.

4.4.2 Order-disorder transition: CuzPd

For the study of order-disorder transitions, we make use of Monte Carlo - Metropolis large scale
simulations. Following the traditional algorithm, an initial, random, structure is generated by
assigning Ni, Al and Fe atoms to rigid (i.e., no individual relaxations) lattice sites in a 1024-atom
computational cell with periodic boundary conditions in all three directions. The kinetics of
ordering with decreasing temperature are represented by the exchange of randomly chosen pairs
of atoms of different atomic species throughout the cell. The difference in energy of formation of
the cell before and after the exchange, AE, is used to determine the likelihood that this exchange
can take place. If AE < 0, the exchange is readily accepted. If not, it is assigned a probability
exp(AE/KT), where k is Boltzman’s constant and T is the temperature. For a fixed value of T, the
cell is allowed to evolve until its total energy stabilizes. The process is repeated for decreasing
values of T, until a final, equilibrium, state is reached (i.e., every possible distribution of atoms is
considered until the one with the lowest possible energy is found). The algorithm favors the ideal
atomic distribution consistent with an infinite annealing time. We call this procedure all-swaps
(AS) [108], as any atomic exchange is eventually considered and the actual ground state of the
system is reached.

For the purpose of this work, where simulations are only meant to illustrate and expand on the
results obtained from the spectral analysis, it is convenient to introduce an alternative approach to
aid in the understanding and interpretation of some features that characterize the results of the
standard Monte Carlo - Metropolis procedure. While traditionally used for the determination of

ground state properties, the AS approach does not necessarily provide the best means for compar-
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ison with experiment, due to its unrealistic treatment of atomic interdiffusion. Moreover, AS does
not constitute a proper description of temperature effects as T enters in the simulations only
through the probability factor kT. This results in an incorrect scaling between temperature and the
observed ordering. The unlimited range of the atomic exchanges allows for ordering at very high
temperatures, thus proving highly inefficient for a proper analysis of order-disorder transitions.

These limitations can be avoided, within the framework of an approximate variation of the
standard Monte Carlo - Metropolis algorithm, solely designed to focus on the modeling of the low
temperature behavior of individual atoms. A second simulation approach is therefore introduced,
particularly designed to avoid these limitations [109]. In this algorithm, which we denote NN, we
limit the range of atomic exchanges to pairs of atoms located at nearest-neighbor distances. More-
over, we modify the probability criterion by defining it in terms of the ratio between the energy
necessary for the exchange, AE, and the available thermal energy, given by

®

TV -
E, = 9NkT(—) X i (23)

where @, is the Debye temperature [110]. In this approach, the actual ground state of the system
is not necessarily reached, as different atoms could eventually get ‘trapped’ at low temperatures,
thus unable to reach their true equilibrium positions. Together, AS and NN simulations supple-
ment each other, providing insight not only on the nature of the thermodynarmic ground state (AS)
but also on the most likely features observed experimentally (NN). We stress, however, that the
NN approach does not rely on a rigorous statistical mechanics foundation as AS does. It is, at
best, a simple but approximate way to model the evolution of the system and therefore illustrate
the consequences of the basic features of the energy spectrum that is obtained from the analytical
calculations (i.e., small energy gaps between the low-lying energy levels).

The results of simulations using the NN algorithm and the same parameters for fcc Cu and Pd
used throughout this paper are shown in Figs. 5-8. Four alloys were studied: Cu,oPds, (Fig. 5),
CuysPdys (Fig. 6), CugyPd;g (Fig. 7) and CuggPd,; (Fig. 8). Starting from a (high-temperature)
random distribution, all 1008-atom cells were given the same temperature treatment, namely,
descending 100 K steps to room temperature. A few selected views of the computational cell are

