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Abstract
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into
mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience
include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among
these applications, strong interest has been shown to biological processes such as blood coagulation
control and multimodal bioimaging, which has brought about a new and exciting research field called
nanobiotechnology. Biotechnology, which itself also dates back ∼30 years, involves the manipulation
of macroscopic biological systems such as cells and mice in order to understand why and how
molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid
precursor protein) in Alzheimer’s disease (AD). This review aims (1) to introduce key concepts and
materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-
of-the-art examples of current nanotechnology that were either constructed for use in biological
systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in
nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in
neuroscience that may benefit from research at the interface of neurobiologically important systems
and nanostructured materials.
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1. Introduction to nanomaterials
The science and technology of nanoscale materials has roots as old as chemistry itself, from
the formulation of precious metal colloids for medieval stain glass to the Roman’s use of cement
(Bergna, 1994; Delatte, 2001; Edwards and Thomas, 2007; Faraday, 1847; Sanchez et al.,
2003). As a separate field, nanoscience and nanotechnology began to emerge some 20 years
ago (Hodes, 2007), and a database search yields more than 500 review articles in this area. For
our discussions here, we will focus on materials with domain dimensions below 100 nm (nm
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= 1 billionth of a meter), e.g. length scales below those observable by simple optical or even
confocal microscopy (Fig. 1). For scale, nanosized objects are 100–10,000 times smaller than
the size of mammalian cells.

The molecular level contents of neurobiologically important systems are proteins, nucleic
acids, lipid bilayers, metal ions, and small molecules, whose sizes are shown schematically in
Fig. 1 (lower panel). At this size scale, the most important structural characterization techniques
include X-ray crystallography, nuclear magnetic resonance (NMR), scanning, transmission
electron microscopy, and optical/fluorescence/confocal microscopy. For instance, the amyloid
precursor protein (APP) (Kong et al., 2007;Suh and Checler, 2002) shown as a biomolecule in
Fig. 1 (lower panel) is an actual X-ray crystal structure visualized using VMD (visual molecular
dynamics) (Humphrey et al., 1996). Compared to this biomolecule, a small molecule such as
dehydroevodiamine hydrochloride (DHED) (Ahn et al., 2004;Decker, 2005; Park et al.,
1996,2000;Suh et al., 2005), a potent Alzheimer’s disease (AD) candidate therapeutic agent,
is much smaller in size. Micron sized nanostructured microspheres are readily endocytosed
into the cytosol and can carry nanosized cargo into neurobiologically relevant systems (Suh et
al., 2006a,b). In this review, we examine several important nanostructured materials that may
interface well with neurobiologically important systems and find use in the neuroscience
community.

2. Engineered nanomaterials: overview and recent advances
2.1. The first nanoparticles: carbonaceous nanomaterials

Arguably the oldest and easiest nanoparticles to make are of carbon: the use of carbon black
from fuel-rich partial combustion for ink, pigment, and tatoos dates back more than 3000 years,
but still remains a topic of current research interest (Lee et al., 2006b; Lu and Schuth, 2006;
Xia et al., 2006b). The largest modern use of nanophase carbon, by far, is as filler in rubber
tires, for which >8 million metric tons are produced each year; roughly another million tons
are used as pigments (What is carbon black?). Various synthetic carbon materials exist that
have nanometer scale features. Macroporous carbon materials can be created via inverted opal
synthesis (colloidal template method) but these materials are usually amorphous (Lee et al.,
2006b). Crystalline carbon nanomaterials can be created via high voltage arc electricity, laser
ablation, or growth under high temperatures with metal-based precursors or nanoparticles as
catalysts (Dai, 2002; Jiao et al., 1996; Satishkumar et al., 1999). In addition, fullerenes (e.g.
C60, C72) and carbon nanotubes, either single-walled or multi-walled, can be synthesized in
this way (Burghard, 2003; Dai, 2002; Dosa et al., 1999; El Hamaoui et al., 2005; Hayashi et
al., 1996; Hu et al., 1999; Iijima, 1991; Iijima et al., 1999; Iyer et al., 2003; Kroto et al.,
1985; Lei et al., 2006; Lu et al., 2006; Odom et al., 1998; Rinzler et al., 1998; Sano et al.,
2003; Terrones et al., 1997; Thess et al., 1996). These more sophisticated carbon nanomaterials
are finding a variety of applications for electronics (Dai, 2002; Odom et al., 1998), catalysis
(Kim et al., 2000), chemical sensing (Barone et al., 2005; Heller et al., 2005, 2006; Jeng et al.,
2006; Zheng et al., 2003), and cell biology (Carrero-Sanchez et al., 2006; Dumortier et al.,
2006; Kam et al., 2004; Yan et al., 2006). The scope of this review limits us from extensively
discussing carbon-based nanomaterials; we will, however, cover some newer versions of
carbon nanomaterials in Section 3.2.

Interestingly for neuroscience, Silva (2005) recently reviewed a list of fullerene (C60)
derivatives studied both in vitro and in vivo for their neuroprotective ability. The model material
responsible for providing neuroprotection is fullerenol which is hydroxyl functionalized
fullerene. More recently Yamawaki and Iwai (2006), however, reported the in vitro toxicity of
fullerenols in human umbilical vein endothelial cells (ECs) that were treated with 1–100 μg/
mL concentrations (average diameter 4.7–9.5 nm) for a day which induced cytotoxic
morphological changes as well as showing cytotoxicity via LDH and WST assays in a dose-
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dependent manner. Eight day chronic treatment (10 μg/mL) also inhibited cell attachment and
delayed EC growth. Varying biological effects of a single nanomaterial such as the hydroxy
fullerene offers a clear demonstration of extraordinary situations where a single nanomaterial
plays both beneficial (neuroprotection) and unfavorable (specific cell toxicity response) roles
within a biological system. Choosing, utilizing, and assessing toxicity of any nanostructured
material for biomedical applications are not trivial tasks especially for neuroscience
applications where biological systems involved in the bioprocesses are more vital functions
such as the central nervous systems (CNS) which include the brain and the spinal cord.

