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Abstract 18 

There has been increased interest in the implementation of near infrared spectroscopy 19 

(NIRS) as a non-destructive analytical technique to monitor the quality and safety of 20 

vegetables during their growing season and after harvest throughout the food supply 21 

chain. The aim of this work was to evaluate the feasibility of using a portable NIR 22 

spectrophotometer (the MicroNIRTM Pro 1700 (spectral range 908–1676 nm) working 23 

in reflectance mode) based on Linear Variable Filter (LVF) technology to analyse 24 

soluble solid content (SSC) and nitrate content in spinach plants in situ, in the field and 25 

during the supply chain. A total of 77 spinach plants were analysed at three control 26 

points of the supply chain: 1) in the field, during the growing season and after harvest, 27 

2) in the lab, simulating conditions at receipt at the processing industry and 3) on the 28 

leaves in the lab, after washing, thus simulating the analysis of the processed product 29 

ready to be packaged, as a previous step for the novel application of NIRS at delivery 30 

points and in the supermarkets. The results confirmed the feasibility of using the 31 

spectrophotometer throughout the supply chain to establish product quality and safety, 32 

which would allow to make real-time decisions related to the agricultural practices, 33 

optimum harvest time, industrial uses and commercial shelf-life. The comparison 34 

between the models developed for the NIRS analysis in the three control points studied 35 

indicated that the recommended procedure would be to take a single spectrum per plant 36 

as a suitable way of predicting quality and safety parameters in the field and at the 37 

reception points in the industry. Two spectra on each of the two leaves should be taken 38 

after the washing operation in the industry, with values of the standard error of cross 39 

validation of 1.0 % for SSC and 766 mg kg-1 for nitrate content. 40 

 41 
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1. Introduction 45 

 46 

There is an increasing need for the productive sector and the food industry to 47 

provide information on their products and production processes to satisfy quality 48 

standards and to guarantee the safety of the products that reach the consumers. 49 

Near infrared spectroscopy (NIRS) sensors, which combine fast spectrum 50 

acquisition, accurate measurement, versatility, simplicity of sample presentation and 51 

low cost, provide a unique digital signal of each product analysed and enable non-52 

destructive analysis of the product. They have shown great potential for monitoring 53 

quality and safety and for ensuring traceability in horticultural products (Nicolaï et al., 54 

2007; Sánchez and Pérez-Marín, 2011; Cortés et al., 2019; Cattaneo and Stellari, 2019).  55 

In addition, the characteristics of NIRS sensors make them highly suitable for 56 

establishing an integrated control system for horticultural products along the supply 57 

chain, i.e. from the field to the market. Incorporation of these sensors along the food 58 

supply chain could be favoured by the development of portable, compact and light-59 

weight instruments, ideally suited for use not only in the field but also at an industrial 60 

level (Pasquini, 2018; Yan and Siesler, 2018). However, the implementation of a new 61 

generation of NIRS sensors for quality and safety monitoring of a particular 62 

horticultural product requires testing, in-depth study and a previous simulation of the 63 

conditions under which the sensor would be used. 64 

In the case of spinach, a high perishable vegetable with a commercial shelf-life 65 

of about two weeks, it is essential to monitor and control soluble solid content (SSC), 66 

related with optimum harvest quality (Reid, 2002; Conte et al., 2008) and nitrate 67 

content, linked with the lighting received by the leaves and certain agricultural practices 68 

(mainly nitrogen fertilization) and related to the safety of the product (Anjana and Iqbal, 69 
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2007). Although high doses of this nutrient favour crop growth and produce more 70 

vigorous plants (Wang and Li, 2004), nitrate accumulation, which is common in leafy 71 

vegetables such as spinach plants, affects food safety, since high levels of nitrates can 72 

have detrimental effects on human health (Jaworska et al., 2005). Additionally, the 73 

nitrate content determines the industrial use of this vegetable after harvest (OJEU, 74 