shown in Figs. 5-8, highlighting a) disorder at high temperature, b) an ordering trend usually in
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the range 700-900 K and c) the formation of specific ordered structures for different composi-
tions. For Cu;oPds, hints of order are clearly visible at 800 K, leading to a fully ordered L1,
structure at 400 K. It should be noted that, due to the relatively low influence of NNN interactions
in the energy of the cell, it is likely that the computational cell will display numerous ‘antiphase
boundaries’, separating regions of the cell with the same type of ordering, as is the case in Fig.
5.e. The intermediate steps in the cooling of a Cu;5Pd,s alloy are shown in Fig. 6. Once again,
there is an order-disorder transition in the 800-900 K range, higher than that observed for the
Cu70Pd30 alloy. In this case, however, there is a strong ordering trend leading to a nearly perfect
L1, CusPd alloy at 400 K. The phase field of the L1, structure extends to both sides of the 25 at.%
Pd alloy. Simulations for a CuggPd;, alloy were made and similar results were found in terms of
the transition temperature, in that it remains substantially constant in the 800 K range. Selected
steps in the cooling process of this Cug,Pd, g alloy are shown in Fig. 7, showing the formation of a
perfect L1, phase. One last case, CuggPd)y, at the edge of the L1, phase field (see Fig. 1), is

shown in Fig. 8. In excellent agreement with the experimental phase diagram, there is very little

evidence of ordering in this case.

4.4.3 Order-disorder transition: CuPd

In order to study order-disorder transitions, all possible ordered structures, for different com-
positions, should be evaluated. In doing so, the ordered structure with the lowest energy can be
determined for each composition. To achieve this goal a demanding computational effort is
required which, in spite of the simplicity of BFS, greatly exceeds the scope of this paper.

BFS requires that each atom has to be parameterized in the symmetry of the alloy in which it
is found. Until now, we have used fcc parameters for Cu and Pd as every study described in this
paper has dealt with the fcc phase of these elements. If we were to follow the brute force approach
mentioned above for the determination of the phase diagram, parameters for Cu and Pd should be
obtained for each and every possible symmetry. While this is certainly possible, we will restrict
our study to just two possible symmetries: fcc and bee. For the bee phase of Cu or Pd, there is no
experimental input that can be used to perform the appropriate parameterization, therefore, the
needed input parameters have to be obtained from a different source. This problem, similar to the

one encountered in previous studies of alloy phases different from those of the pure constituents
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[10] was solved by computing the necessary parameters from first-principles calculations, using
the Linear-muffin tin orbital method (LMTO) [111] for bcc elements. Regardless of what first-
principles method is used, there is no need to use experimental input at all, as all parameters -even
those corresponding to the ground state of the element- can be generated by the same method,
thus introducing a high level of consistency in terms of the sources for input parameters for the
method. However, while first-principles predictions of lattice parameters are generally accurate,
that is not the case for the cohesive energies and the bulk modulus.

Being the only alternative to be able to model bec Cu, Pd or Cu-Pd alloys, it is then necessary
to replace the fcc Cu, Pd and the BFS parameters (Apgc,, Acupq) used in previous sections
(obtained from experimental input) with a new set purely derived from first-principles calcula-
tions. Otherwise, there would be no consistency in the comparison of bce- and fec-based alloy
structures. While this last statement seems to contradict the original claim in this paper, i.e., the
universality of the parameters used, it should be noted that nothing prevents from always using, in
every application, the parameters derived from first-principles instead of the ones obtained from
experimental input, as done in all the previous sections in this paper. In fact, most of the recent
work using BFS for the study of high-temperature ordered intermetallic alloys has been done
solely with theoretical parameters.

To compute the input parameters for a single element (in any given symmetry), we will use the
approach used in Ref. 10, where the energy vs. volume curve is built from first-principles calcula-
tions, and then fitted to the UBER [7], from which the cohesive energy, equilibrium lattice param-
eter and bulk modulus can be extracted. To compute the BFS parameters Aqp and Ay, it is
necessary to build the binding energy curve for a given ordered structure and extract, as in the
case of the single element, the cohesive energy per atom, the equilibrium lattice parameter and the
bulk modulus. Once these quantities are known, using the resulting energy of formation and equi-
librium lattice parameter, the BFS chemical energies can be computed analytically. It is then pos-
sible to find the values of A, and Agy that would result in those values of the BFS chemical
energies. This straightforward procedure is further simplified by the fact that in order to build the
binding energy curve for the ordered phase, it is not necessary to compute a large number of
points. It is actually sufficient to compute just two points on that curve, or as many points as non-

equivalent atoms are needed to describe the structure. For L1, L1, and B2 structures, for exam-
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ple, just two points are needed. To fix ideas, consider the B2 structure of CuPd. Being that all Cu