Carbon nanotubes, owning to their structural robustness and synthetic versatility, have been
utilized in multiple biomedical applications including tissue engineering. Recently, Kotov and
co-workers have formulated a nanocomposite matrix comprised mainly of single-walled
carbon nanotubes (SWCNT) which was utilized as a growth substrate for murine embryonic
neural stem cells (Jan and Kotov, 2007). Differentiation, growth, and biocompatibility reported
by the authors supported positive uses of such nanocomposites but a more recent article by
Zhu et al. (2007) showed DNA damages (genotoxicity) induced by multi-walled carbon
nanotubes (MWCNT) in mouse embryonic stem cells. This additional example clearly
demonstrates realistic dilemmas researchers can face while choosing carbon-based as well as
other types of nanostructured materials for biomedical uses.

2.2. Porous nanomaterials
Long before the recent interest in nanoscience, the IUPAC divided porous materials and pore
size into three categories, microporous (<2 nm), mesoporous (2–50 nm), and macroporous
(>50 nm) (Rouquerol et al., 1994; Ying et al., 1999; Zdravkov et al., 2007). There is some
confusion, however, in the increasingly popular use of “nanoporous” to describe all three of
these categories. Synthesis methods for such materials range from crystal engineering to
cooperatively assembled template methods and sol—gel chemistry (Boettcher et al., 2007;
Eddaoudi et al., 2001). In this section an overview of the synthetic methods to achieve meso-
and macroporosity will be briefly covered.

One of the biggest challenges in porous material synthesis is the precise controlling of the pore
size while maintaining overall structure integrity as well as overall size (Alfredsson et al.,
1994). Mesoporous materials such as MCM-41 (Beck et al., 1992)and SBA-15 (Zhao et al.,
1998a,b), and MCF (Han et al., 2007, 1999; Schmidt-Winkel et al., 1999) have been the most
successful porous materials to date and their application in catalysis (Boettcher et al., 2007;
Corma, 1997; Ying et al., 1999) has been particularly interesting. Synthesis of mesoporous
materials involves the use of a surfactant or block copolymer and a polymerizing inorganic
precursor, preferably carried out at a pH near the isoelectric point (IEP) of the inorganic species
(Huo et al., 1994). It is a cooperative molecular assembly process (Monnier et al., 1993; Huo
et al., 1994) that makes use of all components of the synthesis solution.

Macroporous material syntheses using colloidal template methods have been the focus of recent
research. Previously prepared colloidal particles (which can range in size from a few microns
down to a few nanometers) are assembled into a “colloidal crystal”, a regular array of close
packed spheres, dried, and then a matrix-forming material is interspersed into the interstices
between the colloidal particles. This initially liquid solution is then solidified (e.g. polymerized
through heat or chemical reduction) and the original colloid particles removed by dissolution
or pyrolysis, leaving a porous material whose pore size is controlled by the initial colloid.
Materials of these kinds are sometimes referred to as inverse opals. Application of such
macroporous materials has been in catalysis (Chai et al., 2004; Yoon et al., 2005), photonics
(Norris and Vlasov, 2001; Vlasov et al., 2001), and tissue engineering (Liu et al., 2005b; Zhang
et al., 2005), depending on the pore size and type of material. The new trend in porous material
synthesis is to combine different levels of porosities (e.g. microporosity with macroporosity)
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or inclusion of porosities into materials whose overall dimensions are sub-micron (Yang et al.,
1998; Yoon et al., 2002). The bio-applications of such materials include bioseparation,
biosensing, drug delivery, and controlling bioprocesses in blood clotting (Blumen et al.,
2007; Lee et al., 2006b; Ostomel et al., 2006a,b).

Briefly we will highlight few advances of porous nanomaterials that were designed and
successfully used in several key biological applications. First, on the tissue engineering front,
Desai and researchers utilized porous aluminum oxide membranes (prepared via
electrochemical etching) as cell growth substrates for osteoblast cells which was a comparison
study among several different porous and non-porous aluminum oxides. It turns out that the
as-prepared nanoporous Al2O3 substrates showed improved attachment and proliferation of
osteoblast cells both short-term and long-term compared to other examples (Swan et al.,
2005a,b). More recently, Schmuki and co-workers have demonstrated that vertically aligned
titanium oxide nanotubes (also prepared via electrochemical etching) can effectively direct the
adhesion and proliferation of mammalian cells on anodized porous substrates (Park et al.,
2007). The critical factor in the case of mesenchymal stem cells’ adhesion, spreading, growth,
and differentiation was the diameter of the as-prepared nanotubes which meant that the porosity
of the substrate controlled the bioprocesses involved in stem cell biology to a noticeable degree.
Adhesion and spreading of the mesenchymal stem cells (MSCs) were impaired which led to
reduction of cellular level activity and eventual cell death when the diameter of the nanotubes
increased beyond 50 nm. Such a dramatic influence arising from artificially created sub-100
nm size features is a direct testament that nanotechnology can effectively influence biological
processes via careful tuning of variables such as size, volume, and surface electronic
characteristics. Secondly, work related to blood coagulations, Grimes and co-workers showed
that the electrochemically produced TiO2 nanotubes (100 nm diameter with aspect ratio of
approximately 1000) can enhance blood clotting rates (Roy et al., 2007). Metal oxide
hemostatic agents such as porous zeolites and bioglass (SiO2—P2O5—CaO) have been
reported much earlier in time by Stucky and co-workers to effectively enhance the rate of
clotting times both in vitro and in vivo (Ostomel et al., 2006a,b,c). These efforts demonstrated
by the Stucky group illustrated that porous metal oxides can play key roles in controlling the
bioprocesses involved in the blood clotting cascade. Details involved in Stucky group’s work
in the field of hemostasis will be provided in a later section within this review.

2.3. Magnetic nanomaterials
Magnetic properties of materials are controlled by temperature, applied field, alignment and
relative orientation of the magnetic domains, and electronic spin states (Hyeon, 2003).
Additionally, the size of the particles greatly alters magnetic properties (Campbell et al.,
1999). As particle size is decreased to the few tens of nanometers, ferromagnetic materials will
have only a single magnetic domain, and all magnetic spins within that domain will be aligned,
while thermal motion of such particles relative to one another will control the bulk magnetic
properties. These materials are referred to as superparamagnetic and are excellent MRI
(magnetic resonance imaging) contrast agents (Gupta and Gupta, 2005; Murray et al., 2001;
Wang et al., 2001).