2011), as it determines whether it is used for baby food production, preserved, frozen 75 

spinach or as fresh spinach. 76 

Although the feasibility of using handheld NIRS instruments for the non-77 

destructive measurement of these quality and safety parameters in spinach plants has 78 

been demonstrated (Itoh et al., 2011; Pérez-Marín et al., 2019 and Entrenas et al., 2020), 79 

these studies were carried out as simulation studies at a laboratory level. The 80 

incorporation of NIRS sensors directly in the field or at one of the main steps of the 81 

production chain, such as the reception points in the processing industries, has not been 82 

addressed.  83 

The objective of this study was to evaluate the feasibility of a new generation 84 

NIRS sensor to be incorporated throughout the supply chain as a tool for quality 85 

assurance and safety of spinach plants. For this purpose, three key steps in the supply 86 

chain were studied: the growing period of the spinach plants in the field and the 87 

simulation of the reception of the spinach plants in the industry and the step after the 88 

spinach leaves were removed and washed. 89 

 90 

2. Material and methods 91 

 92 

2.1. Sampling and reference analysis  93 

 94 
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A total of 77 spinach (Spinacia oleracea L. cv. ‘1194’, ‘Gorilla’ and ‘Solomon’) 95 

plants grown outdoors on different farms in the province of Cordoba, were used in this 96 

study. The spinach plants were harvested manually during the months of February and 97 

March 2019.  98 

SSC and nitrate content were measured following Pérez-Marín et al. (2019), 99 

using between 4 and 10 spinach leaves from each plant. All the measurements were 100 

performed in duplicate and the standard error of laboratory (SEL) was estimated from 101 

these replicates (Table 2). 102 

 103 

2.2. NIR spectrum acquisition 104 

 105 

NIR spectra of spinach plants were collected using a MicroNIR™ Pro 1700 LVF 106 

spectrophotometer (VIAVI Solutions, Inc., San Jose, California, USA), a portable 107 

miniature instrument adapted to in situ measurements. This instrument works in 108 

reflectance mode (log 1/R) in the spectral range 910 to 1676 nm, with a constant 109 

interval of 6.2 nm. It is light (64 g, not including the handle which weighs 150 g and the 110 

acquisition and data processing device), with an optical window of around 227 mm2. 111 

The sensor integration time was 10.5 ms and each spectrum was the mean of 200 scans.  112 

Initially, the spinach plants were analysed before harvest (Step I, set 1). Spectral 113 

analysis was performed once again on the plants in the laboratory before the leaves were 114 

removed and washed, to simulate the receipt by the industry (Step II, set 2), and after 115 

the leaves were removed and washed, to simulate the different steps of processing after 116 

conditioning (Step III, set 3). 117 

In the case of Steps I and II in the supply chain, in which NIRS analysis was 118 

carried out on the plants both in the field and in the laboratory, 5 spectra were taken per 119 
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plant (1 spectrum per leaf, in one position on the leaf blade relative to the main vein and 120 

close to the petiole on the adaxial side), on 5 leaves per plant. 121 

In Step III, in which the spectra were taken of the washed leaves, a total of 6 122 

spectra were taken per leaf (4 in the blade and 2 in the petiole) following the 123 

methodology proposed by Entrenas et al., (2020). Between 4 and 10 leaves were used 124 

for the reference analysis for each plant.  125 

For the different steps tested, the instrument’s performance was checked every 126 

10 minutes. A white reference measurement was obtained using a NIR reflectance 127 

standard (Spectralon™) with a 99 % diffuse reflectance, while the dark reference was 128 

obtained using a black plate for the field analysis (Step I) and from a fixed point in the 129 

room when the measurements were taken in the laboratory (Steps II and III). 130 

 131 

2.3. Spectral repeatability 132 

 133 

Spectrum quality was evaluated using the root mean square (RMS) statistic, 134 

defined as the averaged root mean square of differences between the different 135 

subsamples scanned at n wavelengths (Shenk and Westerhaus, 1995a, 1996). This 136 

statistic indicates the similarity between different spectra of a single sample.  137 