(and Pd) atoms are equivalent, the energy of formation can be simply written as

AHg,(a) = %(eCu(a)de(a)) (24)

where e, (epy) is the BFS contribution of a generic Cu (Pd) atom as a function of the lattice

parameter of the ordered phase:

£,(a) = £5(a) +g4(@)Eq (25)

The determination of the chemical energies (independent of volume) requires the knowledge

of two points only in the binding energy curve of the alloy, E’(a;) and E’(ay):

, 1 1
AH, = AH(a) = E'(a)) - 5(E’é +Eoy+ 5(85 +e5(a) + g5(a)ep) (26)

for i = 1, 2, from which the chemical energies can be obtained. In terms of the alloy energies

E’(ay) and E’(ap) and the pure element parameters, the chemical energies are then:

EC _ gB(az)(zAH1—51)—83(01)(2AH7_‘52) @7
4 g.(a1)g5(ay) —84(az)gpar)

and a similar expression for the chemical energy of atom B, where

Si= (€(a) +ex(ay) (28)

It is then possible to determine the scaled lattice parameter of the (chemical) equivalent crystal

and from there, the values of Ac,pg and Apyc, that are consistent with those results.
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Once the chemical energies are known, it is also possible to determine the equilibrium lattice
parameter of the ordered phase by minimizing the expression for the energy of formation of the

ordered structure, leading to the following transcendental equation for ay:

A’Bél,—;(EiCaf* =0 (29)
where
a; = ¥ao-a) (30)
i
The energy of formation of the ordered phase, AHy, is then
AH, = AH(ag) €2)

Table 10 displays the pure element parameters (Cu and Pd in the bee or fee phase), as obtained
from first-principles calculations and, in the case of the fcc phase, from experiment. Table 11
compares the values of AH, and a, obtained from linearized-augmented plane wave method
(LAPW) calculations [112] for the L1y phase with those obtained experimentally. Also, the
LAPW parameters for the B2 phase of CuPd are shown. For completeness, LMTO parameters for
both phases are also included in all cases. The resulting values for the BFS interaction parameters
are A py = -0.03248 A! and Apyc, = 0.04073 A™! (for bec alloys) and A, pq = -0.02621 Aland
Apgcy, = -0.04916 A1 (for fec) alloys.

It is clear now that with the availability of bee and fcc parameters for Cu and Pd, it is possible
to examine the competition between the B2 and the L1j phases of CuPd. Table 11 clearly shows
that the B2 structure has a substantially lower energy of formation. It is also possible to study the
transition order-disorder by means of Monte Carlo simulations

The analysis of the order-disorder transition for CuPd involves also the fact of a phase change,
from an fce disordered solid solution to a bec B2 ordered phase. Only in this situation, and for the
sake of consistency, we will compare results of NN simulations of bec and fcc cells using, in both
cases, first-principles LAPW parameters. Using experimentally determined parameters for the fcc

case, as done for the L1, phase, and theoretically determined bcc parameters would not constitute
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a proper comparison due to the noticeable differences in cohesive energies, which would translate
into an inaccurate determination of the ordering process. This can be seen in Fig. 9, which shows
the energy of the fcc cell as a function of temperature (once the energy of the cell is stabilized for
any given temperature). The curve obtained using LAPW parameters (open squares) predicts a
positive energy of formation of the disordered fcc phase, while the one obtained using the experi-
mental parameters (open disks) predict a negative energy of formation for the whole range of tem-
peratures considered, as expected. However, it is also clear that both curves share, overall, the
same features (i.e., temperature dependence). The transition temperatures for the CusPd order-
disorder transition are correctly predicted by the simulation using experimental parameters. The