Superparamagnetic inorganic oxides (SPIO) such as Fe3O4 are proving especially useful in
tumor targeting and MRI imaging in biomedical applications (Huh et al., 2005; Jun et al.,
2005; Lee et al., 2003; Song et al., 2005). Water-soluble superparamagnetic iron oxide (WSIO)
nanoparticles, for instance, can be additionally passivated with cancer targeting agents (e.g.
antibodies) and in vivo MRI imaging can be done to monitor the circulation and specific
attachment to the cancer induced area (Huh et al., 2005). Iron oxides have also been utilized
in bioimaging for neuroscience (Atanasijevic et al., 2006; Bulte et al., 2001; Cengelli et al.,
2006; Dunning et al., 2004, 2006; Faber et al., 2007; Liu et al., 2007b; Moore et al., 2000;
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Muldoon et al., 2005; Neuwelt et al., 2007; Petropoulos et al., 1995; Rock et al., 2005; Sykova
and Jendelova, 2007; Wadghiri et al., 2003). A recent review by Sykova and Jendelova
(2007) highlights the use of labeled SPIO imaging agents for tracking migration and fate of
adult stem cells in vivo with a focus in the central nervous system. Cell labeling can be done
either on the surface of the cell or internalized into the cytoplasm but not the nucleus. The
labeling contrast agent is usually comprised of a superparamagnetic core (e.g. Fe3O4), a water-
soluble protective coat with functionalizable chemical groups (e.g. thiol, carboxylic acid), and
a targeting agent (e.g. antibody).

Juillerat and co-workers have studied several different SPIO nanoparticles (both synthesized
and commercially available) on their biological effects on brain-derived endothelial cells and
microglial cells (Cengelli et al., 2006). Among the coated SPIO’s, active uptake was observed
in the amine functionalized case which should have a positive surface charge. This observation
is in agreement with a previous report by Cheon and co-workers where cationic water-soluble
iron oxide nanoparticles were efficiently transported into neural stem cells in comparison to
the anionic counterparts (Song et al., 2005). The ideas behind such studies where particle uptake
was increased via surface charge modification are two-fold: one is to increase the signal level
of MRI and the other to achieve drug or small molecule delivery to specific cells and tissues.
Recent researches have shown, however, that cationic surface charges (Xia et al., 2006a) and
iron oxide (Pisanic et al., 2007) itself may have detrimental effects on cells so extensive
toxicology experiments should follow any type of in vitro and in vivo studies utilizing cationic
iron oxide nanoparticles where dosage and procedures are carefully tuned and monitored.

Liu et al. (2007a,b) demonstrated the use of modified SPIO nanoparticles that can target cellular
mRNAs and detect active transcriptions of specific mRNAs in vivo using antisense imaging
agents (e.g. phosphorothioate oligodeoxynucleotide) coupled with MRI imaging. This type of
research can lead to the development of real-time MRI detection methods where CNS disease
models linked to mRNA alteration can be identified. On a slightly different note, Turnbull and
Wisniewski, along with their co-workers, used Aβ1—40 peptide modified iron oxide
nanoparticles to detect Aβ in transgenic mice in vivo (Wadghiri et al., 2003). In summary,
magnetic nanomaterials, especially superparamagnetic iron oxides, can be utilized in three
distinctive neurological applications which include tracking transplanted cells (e.g. stem cells),
identifying transcription efficiencies, and detecting amyloid beta peptides in diseased brains.

2.4. Zeolites and clays
Dramatic responses observed in biomolecules and biomolecular processes involved in
interfacial phenomena that involve inorganic surfaces are well demonstrated in
biomineralization processes (Zaremba et al., 1996), biomolecular chromatographic separations
(Kimura et al., 2004), supported enzyme activities and lifetime (Carrado et al., 2004; Han et
al., 2002) and protein folding and denaturation (Charache et al., 1962). Mentioned earlier in
Section 2.2, the development of potent wound-dressing materials (blood clotting agents) that
are capable of arresting hemorrhage due to traumatic injury is another emerging application
using materials chemistry to control bioprocesses (Ellis-Behnke et al., 2006; Fischer et al.,
2005; Marris, 2007; Ostomel et al., 2006a) and one of the most effective wound-dressing
materials currently available is a nanoporous zeolite called QuikClot® (QC) (Z-Medica). Alam
et al. (2005) reported that among several different advanced wound-dressing materials tested
using a swine model of fatal femoral injury QC exhibited the highest rates of survival.

The Stucky group has found that the isoelectric points of different inorganic surfaces, as
measured in simulated body fluid (SBF), can be used as primary determinants to selectively
and in a predictable manner accelerate or inhibit blood coagulation (Baker et al., 2007; Ostomel
et al., 2007). One example of the many metal oxides based materials that were investigated
was clays. Chemical and physical properties, including variable swelling capacities, particle
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morphologies, surface charge, and the ability to control the local electrolyte balance through
ion exchange are tunable variables available in clay science. In a recent study, it was found
that surface charge in SBF for clays such as kaolin correlated very well with the wide range of
blood clotting activities of porcine whole blood or plasma (Baker et al., 2007).

Surface charge modulation is not the only way to direct the bioprocesses associated with the
blood coagulation cascade as seen in the case of QC where local heating, dehydration, and
electrolyte release also contribute to the overall biological process (Baker et al., 2007). Recent
studies of the hemostasis properties of high-surface-area porous silica, the Stucky group has
shown that the selective variation of window/pore sizes at the sub-50 nm range strongly dictated
the rate at which blood clots are formed in human plasma (Baker et al., 2008). This indicates
that pore sizes in this size range directly impact the accessibility and diffusion of clotting-
promoting proteins to and from the interior surfaces of the porous silica particles. These studies
point toward a critical pore size, ≥20 nm, at which clotting speed is maximized. Interestingly,
this size regime very closely resembles the pore size at which electrochemically prepared
porous TiO2 nanotubes affected mesenchymal stem cell fate as highlighted earlier in this review
(Park et al., 2007). Another important capability of such porous metal oxides is that the clotting
times of plasma can be even further dramatically reduced by immobilizing selected enzymes
within the large pores. This validates the utility of enzyme-immobilized mesoporous silicas in
biomedical applications and further expands their possible use in the field of drug delivery
systems (Han et al., 1999, 2002; Kim et al., 2006a, 2007b; Luckarift et al., 2004; Tischer and
Wedekind, 1999). Porous metal oxides because of their surface chemistry and high internal
surface area will allow facile incorporation of proteins in high loading. Fine tuning of
nanostructured surfaces including pores and expanded structures to facilitate neurochemicals
and important proteins involved in various biological pathways responsible for key
neurological functions will prove to be key factors in the development of nanobiotechnology
in the field of neuroscience along with the ability to incorporate and release such entities in a
controlled fashion.