To evaluate spectral repeatability, different procedures were followed depending 138 

on the sample set studied. For measurement on the plant, both in the field (Step I) and at 139 

the reception point (Step II), the repeatability was calculated analysing 20 plants and 140 

taking 5 spectra for each of them, one per leaf on 5 different leaves. For measurement 141 

on the leaves after the washing operation (Step III), the repeatability was obtained by 142 

analysing 20 leaves and taking 6 spectra for each leaf (Entrenas et al., 2020). An 143 

admissible limit for spectrum quality and repeatability was calculated following the 144 
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procedure described by Martínez et al. (1998) to calculate the standard deviation limit 145 

(STDlimit) from the RMS statistic and obtain an RMS cut-off value. 146 

 147 

2.4. Principal component analysis 148 

 149 

Principal Component Analysis (PCA) was carried out to study the differences 150 

between the spinach NIRS sets obtained at the key steps. PCA was performed using the 151 

average spectrum for plants derived from each of the days and steps analysed. Matlab 152 

software (version 2015a, The Mathworks, Inc., Natick, MA, USA) was used applying 153 

mean centre as signal pre-treatment, which subtracts the mean spectrum of the group 154 

from each spectrum (Wise et al., 2006). 155 

 156 

2.5. Definition of the calibration set for the development of NIRS models 157 

 158 

Data pre-processing and chemometric treatments were performed using the 159 

Matlab version 2015a and WinISI II version 1.50 (Infrasoft International LLC, Port 160 

Matilda, PA, USA) (ISI, 2000) software packages. 161 

To structure and compress the data matrix, the CENTER algorithm was applied; 162 

this algorithm determines the centre of the spectral population and calculates the 163 

Mahalanobis distance (GH) between each sample and the centre of the population, 164 

expressed in principal components (Shenk and Westerhaus, 1995a). Samples with a GH 165 

value greater than 4 were considered outliers. A combination of mathematical pre-166 

treatments, Standard Normal Variate (SNV) and De-trending (DT) was applied for 167 

scatter correction (Barnes et al., 1989), together with the 1,5,5,1 derivative treatment, 168 

where the first digit is the number of the derivative, the second the gap over which the 169 



9 
 

derivative is calculated, the third the number of data points in a running average or 170 

smoothing, and the fourth the second smoothing (Shenk and Westerhaus, 1995b).  171 

 172 

2.6. Fine-tuning of the spectrum-taking procedure in spinach plants throughout the food 173 

supply chain 174 

 175 

For the optimization of the spectral acquisition process at different steps of the 176 

spinach supply chain using the MicroNIRTM Pro 1700, by first establishing the optimum 177 

number of spectra per plant that must be taken routinely. Different strategies were used 178 

for the analysis in the field and at receipt (Steps I and II) to develop the prediction 179 

models: 180 

a. Selecting a single spectrum per plant, using only one leaf. 181 

b. Using the average spectrum obtained after taking 3 spectra per plant on 3 182 

different leaves. 183 

c. Using, for each spinach plant, the average of the 5 spectra taken on 5 184 

different leaves. 185 

The spectra for strategies a and b were randomly selected from the 5 available 186 

using the Matlab software. 187 

Calibration models for the prediction of SSC and nitrate content were 188 

constructed using modified partial least squares (MPLS) regression (Shenk and 189 

Westerhaus, 1995a). Four cross validation groups were used to avoid overfitting (Shenk 190 

and Westerhaus, 1995a). For each analytical parameter, different mathematical pre-191 

treatments were evaluated. For scatter correction, SNV and DT methods were applied 192 

(Barnes et al., 1989). Additionally, two derivative mathematical treatments were tested: 193 

1,5,5,1 and 2,5,5,1 (Shenk and Westerhaus, 1995b; ISI, 2000). 194 
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The best models for each parameter and each control point in the supply chain 195 

were selected by statistical criteria, using the coefficient of determination for cross 196 

validation (R2
cv), the standard error of cross validation (SECV) and the RPDcv (ratio of 197 

the standard deviation of the reference data for calibration to the SECV).  198 

The SECV values obtained for the best equations for each parameter and control 199 

point studied, with a different number of spectra per plant, were compared using 200 