corresponding transition temperature from the LAPW-based simulation is noticeably lower. A

ry I

similar situation occurs for CuggPd4q alloys (in the fcc phase): once again
similar features (open disks and squares in Fig. 13), with different predictions for the transition

temperatures.
Taking into account that there is a rather constant energy shift due to the difference between

experimental and theoretical cohesive energies, and the fact that vibrational effects are not
included in these calculations, we now examine the competition between a bcc and an fcc cell
subject to the same temperature treatment for CugoPdy alloys. Fig. 14 shows the energy vs. tem-
perature curves for these cells, clearly showing that at high temperatures an fcc solid solution is
favored, while at low temperatures, the ordered B2 phase is energetically favored. The figure sug-
gests, however, that the transition from one regime (fcc, solid solution) to another (bcc, ordered
B2 phase) takes place at unrealistic high temperatures (3500 K). While this simulation proves that
there is a transition from a high temperature fcc solid solution to a low temperature bec ordered

phase, it does not provide an accurate tool for determining transition temperatures.

5. CONCLUSIONS

The extensive range of application described in this paper prove that it is possible to attack
problems of different nature with a universal set of parameters, as long as the method breaks the
dependence of the parameters on a specific type of atomic distribution. With the same level of
accuracy, the BFS method was shown to provide the correct description of the bulk and surface

behavior of single monatomic crystals (Cu or Pd), as well as their alloys. The only unavoidable
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dependence of the parameters is in terms of the crystal symmetry under consideration. However,
once the crystal symmetry is determined (bec, fcc), it is not necessary to change the parameters
for specific applications. It is also shown that the use of first-principles methods provides an effi-
cient tool for determining the BFS input parameters when there is no experimental source. In gen-
eral, it is shown that the BFS method can be made independent altogether from experimental

input, by basing the calculation of its input parameters solely in terms of first-principles calcula-

tions.
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TABLE CAPTIONS

Table 1: ECT and BFS parameters. The constant p is 2n-2, where n is the atomic principal quan-
tum number, / (in A) is a scaling length [7], the screening length A (in A) is defined as 2.81/[5]. E,
and a, are the cohesive energy (in eV/atom) and equilibrium lattice parameter (in A) of the pure

crystal. The BFS parameters A, p; and Ap,c, were determined following the procedure in Ref. 9.

Table 2: Unrelaxed and relaxed surface energies of [hkl] Cu and Pd faces. In each case, we add the
four ECT contributions to the total energy. Experimental and theoretical values of the surface

energy of different Cu and Pd surfaces. The experimental results (which generally correspond to
2 -

olycrystalline surfaces) are (in erg/cm®) 1770 [28] and 1790 {29] for Cu and 2000 [28] for Pd.
POLYCI) J & L
Table 3: Interlayer relaxations for the low index faces of Cu and Pd as obtained by ECT and other

methods.

Table 4: Multilayer relaxation of the (100), (110) and (111) faces of Cu. Experimental and theo-
retical results are included. For ECT, two different sets of results are presented: (a) One-layer,
obtained by forcing the second layer to remain at its equilibrium position and (b) Two-layer,
where the top two planes are allowed to relax. The experimental results include the experimental

error, and the theoretical results include the variation in the predicted surface energies by 1% (see

text), quoted as a ‘theoretical’ error.

Table 5: Perpendicular (Ad) and parallel (Aa) relaxations of Cu(210) and (311) surfaces expressed

as percentages of the corresponding bulk spacings.

Table 6: Segregation trends in several binary systems. (-) means segregation of the impurity and
(+) means that segregation does not occur. See text for the definition and interpretation of the

terms listed in the last three columns.

Table 7: Lattice spacings of the CuPd solid solution as a function of Pd concentration [96].
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Table &: Energies of formation [8] for the Cu-Pd solid solution at 1350 K.