3. Nano—bio interface and nanotoxicology
3.1. Nano—bio interface

Proteins and nucleic acids have been the focus of many types of research involving
nanotechnology (Kim et al., 2006a; Samori and Zuccheri, 2005; Sarikaya et al., 2003; Seeman,
2003; Zhao and Zhang, 2006). A single cell, usually tens of microns in size, is huge compared
to a 10 nm nanoparticle (Figs. 1 and 2). In this sense, researchers around the world have been
utilizing various inorganic, organic, and composite nanoparticles to study biological processes
involved in drug delivery and cellular level bioimaging (Akerman et al., 2002; Allen and Cullis,
2004; Arap et al., 1998; Gref et al., 1994; Martin and Kohli, 2003). Recently, growing number
of papers examine the interaction between a protein and a nanoparticle (Klein, 2007; Sui et al.,
2005; Taylor et al., 2000). Compared to a 10 nm nanoparticle (Fig. 2), the APP and a small
drug molecule (e.g. DHED) is extremely small which makes probing biologically relevant
molecules on nanoparticles extremely difficult. In reality, an injected nanoparticle into a living
system will have an uncountable number of interactions with the surrounding system regardless
of size. Efforts studying the interface between nanostructured materials and biological systems
starting with proteins and then the cell will be a key development that will aid in the study of
bio-systems relevant to neuroscience, pharmacology, and medicine.

Studying the bio—nano interface is a very different task since there are no simple ways of
probing the interaction in real time or in situ. On the other hand, nanotoxicology (the
examination of bioeffects of nanomaterials) is a rapidly developing field of some direct
relevance. Over the past few years, substantial efforts have begun in the study of the toxic
effects of nanomaterials on the environment and living systems. For instance, University of
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California has a focused nanotoxicology program sphere headed by UCLA and UCSB under
its UC Toxic Substances Research and Teaching Program
(http://www.bren.ucsb.edu/news/press/nanotoxicology.htm;
http://www.cnsi.ucla.edu/staticpages/education/nanotox-program). As a city, Berkeley (CA),
for the first time in US history, has decided to regulate nanotechnology by law with UC
Berkeley and LBNL (Lawrence Berkeley National Laboratory) being involved in many
nanotech projects but without any implemented safety related protocols (Berkeley, 2006;
Monica et al., 2007). Rice University has a center called CBEN (Center for Biological and
Environmental Nanotechnology) and an organization called ICON (International Council on
Nanotechnology) dedicated to establishing a database for nanotechnology based materials
(http://cben.rice.edu/; http://icon.rice.edu). The National Cancer Institute (NCI), not long ago,
started a separate institution called NCL (Nanotechnology Characterization Laboratory)
headed by a chemist investigating nanomaterials that are below 100 nm on a proposal
submission and approval basis (http://ncl.cancer.gov/). Internationally, IBN (Institute of
Bioengineering and Nanotechnology) governed by A*STAR (Agency for Science, Technology
and Research) in Singapore is an interdisciplinary research park that brings together nanometer
scale science with control over biological system (http://www.ibn.a-star.edu.sg/). IBN is
headed by a materials scientist which is a sign that the institution has an emphasis more in the
materials they make which will help to alleviate transfer of nanotechnology to be implemented
in biotechnology.

In essence, a fundamental understanding of nanomaterial toxicology (nanotoxicology) is highly
desirable both from the material’s stand point as well as from the biological system’s point of
view. With the increase of commercial products from cosmetics to tennis balls, toxicology
evaluations of nanoscale materials should receive greater attention than ever before whether it
is the general public, the government, or the personnel involved in the development of
nanomaterials (Colvin, 2003; Maynard et al., 2006; Nel et al., 2006; Oberdorster et al., 2005).
For the field of neuroscience, the lessons learned from these nanotoxicology studies should
help researchers to better choose the type of nanomaterial that can be utilized for studying, for
instance, the synaptic plasticity of a neuron. In hopes of doing this, we will review the literature
of how nanotoxicology has developed and provide few tables to ease the selection process of
materials. With current data, however, it is often difficult to ascertain the toxicity of specific
nanomaterials because, as with any small molecule (e.g. pharmaceuticals), toxicity is dose,
exposure and pathway dependent. In addition, nanotoxicology studies on animals or cultured
cells alone cannot predict in a good manner the effects it might have on human beings.

3.2. Nanotoxicology
Various types of engineered nanomaterials exist now thanks to the extraordinary and highly
focused efforts from both industry and academia in recent years. The number of published
papers dealing with just the synthesis of nanostructured materials has grown exponentially
(both 2006 and 2007 exceeds 3200 papers) (Fig. 3). Owing to this explosive increase in
publications, hundreds of in vitro toxicological studies have been reported (Derfus et al.,
2004;Gurr et al., 2005;Oberdorster, 2004;Ramires et al., 2002;Soto et al., 2005;Suh et al.,
2006b;Yoshida et al., 2003), as well as numerous reviews and perspectives (Balbus et al.,
2007;Borm and Kreyling, 2004;Colvin, 2003;Dobrovolskaia and McNeil, 2007;Garnett and
Kallinteri, 2006;Handy and Shaw, 2007;Hardman, 2006;Maynard et al., 2006;Medina et al.,
2007;Nel et al., 2006;Oberdorster et al., 2005). In vivo toxicology, on the other hand, which
probes toxicity (i.e. LD50, pathology) by inhalation, injection, and oral digestion, involves the
test subject to internalize the test sample whether it is a small mice or a large mammal such as
a dog or a monkey. It is, however, troublesome to test nanomaterials’ toxic effects on whole
animals since all of the synthetic engineering (Cushing et al., 2004;Dai, 2002;Huber,
2005;Jeong et al., 2007;Lee et al., 2006b;Lu et al., 2007a;Medintz et al., 2005;Michalet et al.,
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2005) is donevery specifically by individual research groups and proprietary information on
synthesis is hard to get especially from the industry. In addition, preparing/conducting/
regulating an in vivo test is ethically and administratively challenging and individual research
efforts have to work in partnership with the institutional approval organization(s) such as
IACUC (Institutional Animal Care and Use Committees).