Fisher’s F test (Massart et al., 1988; Naes et al., 2002). Since several SECV values were 201 

compared, a SECVconfidence limit was calculated using the following formula: 202 

SECVconfidence limit = SECVmin · 𝐹  where SECVmin is the smallest SECV. 203 

Consequently, none of the models with a SECV between SECVmin and SECVconfidence limit 204 

were significantly different (P < 0.05).  205 

Furthermore, the NIRS analysis process was also optimized on the leaves, to 206 

simulate the analysis after the industrial washing step. To achieve this, a possible 207 

reduction in the number of spectra taken per leaf was considered, following different 208 

strategies: 209 

a. Using the average spectrum of taking 2 spectra per leaf, one from the blade 210 

and one from the petiole. In this case, one spectrum was selected from the 4 211 

taken in the blade and one of the 2 from the petiole, since it is in the latter 212 

area where the highest accumulation of nitrates occurs and in the industry 213 

blades and petioles are processed together. Both spectra were taken on one 214 

side of the central nerve. 215 

b. Using the average of the 3 spectra taken per leaf. In addition to the 2 spectra 216 

taken in the previous strategy, a further spectrum was taken from the leaf 217 

blade, on the other side of the central nerve. 218 
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c. Using the average spectrum of the 6 spectra (4 from the blade and 2 from the 219 

petiole) measured per leaf. 220 

Next, the number of leaves needed to predict the parameters to be analysed was 221 

optimized. To achieve this, starting with one leaf, the number of leaves used to develop 222 

predictive NIRS equations were increased, until models were not significantly affected 223 

(P > 0.05) by the number of leaves analysed.  224 

For the optimization of the NIRS analysis in already-washed spinach, 225 

considering both the number of spectra per leaf and the number of leaves, different 226 

models for the prediction of the SSC and nitrate content, without the elimination of 227 

chemical outliers, were developed and evaluated following the same methodology 228 

previously described for Steps I and II. The SECV values obtained for the best 229 

equations for each parameter and each strategy were also compared using Fisher’s F 230 

test. 231 

Finally, once the optimum analysis procedures for the three steps in the supply 232 

chain were decided on, the optimization of the NIRS models to predict SSC and nitrate 233 

content in spinach plants was carried out. The best equations were selected according to 234 

the statistical criteria mentioned above. 235 

 236 

3. Results and discussion 237 

 238 

3.1. Spectral repeatability 239 

 240 

Prior to developing the models, it is crucial to optimise the NIRS analysis by 241 

means of the spectrum quality and repeatability measurement. For this purpose, the 242 
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STDlimit for each analysis step or control point was calculated, as described in Section 243 

2.3. 244 

The mean STD and STDlimit for the three different NIRS analysis steps are 245 

shown in Table 1. The STDlimit values obtained for Steps I and II were higher than those 246 

obtained for Step III. This could be due to the fact that the spectral measurements were 247 

taken in the plants without pre-washing the leaves, so these may have contained traces 248 

of dirt and dust. In addition, the spectra were taken on 5 different leaves (1 spectrum per 249 

leaf) and from 20 plants, while for Step III, the 6 spectra were taken on the same leaf 250 

and on 20 leaves, which could have resulted in a wider variation in the material 251 

analysed in Steps I and II. 252 

The difference in spectral repeatability values obtained between Steps I and II, 253 

in which the same number of spectra were taken on the plants and before the leaves 254 

were washed, may be due to the fact that in Step I, the plants were analysed in the field, 255 

under variable and uncontrolled environmental conditions. Furthermore, obtaining 256 

spectra from the plant in the field is a far more complex task, which may lead to the 257 

analysis having lower repeatability, mainly due to the residual moisture that could 258 

remain on the leaf surfaces, even after they are dried before taking the spectra. 259 

In a previous study, Pérez-Marín et al. (2019) calculated the value of STDlímit in 260 

spinach leaves analysed in the laboratory. These authors took 4 sub-samples per leaf on 261 

the adaxial side of the blade and obtained a STDlimit value (128,437 μlog (1/R)), greater 262 

than those obtained in this work for the three analysis steps. These differences could be 263 

due to the instruments used, since Pérez-Marín et al. (2019) used a NIRS instrument 264 

based on MEMS technology (Phazir 2400), with a smaller window size (~ 55 mm2) than 265 

that of the MicroNIRTM Pro 1700 (~ 227 mm2) used in the present work. 266 

 267 
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3.2. Population characterization  268 