Table 9: Surface energies (in ergs/cmz), planar relaxations (as percentages of the rigid interplanar
spacing) of the top two layers of several low-index faces of the L1, ordered structure. Ay(X) rep-
resents the relaxation between planes i and j of an atom of species X in layer i. The last column

indicates the difference in position (in A) of an atom A and an atom B in the top layer.
Table 10: Cohesive energy (in eV/atom), equilibrium lattice parameter (in A) and scaling length
(in A) for the fcc and bee versions of Cu and Pd, as obtained from first-principles calculations

(LMTO [111], LAPW[112]) and from experiment (in the fcc case only).

Table 11: Energies of formation (in eV/atom) and equilibrium lattice parameter (in A) of the fcc

and bec ordered phases of CuPd. For the latter, the experimental values are also included.
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FIGURE CAPTIONS

Fig. 1: Phase diagram of Cu-Pd [8]. The arrows indicate regions of the phase diagrams where the

listed issues are readily subject to modeling, some of which include the BFS analysis presented in

this work.

Fig. 2: Summary of the energy spectra N Pd atoms (N = 1,...,8). The lowest energy state is indi-
cated with a thick line. The thick dashed line indicates the first configuration that includes a Pd
atom below the surface layer. The dotted lines indicate the first configuration that includes Pd
atoms in the overlayer (the fact that such states do not appear for N=1, 6 and 8 is because configu-
rations with Pd in the overlayer were not included in the catalogue of selected distributions (N =
6, 8) or because they exceed the highest energy shown (0.90 eV/atom)). The lowest energy config-

uration for each value of N is also shown.

Fig. 3: ‘Decay’ chains forM =0 through M = 3 states, starting with the seed state by, a Pd atom in
a Cu surface site (M denotes the number of Pd atoms). Subsequent configurations result from the
addition of Cu atoms in the overlayer. AE (in eV/atom) indicates the difference in energy between
any given configuration and the initial state in the chain (bp). The inset displays one of the config-
urations shown in the diagram, where a Pd atom is in a surface site and three Cu atoms occupy
adjoining sites in the overlayer. In this case, a larger value of the ECT parameter A was used (A =

10 A) in order to account for the asymmetry of the surface.

Fig. 4: ‘Decay’ chain for Cu deposition on Pd(110) for increasing Cu coverage (N denotes the
number of Cu atoms). Open circles represent Cu atoms in an overlayer site, and solid squares rep-
resent Pd steps. Cu atoms attached to the right of the step represent Cu ‘fingers’ growing in the
[110] direction. Two consecutive fingers at more than nearest-neighbor distance are represented by
slightly separated circles. Consecutive fingers in contact with each other represent 2D Cu islands
attached to a Pd step edge. AE is the energy of formation (in eV/atom) of the computational cell.
A solid circle represents a Cu atom in a surface site, with the displaced Pd atom (in the overlayer)
represented by a solid square. The inset displays one of the configurations shown in the diagram,

where a 4-atom Cu atom cluster is attached to a Pd step.
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Fig. 5: Intermediate states during the cooling process of a 1008-atom cell representing a CuygPds3g

alloy.

Fig. 6: Intermediate states during the cooling process of a 1008-atom cell representing a CuysPdas

alloy.

Fig. 7: Intermediate states during the cooling process of a 1008-atom cell representing a Cug,Pd; g

alloy.

Fig. 8: Intermediate states during the cooling process of a 1008-atom cell representing a CuggPd;,

alioy.

Fig. 9: Energy as a function of temperature for CuggPdyq cells with LAPW (solid squares) and
experimental (solid disks) parameters and CugyPd;g fcc cells with LAPW (open squares) and

experimental (open circles) parameters.