3.2.1. In vitro nanotoxicology—The easiest simple solution in assessing nanomaterial
toxicology is utilizing various mammalian cells to test for viability or increase/decrease in a
designated inherent biological pathway against chosen engineered nanomaterials. For instance,
tetrazolium salt based assays (e.g. MTT (Mosmann, 1983) or WST (Ishiyama et al., 1996;
Tominaga et al., 1999) are readily available commercially (i.e. Dojindo, Roche) and
straightforward to use. Inorganic oxides (Gurr et al., 2005; Ramires et al., 2002; Soto et al.,
2005; Suh et al., 2006b; Yoshida et al., 2003) such as TiO2, SiO2, Fe2O3, carbon-based
materials (Jia et al., 2005; Oberdorster, 2004; Sayes et al., 2005; Soto et al., 2005; Zhu et al.,
2006) such as nanotubes (Cui et al., 2005a; Donaldson et al., 2006; Garibaldi et al., 2006;
Heller et al., 2005; Lam et al., 2004, 2006; Liopo et al., 2006; Manna et al., 2005; Maynard et
al., 2004; Monteiro-Riviere et al., 2005; Shvedova et al., 2003; Singh et al., 2006b), C60, and
other nanoparticulates (Derfus et al., 2004; Soto et al., 2005; Yoshida et al., 2003) such as
semiconductor quantum dots (Chang et al., 2006; Lovric et al., 2005a,b; Tsay and Michalet,
2005; Voura et al., 2004), metal nanoparticles have been evaluated by various research groups
(excerpts given as Tables 1–5). The current biggest challenges which have been mentioned in
previous papers (Maynard et al., 2006; Nel et al., 2006) might be establishing standard
protocols (e.g. particle preparation and growth condition) and producing a reproducible and
credible database, such as MSDS (Materials Safety and Data Sheet) for small molecules and
effectively linking the toxicological information with physicochemical properties. It is,
however, easy to identify a fairly non-cytotoxic material from seriously cytotoxic ones since
materials like TiO2 show very little overall cytotoxicity regardless of method or choice of
laboratory (Gurr et al., 2005; Ramires et al., 2002; Soto et al., 2005; Suh et al., 2006b; Yoshida
et al., 2003). Of course, there are different results arising from different types of assay
conditions, the nature of the nanomaterial synthesis, and differences in physicochemical
properties.

Another factor to consider is the fact that all of these nanomaterials are not exposed to a
biological system in its pristine state (Fig. 4). Consider the DMEM (Dulbecco’s Modified
Eagle’s Medium) liquid cell media and its contents which contain various inorganic salts,
amino acids, vitamins and few other components. At least, six components have molar
concentrations over 1 mM while fifteen components (mostly amino acids) have concentrations
between 0.1 and 1 mM. On top of this, there is approximately 0.1 M of sodium chloride present
and the overall molar concentration of small molecules is approximately 0.2 M (or 2 wt%).
And this does not even include the various proteins in the serum that is usually supplemented
in 5–10% fractions to the cell media. Realistically, when nanoparticles are added to a
biologically relevant liquid medium their surface physicochemical properties will change over
time depending on their physical conditions such as temperature (37 °C, the incubation
temperature), light, and some form of agitation. In fact, several research groups have
investigated adsorption of proteins and small molecules on nanomaterials and their effects on
biological activity (Chan et al., 2007;Dutta et al., 2007;Wang, 2005;Wiesner, 2006;Yang et
al., 2006b). Adsorption chemistry and physics of small molecules and biomolecules onto metal
oxides have traditionally been a research topic in the physical sciences (Campbell,
1997;Diebold, 2003;Freund et al., 1996;Hofer et al., 2001;Lavalley, 1996;Rajh et al., 2002) so
expanding on such work should greatly aid in the process of assessing nanomaterial toxicology.
For instance, Mrksich and Whitesides (1996) wrote a review which dealt with how cells interact
with small molecules adsorbed onto surfaces.
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3.2.2. The cell—nanoparticle interface—Eventually, expanding the toxicity studies to
mammals should be done but since it is practically impossible to test on a human subject it will
be difficult to assess nanomaterials’ effects on human beings with just animal studies alone.
In addition, as mentioned previously, nanostructured materials will be in contact with some
biologically relevant entity once it enters a biological system. This makes any biochemical
assay or structural analysis irrelevant just on its own.

Biological effects of nanomaterials with a focus on toxicity have to be addressed since
consumer products as well as medical tools increasingly utilize them one way or another
(Maynard et al., 2006). Neuroscience has been linked to nanotechnology previously (Silva,
2006) so instead of repeating things from that particular review we would like to focus on
biological effects of nanomaterials with a focus on toxicology and excerpts from recent
advances that can potentially be beneficial to the neuroscience community. First, we would
like to focus on several nanomaterials and show how researchers around the world have tried
to assess their toxicity. Fig. 5 shows eight representative schemes of how a cellular organism
can be affected by a nanoparticle: the cell—nanoparticle interface.