 269 

Before the predictive models were developed, PCA on raw spectra (Fig. 1) was 270 

used to carry out a study into the population structure. 271 

Fig. 2A displays the scores of the first and third principal components (PCs), 272 

which represents 85.24 % and 1.66 % of the explained variance, respectively. A clear 273 

distinction must be drawn between the group of samples analysed in the field (Set 1) 274 

and those analysed in the laboratory (Sets 2 and 3). 275 

For the samples analysed in the field, a grouping can be seen when the PC1 276 

scores show a positive trend and the PC3 scores show a negative trend. The 277 

representation of the loadings for PC1 and PC3 (Fig. 2B) shows that in these areas, 278 

corresponding to the spectral range around 900–1300 nm and 1400–1500 nm (PC1 > 0 279 

and PC3 < 0), the main absorption peaks for the distinction between the different sets 280 

are related to water content, since for these PCs, the loading plot exhibits one main band 281 

around 1450 nm (Shenk et al., 2008).  282 

The differences between the samples analysed in the field and those of the 283 

industrial steps II and III are, therefore, mainly produced by the bands related to water 284 

content. The high respiration and water-loss rates of the spinach after the harvest result 285 

in a rapid loss of quality and tissue decay during postharvest handling, especially under 286 

non-refrigerated conditions (Salveit, 2016; Basil and Siddiqui, 2018).  287 

Table 2 shows the range, mean, standard deviation (SD) and coefficient of 288 

variation (CV) of the population available for SSC and nitrate content. This set was 289 

used for the development of the prediction models for the three steps along the supply 290 

chain in spinach production. 291 
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SSC shows the lowest variability (Table 2), probably because the spinach plants 292 

were close to, or at, the stage of commercial maturity. The set for nitrate content shows 293 

high variability, due to the different cultivar behaviour in assimilating nitrates and the 294 

fact that the samples were collected throughout the harvesting period, where the level of 295 

nitrates decreases progressively from the first to the second cutting. Also, the plants 296 

analysed were collected from different farms, where different doses of fertilizer had 297 

been applied. 298 

 299 

3.3. Fine-tuning of the spectrum capture strategy for NIRS analysis of spinach plants in 300 

the field and in the industry 301 

 302 

Given that no previous work on the NIRS analysis of spinach plants directly in 303 

the field or at the reception step in the industry were found, the spectrum collection 304 

process was optimized for both steps of the production chain (Steps I and II), with the 305 

aim of facilitating the implementation of NIRS technology in both steps in the quickest, 306 

most trouble-free way possible, while enabling robust prediction models to be obtained. 307 

Table 3 shows the SECV values for the best calibration models obtained for the 308 

different strategies followed based on the number of spectra to be acquired (1, 3 and 5 309 

spectra per plant) for each parameter. To compare the SECV values obtained for the 310 

three strategies of obtaining spectra studied at the different steps of analysis, in the field 311 

and after the product reaches the industry, the NIRS models were developed without the 312 

elimination of chemical outliers.  313 

According to the results shown in Table 3, there were no significant differences 314 

between the SECV values obtained for either parameter. 315 
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According to these results, and to make the NIRS measurement procedure as 316 

simple as possible, it was considered sufficient to take just one spectrum per plant, 317 

which would be the most suitable way to determine the quality and safety parameters in 318 

spinach plants in the field and at receipt in the industry. 319 

 320 

3.4. Fine-tuning of the spectrum capture strategy for the industrial NIRS analysis of 321 

spinach leaves after defoliating and washing 322 

 323 

Pérez-Marín et al. (2019) determined SSC and nitrate content by analysing 4-10 324 

leaves and taking 4 spectra from the blade of each leaf, two on each side of the central 325 

nerve, while Entrenas et al. (2020), analysed the same number of leaves per plant, 326 

taking, in addition to the 4 spectra on the blade, two additional spectra in the petiolar 327 

zone, making a total of 6 spectra per leaf. However, the NIRS analysis protocols 328 

established by these authors involve taking a high number of spectra from each plant, 329 

which slows down spectra measurements. If this technology is to be used as a routine 330 

analysis method in the industry, the spectral methodology to be followed must be 331 

optimized, and it is therefore essential to look at the feasibility of reducing the number 332 

of spectra per leaf and deciding on the optimal number of leaves to analyse per plant. 333 