Fig. 10: Energy vs. temperature for an fcc (solid squares) and a bec (open circles) cell, both calcu-

lated using LAPW-based BFS parameters.
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ECT parameters

{ o A E. a,
Cu 0.272 2.935 0.765 3.50 3615
Pd 0.237 3.612 0.666 3.94 3.890

BFS parameters (Ah

Acypg = -0.0495 Apgc, = ©0.0431

Table 1
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hk! Rigid  Relaxed o7} ¢35} O3 Oy Theoretical results
111 18139 17576 17358 205 00 1.3 1170{22] 1184 (23] 2100({17]} 839 [24]
100 2362.2 23017 22766 226 25 0.0 1280 [22] 1367[23] 2300[25] 892 [24]
110 24434 23658 23356 283 00 1.9 1400 [22] 1514 [23] 957 [24] 1471[26]
311 24326 2364.2 23351 257 11 13 1494 [23] 961 [24]
Cu 331 23063 22374 22104 249 00 22 1460 (23]
210 26179 25436 25143 273 03 17 1620 {23] 1544 [26]
211 2288.1 22279 22036 220 0.6 1.7 1433 [23]
310 2598.2 25287 2500.6 26.1 05 1.1 1510 [26]
111 17529 1695.6 1673.8 21.0 00 08 1640 [27] 1220[22) 1050 [23]
100 23033 22405 22152 233 20 00 1860 [27] 1370[22] 1249(23] 2300{27]
110 23825 23034 22734 289 00 1.2 1970 [27) 1490[22] 1366([23] 1708 [26]
Pd 311 2368.4 22973 22692 263 09 08 1345 [23] 1312[23]
331 22425 21722 21457 253 00 1.3
210 25531 24775 24488 274 03 11 1465 [23] 1890 [26]
211 22232 21572 21315 240 06 L1 1291 [23]
310 25337 24625 24343 268 07 07 1851 [26]
Table 2
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Experiment Theory
Cu App Ag3 Ref. A A Ay Ags Ref
Cu(100) -1.1 +1.7 [34) 3.7 +1.7 ECT [30]
1.1 +/-04 +1.7 +/- 0.6 (31} +1.0 [44]
-1.0+/-04 +2.0+/-0.8 (31] -1.4 0.3 (22
1.2 +0.9 (32] -3.79 -0.54  +0.02 0.0 [23)
2.1 +0.45 (33]
Cu(110) -10.0 +/- 2.5 0.0 +/- 2.5 (37] -6.3 +0.2 ECT [30)
53424 433415 [35] 49 +0.23 [22]
-8.5 +2.3 (35 873 4153 120 +043 123
79 +2.4 (31]
-10.0 +1.9 (31]
8.5 +/-0.6 +23+/-08 [36]
154+-15 +254/-1.5 [42)
-5.3+/-1.6 +33+- 1.6 [43]
Cu(111) 0.34-10 (39] -3.1 +1.6 ECT [30]
0.7 +/-0.5 138] -14 -0.04 [22]
-2.48 -0.04 0.0 0.0 [23]
Pd(100) +3.0 -1.0 [40] 3.6 +1.7 ECT [30]
4.4 -0.05 [22]
494 4017 005 -0.08 [23]
0.6 [45]
Pd(110) 40+/-15 +1.5+-15 {50] -5.1 +0.2 ECT [30]
6.0 +/-2.0 +1.0+/-20 [41] -11.3 +1.2 [22]
5.7 +/- 2.0 +0.5+/-2.0 [51] J11.2 4249 -118 4040 [23]
5.14-15 +29+4/-1.5 (52] 53 [45]
Pd(111) 2.4 +1.3 ECT (30]
3.2 +0.27 [22]
317 +027  -0.08 -0.06 [23)
-0.1 (45)
Table 3
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Experiment ECT(One-layer) ECT(Two-layers)
Face Ad12 Ad23 Ref AdlZ Ad12 Ad23
(100) -2.1 +0.45 [33] -3.52 +/-1.74 -3.81 +/-1.70 +2.47 +/- 0.86
(110) 7.5 +/-1.5 +2.5+/-1.5 [421 -6.31 4/-2.46 -6.51 +/- 3.83 +0.29 +/- 2.44
(111) -0.7+/-0.5 [38] -2.88 +/- 1.30 -3.10+4/-1.25 +2.12 +/-0.63
Table 4
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Cu(210) Cu(210) Cu(311)
[ECT] (571 [ECT]