Reactive oxygen species (ROS) products whether it is inside or outside of the cell can be key
factors in nanostructured materials toxicological effects (Nel et al., 2006). Event 1 represents
a nanoparticle smaller than a cell (red particle) producing ROS which ultimately will affect
cell membrane stability and cell survivability. If this nanoparticle is internalized, ROS
production (event 2) (Nel et al., 2006), particle dissolution (event 3) (Borm et al., 2006), and
mechanical damage to sub-cellular units (event 4) (Yamamoto et al., 2004) such as the nucleus
will be very important events to monitor and analyze. In addition, different functional groups
and surface electronics of the nanostructured materials will determine the level of interaction
between the nanoparticles and their surroundings (event 5) (Karakoti et al., 2006; Kostarelos
et al., 2007). Furthermore, overall size of the particle can play an important role since large
particles can potentially induce permanent damage to the cell membrane while small particles
can pass through the membrane and do harm inside the cell (event 6) (Yoshida et al., 2003).
Non-spherical particles, on the other hand, might have a different biological response compared
to the spherical nanoparticles (event 7) (Geng et al., 2007). Dissolution characteristics of the
nanomaterials (whether it is outside the cell or inside) can affect the cell in various ways (event
8) (Borm et al., 2006). Limiting the interaction between a nanoparticle and a cell to eight events
is an over simplification and the details of actual phenomena that are happening at the interfaces
are very difficult to understand. In addition, the size differences among a 1 nm small molecule,
a 4 nm protein, and a 10 nm nanoparticle are huge as shown in Fig. 2. Interaction parameters
between these three entities coupled with various other molecules, ions, and particles will make
the system highly complex (Fig. 4) to account for in a simple manner so applying systems
biology (Ideker et al., 2001; Kitano, 2002a,b) approach could be an interesting option as a long-
term research project.

On top of these eight nanotoxicology events, nanomaterials interaction with microbial
organisms (Moreau et al., 2007) will be an interesting aspect to consider since biologically
contaminated nanostructured materials will have detrimental effects on their utilization in
biomedical applications (Fig. 6). For instance, mycoplasmas (Razin, 1978; Razin et al.,
1998) have a size range below few hundred nanometers and they have become a rising concern
in mammalian cell cultures including stem cells (Chen and Chang, 2005; Cobo et al., 2005,
2007; Rottem and Barile, 1993; Simonetti et al., 2007; Ware et al., 2006). If such microbial
organisms integrate themselves readily with engineered nanomaterials their toxic potential as
a nanocomposite material could increase which makes probing and understanding
nanomaterial’s role in controlling and affecting cellular level biological processes (events 1–
8 in Fig. 5) very important to investigate and understand. Toxicology arising from such
nanobiocomposites will give new meaning to nanotoxicology and, in fact, will be key issues
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to consider for neuroscientists wanting to use nanotechnology with focuses on neuronal cell
systems, brain implantations, and dementia research such as Alzheimer’s disease since
mycoplasma detection is not trivial and implications have been made on their possible role in
human disease action including CNS diseases (Candler and Dale, 2004; Casserly et al., 2007;
Daxboeck, 2006; Daxboeck et al., 2003, 2005; Narita et al., 2005; Pellegrini et al., 1996;
Tsiodras et al., 2005; Waites and Talkington, 2004).

3.2.3. Titanium dioxide (TiO2)—Titania (TiO2) has received much attention in materials
sciences and engineering due to its optoelectronic properties (Hashimoto et al., 2005). For
example, TiO2 has been utilized as photocatalysts for photochemical hydrogen production and
for self-cleaning windows. In the cosmetic industry, titania is the main ingredient in many
commercial sunscreens along side ZnO due to its property of UV absorption.

The phase mainly responsible for titania’s photocatalytic properties is anatase. Other known
phases are rutile and brookite. Evaluating and comparing TiO2 toxicology has been the theme
of many research groups and the investigations involved assaying for size, content and ROS
production. Recent efforts have been focused on engineered nanomaterial toxicology and here
we represent few excerpts within the past several years. Yoshida et al. (2003) have reported
that LDH (lactate dehydrogenase) assay revealed TiO2 to be the least toxic material from
sub-100 nm up to 1 μm. According to their studies toxicology assessed using cell membrane
damage assays, metal oxides are toxic in the following order: TiO2 < Al2O3 < SiO2 regardless
of size under 1 μm. This study, however, does not probe different types of TiO2. For an
overview study of cell toxicology in relation to TiO2 particle size and crystal phase, Sayes et
al. (2006) and Warheit et al. (2006) have done studies with dermal fibroblasts and human lung
epithelial cells as well as with rats which suggest that photoactivation of anatase TiO2 will
increase cytotoxicity but concentrations over 100 mg/mL will be significant enough to cause
any ill effects. Soto et al. (2005, 2007) have also done a correlation study between particle size,
aggregation and toxicology using cellular experimental protocols. In these studies TEM is
extensively used to analyze the particle sizes and the results suggest that TiO2 are much less
cytotoxic compared to other types of nanomaterials such as carbon nanotubes and SiO2. In a
unique synthesis, Suh et al. (2006b) have produced anatase phase TiO2 microspheres that have
nanometer features and also showed that TiO2 is biocompatible. The cause for concern in
TiO2 toxicity studies are in the cases where researchers showed genotoxicity (Turkez and
Geyikoglu, 2007; Wang et al., 2007a) associated with titania and with particles that are non-
spherical (Yamamoto et al., 2004). Table 1 summarizes TiO2 nanotoxicology in recent years
with a minimum focus on in vivo inhalation toxicology and a focus on cellular level toxicity
studies. Utilizing nanotechnology in neuroscience will likely not involve inhalation of particles
compared to injection and installation of the nanostructured materials either as injectable
devices or implantable machines and tools.

Prosthetic devices including neuroprosthetics require well-defined device characteristics such
as mechanical and chemical properties. Titanium based materials have been the choice of many
for implants. In a recent study, Palmieri et al. (2007) have investigated into comparing the
effects of nano-sized synthetic anatase TiO2 (prepared via the sol—gel route surface) coated
onto surfaces against osteoblast-like cells (MG63) for their role in gene regulation using
microRNA (miRNA) microarray analyses. miRNAs are small 19–23 nucleotide noncoding
RNAs and play a crucial role in the post-transcriptional regulatory process. miRNAs regulate
the expression of other types of genes by repressing or cleaving translation of their messenger
RNA targets and they have been shown to be an intricate part of neurobiologically important
pathways (Kosik, 2006; Kosik and Krichevsky, 2005). The number of known miRNA’s are
limited to approximately 500, considering this and the shown roles of miRNA it may be an
important molecular level screening method that has become available for any type of
nanoscience-related neuroscience projects. Interestingly within the past two years, Gao and
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researchers have utilized nanotechnology to electrochemically detect miRNA at the pM to fM
range (Fan et al., 2007; Gao and Yang, 2006) and the Corn group used nanoparticle amplified
optical detection methods which allowed the detection lower limit to reach attomolar
concentrations (Fang et al., 2006). Recent advances involving nanotechnology and miRNA
will foster new and exciting interdisciplinary research linking biology and physical sciences.