To achieve this, firstly, the number of spectra to be measured on each leaf was 334 

optimized. Table 4 displays the SECV values for the best calibration models developed 335 

for each parameter using a different number of spectra per leaf (2, 3 and 6 spectra) in all 336 

the leaves used in the reference method (between 4 and 10 depending on their size). 337 

No significant differences were found for the two parameters analysed between 338 

the SECV values of the predictive models developed using different number of spectra. 339 

Therefore, to facilitate the use of the NIR spectroscopy in the processed product, in cold 340 
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chambers and also in the markets, the simplest way to measure the quality and safety 341 

parameters after the process of washing would be to take two spectra per leaf. 342 

After selecting the optimum number of spectra per analysed leaf and to establish 343 

the minimum number of leaves to determine the quality and safety in the spinach plants, 344 

new predictive models were developed without removing chemical outliers, using 2 345 

spectra per leaf and increasing progressively the number of leaves to be analysed.  346 

Table 5 shows the SECV values for the calibration models developed using a 347 

different number of leaves (1, 2, 3) per plant. For the prediction of nitrate content, no 348 

significant differences were found among the SECV values obtained, and so, for this 349 

parameter, it would be sufficient to use a single leaf, with two spectra measurements. 350 

For SSC, using a single leaf, higher SECV value than those obtained using 2 and 351 

3 leaves was obtained. However, no significant differences were found when 2 or 3 352 

leaves were used. Thus, for the SSC parameter, the number of leaves to be used to 353 

develop the models would be 2, taking 2 spectra per leaf.  354 

Therefore, for the simultaneous measurement of these quality and safety 355 

parameters, after the spinach leaves have been washed on the production line, only two 356 

leaves would have to be analysed per plant. This is a considerable improvement with 357 

respect to studies previously carried out, in which the number of spectra per plant taken 358 

was much higher (4-10 leaves/plant and 4 and 6 spectra/leaf) than those carried out in 359 

this study (4 spectra/plant). Hence, the analyses could be carried out more quickly, 360 

without any loss of accuracy, thus allowing a much greater quantity of the product or 361 

number of batches to be analysed. 362 

 363 

3.5. Prediction of quality and safety parameters in spinach throughout the supply chain 364 

using MPLS regression  365 
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 366 

Once the spectral acquisition process was optimized to determine the quality and 367 

safety parameters of the spinach at different steps of the production chain, the 368 

development of predictive models for the 3 steps of the production chain studied or 369 

simulated was optimized. 370 

Table 6 shows the statistics of the best prediction models obtained using the 371 

spectral data for prediction of the quality and safety parameters. For the SSC prediction 372 

at the three key control points, the models developed distinguished between high, 373 

medium, and low values (Shenk and Westerhaus, 1996; Williams, 2001). Nicolaï et al. 374 

(2007) indicated that RPDcv values between 1.5 and 2 could discriminate between low 375 

and high values of the predicted variable. 376 

The results show the feasibility of using new generation portable NIRS 377 

equipment to predict SSC directly in the field, permitting the use of this technology as a 378 

surveillance tool to establish the optimal harvest time. Similarly, it also confirms the 379 

viability of using NIRS technology in the different steps of the production chain, once 380 

the product has been reached the industry, thus increasing the sampling pressure of the 381 

batches of processed plants and more effective monitoring of the product shelf life. 382 