Ady, -4.48 +/- 5.07 1112 +-20  -554+/-3.27
Adys 491 +/-4.17 -5.68 +/-2.3 -0.81 +/-2.99
Adsy +0.96 +/- 4.38 +3.83 +/- 2.5 -1.75 +/-4.33
Adys -2.03 +/-5.80 +0.06 +/- 3.0 +4.32 +/- 5.05
Adsg +3.20 +/- 6.80 -0.66 +/-3.5 -1.60 +/- 5.02

Cu(210) Cu(311)
Aajy 0.00 +/- 2.43 -1.83 4/-3.0 +0.55 +/- 2.79
Aays +0.05 +/- 2.55 251 +/-3.2 +0.50 +/- 3.12
Aagy +0.48 +/- 2.82 +1.68 +/-3.5 -0.54 +/- 4.00
Aays +0.11 +/- 3.49 048 +/-3.7 +0.50 +/- 5.08
Aasg -0.50 +/- 4.31 +0.06 +/- 4.0 -0.30 +/- 4.73

Table 5



Host Impurity Experiment BFS A S§0) S S &S ¢S

B, °B, B, T4
Cu Pd - - +
Pd Cu + + +
Cu Ni + + + +
Ni Cu - - - +
Ag Cu + + + +
Cu Ag - - - +
Ag Pd + + +
Pd Ag - - - +
Au Cu + + + +
Cu Au - - - -
Au Pd + + + +
Pd Au - - - +
Ni Pd - - - -
Pd Ni + + + +

Table 6
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at.% Pd a BFS [A]

0 3615 3.615
25.0 3.694 3.705
519 3.774 3.774 (50 at.% Pd)
784 3.839 3.834 (75 at.% Pd)
100 3.892 3.89
Table 7
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XCu AH(EXp) AH(BFS)
0.1 -0.03920 -0.0395
0.2 -0.07216 -0.0719
03 -0.09141 -0.0842
0.4 -0.10503 -0.0921
0.5 -0.11088 -0.1010
0.6 -0.11365 -0.1052
0.7 -0.10581 -0.0871
0.8 -0.07935 -0.0793
0.9 -0.04358 -0.0324
Table 8
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A3B Face c App(A) Aj(B) Ag3(A) Ag3(B) Ripple
(100)1:1 2341.92 -5.58 +/- 0.51 -6.83 +/- 0.62 +0.43 +/- 0.36 0.02328
(100)1:0 2259.46 S7.17 +/-0.51 -5.89 +/- 0.75 +1.32+/-0.62
CuyPd (11011 2520.31 -8.214+/-1.01 -12.02 +/- 0.84 +2.30 +/- 1.38 0.04985
(110)1:0 2517.05 -9.824/-0.70 +1.34 +/-2.28 -8.39 +/-2.10
(111)3:1 1793.00 +3.90 +/- 0.33 -0.83 +/- 0.41 +7.38 +/- 0.28 +11.27 +/- 0.54 0.10104
Tabie 9
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Element Method Ec a,
Experiment 3.50 3.615 0.2720
Cufee LMTO 4.437 35522 02705
LAPW 3.6683 3.6326 0.2786
Cu-bee LMTO 4.438 2.8225 0.2710
LAPW 3.6279 2.8891 0.2807
Experiment 3.94 3.89 0.2370
Pd-fcc
LMTO 4788 3.9055 0.2487
LAPW 3.8033 3.9441 0.2474
Pd-bce LMTO 4.786 3.1069 0.2494
LAPW 3.7476 3.1427 0.2516
Table 10
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Alloy Method AH) a9
Cu-Pd LMTO -0.0875 3.749
(Lly

LAPW -0.0944 3.8107
Cu-Pd Experiment -0.142 2.958
(B2)

LMTO -0.146 2.9716

LAPW -0.165 3.0199

Table 11
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Alloying additions
Higher order phase diagrams

Precipitate formation
Site preference behavior
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