3.2.4. Silicon dioxide (SiO2)—In comparison to TiO2, silica (SiO2) has been studied more
widely due to an occupational lung disease called silicosis which is linked to crystalline phase
silica (Brunner et al., 2006; Jovanovic et al., 2006). Unlike TiO2, however, research involving
SiO2 in the field of nanotechnology deals mainly with amorphous phase silica (Bharali et al.,
2005; Chowdhury and Akaike, 2005; Gemeinhart et al., 2005). Here we will introduce few
good examples of SiO2 nanostructured materials with a focus on recent synthetic particles that
have multifunctionality (see Section 4.2). SiO2 sub-50 nm silica nanoparticles incorporating a
fluorophore and an MRI agent were synthesized and cell viability was checked with a one day
colorimetric tetrazolium assay using monocyte cells which revealed the non-toxic nature of
that particular multifunctional particle (Rieter et al., 2007a). Mesoporous SiO2 spheres have
been prepared and utilized in several biological applications in the past few years including
drug delivery studies (Slowing et al., 2007). In a recent anti-cancer drug delivery study done
by UCLA (Lu et al., 2007b), approximately 130 nm amine group functionalized mesoporous
SiO2 spheres were formed and surface modified with alkyl phosphate groups. Cytotoxicity
tests on several different cancer cell lines (e.g. PANC-1, AsPC-1) revealed practically no
toxicity unless the anti-cancer drug was loaded and subsequently released over time. In another
protein, polymer functionalized SiO2, luminescent nanobeads of approximately 20 nm were
tested for its cytotoxicity (< 6 h) via apoptosis and necrosis assays (flow cytometry) (Bottini
et al., 2007). Organically modified 20 nm SiO2 with an incorporated hydrophobic
photosensitizer (e.g. porphyrin) were tested for its toxicity levels with tumor cells and showed
no apparent toxicity unless irradiated with light to product ROS (Ohulchanskyy et al., 2007).
Generally, amorphous SiO2 nanoparticles are considered highly biocompatible and non-
cytotoxic unless engineered to be otherwise.

3.2.5. Iron oxide—Iron in the presence of an oxidant (e.g. air) will become iron oxide (i.e.
rust). There are several phases of iron oxides which include Haematite (α-Fe2O3), Magnetite
(Fe3O4), Maghemite (γ-Fe2O3), β-Fe2O3, ε-Fe2O3, Wüstite (FeO) (Cornell and Schwert-mann,
1996). Among them, magnetite (Fe3O4) nanoparticles have been the subject of research for
many years in hopes of using them for biomedical research (Bulte et al., 2001; Caruthers et al.,
2007; Dunning et al., 2004; Gupta and Gupta, 2005; Mornet et al., 2004; Pankhurst et al.,
2003; Simberg et al., 2007; Sykova and Jendelova, 2007; Thorek et al., 2006; Weissleder and
Mahmood, 2001; Xu and Sun, 2007). Sub-10 nm Fe3O4 nanoparticles have been particularly
useful as a superparamagnetic MRI probe that can be made to target-specific cells and tissues
inside the body. It is straightforward to synthesize iron oxides especially magnetite
nanoparticles: iron salt, surfactant, base, solvent and heat. Compared to TiO2 and SiO2, iron
oxides are partially soluble in acidic media containing chelating agents such as siderophores
(Kraemer, 2004).

For this very reason, in vitro neurotoxicity of iron oxides was implicated by researchers from
UCSD (Pisanic et al., 2007). In this study, iron oxide nanoparticles affected PC12 cells’ ability
to differentiate in response to nerve growth factors (NGF) in a concentration dependent manner.
For instance, Western blotting revealed that growth associated protein GAP-43 level decreased
dramatically when the NGF concentration went from 0.15 to 1.5 mM then 15 mM which alerted
the researchers to re-evaluate their efforts in using iron oxide nanoparticles for neurobiological
applications. Iron oxides are negatively charged in physiological pH conditions. This good
example shows how surface chemistry and its electronic states control bioprocesses in a
detrimental manner. Any use of nanotechnology in biological applications should accompany
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stringent biocompatibility studies of not only in short-term effects but also effects from chronic
exposure. Case-by-case approach to probe nanotoxicology is a must especially when
bioprocess control over neurological systems is strongly desired. Table 3 lists several good
examples of research groups around the world that have researched into both in vitro and in
vivo toxicology of iron oxides.

On a slightly different note, Ruoslahti and co-workers (Simberg et al., 2007) have utilized 50
nm iron oxide nanopaticles as tumor homing vehicles that has been conjugated to a tumor
targeting peptide CREKA (Cys-Arg-Glu-Lys-Ala). CREKA allows the nanoparticle to
recognize clotted plasma proteins and bind to vessel walls and tumor stroma. Interestingly,
these nanoparticles accumulate in tumor vessels; induce blood clotting which increases binding
sites for additional particles to home in to. This type of controlled and targeted toxicity is a
new state-of-the-art use of iron oxide nanoparticles in comparison to their sole use as image
contrast agents. It will be beneficial for the neuroscience community to bench mark such efforts
from the cancer research community and follow the biological target based approaches and
implement them to known targets in neurological disorders.