For nitrate content prediction, regardless of the step in the production chain 383 

studied, the predictive models also could differentiate between high, medium and low 384 

values, as indicated by Shenk and Westerhaus (1996) and Williams (2001). 385 

Research on the use of portable NIRS instruments for the simultaneous 386 

measurement of SSC and nitrate content of spinach plants was carried out in the 387 

laboratory using washed leaves. Perez-Marín et al. (2019) measured these parameters 388 

using the instrument Phazir 2400 in a spectral range of 1600–2400 nm, obtaining values 389 

of RPDcv = 2.54 and RPDcv = 1.29 for SSC and nitrate content, respectively. Then, 390 
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Entrenas et al. (2020), using the same instrument as in this study, also obtained 391 

promising results (RPPcv = 2.62 for SSC and RPPcv = 1.41 for nitrate content) for the 392 

quality and safety characterization of this vegetable.  393 

In both studies, the results obtained for the prediction of the SSC were slightly 394 

better than those obtained in our study, which could be due to the fact that the 395 

calibration sets used by these authors to develop the predictive models contained a 396 

larger number of samples and greater variability. 397 

For nitrate content, Pérez-Marín et al. (2019) reported a model with a lower 398 

predictive ability than that obtained here, although there were differences of the 399 

equipment used by these authors in terms of optical characteristics, spectral range and 400 

the analysis window. Nevertheless, Entrenas et al. (2020) obtained models with a 401 

predictive capacity (RPDcv = 1.41) very similar to that obtained here in Steps II and III. 402 

For the first control point (Step I) in the field, the results were slightly more favourable. 403 

This increase in the robustness of the model may be due to the fact that these leaves 404 

were manipulated less prior to their NIRS analysis, which is consistent with the study 405 

reported by Basil and Siddiqui (2018) who demonstrated that spinach plants decay 406 

rapidly once harvested.  407 

Therefore, although the sets of spinach plants used in this work has only a small 408 

number of samples, they were sufficient to demonstrate the viability of using NIRS 409 

technology. The results are of great interest to producers and the industry, since they 410 

confirm the usefulness and future potential of the MicroNIR™ Pro 1700 in the analysis 411 

of spinach along the supply chain, without carrying out any prior sample preparation. 412 

This will allow all batches of spinach to be controlled throughout processing from pre-413 

harvest, in order to be categorized according to their quality and nitrate content. 414 

However, once the suitability has been proven, in future, the number of samples must be 415 
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increased to develop more robust calibrations, with samples from different seasons and 416 

cultivars. This is especially important in biological products, which have countless 417 

variations in the sources, and also in the case of minor parameters with extremely wide 418 

variability, such as nitrate content (Perez-Marín et al., 2019). 419 

 420 

4. Conclusions 421 

 422 

The results obtained show the viability of using the handheld spectrophotometer 423 

MicroNIR™ Pro 1700 for the rapid screening of quality and safety parameters in 424 

spinach plants through supply chain. A single spectrum per plant is suitable for 425 

measuring the SSC and nitrate content in the field and at the reception in the industry, 426 

which would pave the way for the routine use of NIRS technology by the growers and 427 

in the industry. In the case of the analysis of spinach leaves after the leaf removal and 428 

washing operations, it seems to be sufficient to analyse two leaves per plant, with two 429 

spectra taken in each one, one on the leaf blade and another on the petiole, thus 430 

simplifying the NIRS analysis methodology in the processed product, and facilitating its 431 

possible future use not only in the industry but also in markets.  432 

These results are of interest, because non-destructive measurement of these 433 

parameters in a matter of seconds facilitates not only decision-making about the optimal 434 

time for harvest, mainly based on the SSC, but also the monitoring of the plant 435 

requirements of nitrogen fertilization, thus making it possible to set the quantity and 436 

optimal time for this nutrient to be applied to the crop. Further studies are needed in 437 

order to improve the robustness of the calibration models. 438 
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Table 1 558 

Mean STD and STDlimit values obtained from the spectral repeatability study for the 559 

different NIRS analysis throughout the spinach supply chain. 560 

Repeatability statistics Field  Laboratory After washing 

Mean a STD 81,982 57,537 41,739 

STDlimit 88,132 63,205 45,738 

ª Standard deviation  561 

 562 

  563 
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Table 2 564 

Range, mean, standard deviation (SD) and coefficient of variation (CV) for the soluble 565 

solid and nitrate contents calibration sets, and standard error of laboratory (SEL). 566 

 Soluble solid content (%) Nitrate content (mg kg-1) 

Range 5.8–14.4 41–3526 

Mean 9.2 1344 

SD 1.7 1122 

CV (%) 18.5 83 

SEL 0.04 24 

  567 
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Table 3 568 

Comparison between standard error of cross validation values for the best calibration 569 

models obtained for soluble solid and nitrate contents, taking different number of 570 

spectra per plant during the analysis in the field and at the reception point in the 571 

industry. Fisher’s F test (P < 0.05). 572 

Supply chain Parameter a SECV  

1 spectrum 

SECV  

3 spectra 

SECV  

5 spectra 

SECVmin SECVmin · 𝐹  

Field  Soluble solid 

content (%) 

1.2 1.3 1.2 1.2 1.5 

Nitrate content 

(mg kg-1) 

862 713 741 713 863 

Laboratory Soluble solid 

content (%) 

1.1 1.2 1.1 1.1 1.3 

Nitrate content 

(mg kg-1) 

882 913 833 833 1007 

a Standard error of cross validation. 573 

  574 
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Table 4 575 

Comparison between standard error of cross validation values for the best calibration 576 

models obtained for soluble solid and nitrate contents, taking different number of 577 

spectra per leaf and using between 4 and 10 leaves analysed after leaf removal and 578 

washing in the laboratory. Fisher’s F test (P < 0.05). 579 

Parameter a SECV 

2 spectra 

SECV 

3 spectra 

SECV 

6 spectra 

SECVmin SECVmin · 𝐹  

Soluble solid 

content (%) 

1.1 1.1 1.2 1.1 1.3 

Nitrate content 

(mg kg-1) 

727 739 763 727 879 

a Standard error of cross validation. 580 

 581 

  582 
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Table 5  583 

Comparison between standard error of cross validation values for the best calibration 584 

models for soluble solid and nitrate contents obtained by analysing different number of 585 

leaves per plant and taking 2 spectra per leaf in the NIRS analysis after leaf removal and 586 

washing. Fisher’s F test (P < 0.05). 587 

Parameter a SECV  

1 leaf 

SECV  

2 leaves 

SECV 

3 leaves 

SECVmin SECVmin · 𝐹  

Soluble solid content (%) 1.4* 1.2 1.1 1.1 1.3 

Nitrate content (mg kg-1) 792 785 714 714 864 

a Standard error of cross validation. 588 

  589 



30 
 

Table 6 590 

Calibration statistics for predicting soluble solid and nitrate contents using the 591 

instrument MicroNIRTM Pro 1700 in the field and in the laboratory.  592 

Parameter Control point Mathematical 

treatment 

a N b Mean c SD d SECV e R2
cv 

f RPDcv 

Soluble solid 

content (%) 

Field  1,5,5,1 72 9.2 1.6 1.1 0.55 1.55 

Laboratory  2,5,5,1 71 9.1 1.6 1.0 0.60 1.66 

After washing  2,5,5,1 70 9.1 1.6 1.0 0.62 1.76 

Nitrate content 

(mg kg-1) 

Field  1,5,5,1 75 1341 1132 725 0.59 1.55 

Laboratory  1,5,5,1 74 1318 1116 772 0.52 1.45 

After washing  2,5,5,1 76 1359 1122 766 0.54 1.46 

a Number of samples. 593 

b Mean of the calibration set. 594 

c Standard deviation of the calibration set. 595 

d Standard error of cross validation. 596 

e Coefficient of determination of cross validation. 597 

f Residual predictive deviation for cross validation. 598 

 599 

 600 

  601 
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Fig. 1. Average spectra for spinach plants at different steps of the supply chain. 602 
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Fig. 2. Plots of scores (A) and loadings (B) for the first (PC1) and third (PC3) principal 606 

components for spinach plants analysed in the different steps of the supply chain. 607 
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