3.2.6. Cerium oxide: neuroprotecting agent—CeO2 is a very potent oxidation catalyst
which promotes chemical reactions such as CO oxidation in automobile catalytic converters
(Guzman et al., 2005; Trovarelli, 1996). In the last few years, several works involving ceria
nanoparticles on their ability to offer cellular level protection have been reported (Das et al.,
2007; Niu et al., 2007; Schubert et al., 2006; Singh et al., 2006a). Nano-ceria nanoparticles
prevented increases in reactive oxygen species (alternatively coined reactive oxygen
intermediates) in vitro and in vivo. Light-induced degeneration of photoreceptor cells leading
to vision loss was reduced. These findings suggest that therapeutics developed based on nano-
CeO2 may effectively decrease any ill effects arising from ROS related degeneration, diseases
and ailments (Chen et al., 2006b). In an earlier study, radiation studies were done and it was
found that normal cells pretreated with nano-ceria did not die where as untreated cancer cells
did. The nature of these types of protective effect comes from the oxidation—reduction (redox)
chemistry between Ce4+ and Ce3+ and the fact that the inorganic structure of ceria can tolerate
defects via oxygen vacancies in CeO2—χ (Mogensen et al., 2000). Surface charge effects of
nano-ceria were investigated in several different pHs and synthesis conditions. As expected,
protein adsorption (e.g. BSA) increased as a function of zeta potential increase and negatively
charged CeO2 internalized preferentially in cellular uptake experiments. Synthesis methods
strongly affected the IEP of nano-ceria: microemulsion method gave 4.5 and hydrothermal
method gave 9.5 (Patil et al., 2007). IEP differences arising from synthesis details being
different might be a key issue when utilizing nanostructured materials for biological
applications. Biological screening of cerium oxide with a focus in nanotoxicology has been
conducted only within the last few years and we have summarized those efforts in Table 4.

3.2.7. Carbon materials—Among carbon-based materials, carbon nanotubes have been
well utilized in recent biological applications. Excellent review papers already exist for CNT’s
(Dai, 2002; Dai et al., 2003; Harrison and Atala, 2007; Pagona and Tagmatarchis, 2006) and
C60 fullerenes (Diederich and Gomez-Lopez, 1999; Fiorito et al., 2006; Hirsch, 1995; Jensen
et al., 1996; Ke and Qiao, 2007; Prato, 1997; Satoh and Takayanag, 2006) so we will focus on
new types of spherical and non-tubular forms of carbon that was developed for biological
applications (Fig. 7). The first example is carbon nanohorns by Iijima and co-workers (Ajima
et al., 2005; Isobe et al., 2006; Matsumura et al., 2007; Miyawaki et al., 2006; Murakami et
al., 2004). Processed in a similar fashion as CNT’s, researchers were able to synthesize high
surface area carbon materials that have tube-like carbon sticking outward but in a spherical
overall shape and are approximately 100 nm in size. Cytotoxic assays show practically no
toxicity. The second one is carbon nanodots (sub-10 nm) which were strongly two-photon
active and emit in the visible range (Cao et al., 2007). In vitro tests suggest that the carbon
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nanodots can be internalized into mammalian cells and fluorescent microscopy imaging was
possible. A third recent class is (fluorescent) diamond nanoparticles (Fu et al., 2007; Yu et al.,
2005) which were found to be noncytotoxic and were used as single-particle biomarkers on
mammalian cells.

3.2.8. Zeolites and clays—Recent development in utilizing porous zeolite materials for
biomedical application has focused on two main areas. One is in hemostatic agents which
induces blood clotting upon treatment and the other in antibacterial agent development
(Sakaguchi et al., 2005). Quikclot® (QC) developed by Z-Medica has been a key agent utilized
by the military to reduce deaths in the field by blood loss. This agent is very effective but also
induces local dehydration and causes in situ cauterization. Instead of zeolite based porous
materials either mesoporous bioglass (Ostomel et al., 2006a,b) or clays (Baker et al., 2007) can
be a highly effective blood clotting agent. Both of these materials, in fact, avoid causing burns
to the user. A much more recent product, Quikclot Sport® Silver™, which incorporated silver
in the matrix alleviated the negative factors in QC and Z-Medica now offers a burn-free,
antibacterial dressing for external wounds (Z-Medica). This later examples clearly
demonstrates how a single metal ion source can greatly affect the materials’ overall interaction
with biological systems such as the blood clotting cascade.

Tailoring inorganic nanostructures by their composition and surface electronics might further
allow researchers to invent a porous system where one can control the rate of blood clotting
by either engineering the isoelectric point (Ostomel et al., 2007; Sakaguchi et al., 2005) or by
incorporating biologically relevant entities into the nanostructured base material (Ostomel et
al., 2006c). In essence, there is no extensive mammalian toxicology study done on zeolites but
their use as blood clotting agents and related clinical studies have proven that their use on
animals and human beings are reasonable within the scope of allowed practices of medicine.
We expect to see more work on blood clotting and antibacterial agents using zeolite and other
types of porous metal oxides. Studying such controllable systems might offer insights into
targeting internal head injuries and other types of internal wounds and clots and allow
researchers to directly deal with such medical issues.

3.2.9. Metal and semiconductor nanoparticles—Utilization of metal and
semiconductor nanoparticles in biomedical applications has been demonstrated very well by
many research groups (Daniel and Astruc, 2004; Fu et al., 2005; Jun et al., 2006; Medintz et
al., 2005; Michalet et al., 2005; Tang and Kotov, 2005). Reviews for these two classes of
materials exist in multiples and we do not want to repeat what others have done. For metal
nanoparticles such and Au and Ag, however, we would like to introduce molecular imaging
via (surface) plasmon resonance coupling (Campbell and Xia, 2007; Haes et al., 2004,
2005a,b).Aaron et al. have shown that 25-nm gold nanoparticles when conjugated with anti-
EGF (epidermal growth factor) receptor monoclonal antibodies can be efficiently used as in
vivo targeting agents for imaging cancer markers, specifically epidermal growth factor
receptors. The Au nanoparticles results in a dramatic increase in signal contrast compared to
other antibody-fluorescent dye targeting agents.

Semiconductor nanoparticles such as CdSe/ZnS nanoparticles have been utilized heavily for
bioimaging applications (Michalet et al., 2005). The biggest challenge with this type of material
is the potential of high toxicological effect caused by heavy metal dissociation (Chang et al.,
2006; Derfus et al., 2004; Kirchner et al., 2005; Sinani et al., 2003; Voura et al., 2004; Zhang
et al., 2006). Many in vitro and in vivo toxicological studies were conducted and interesting
studies have been done and in recent years the effect of nanoparticles on microbial species and
in the environment has received notable attention (Adams et al., 2006; Bhattacharya and Gupta,
2005; Dreher, 2004; Guzman et al., 2006; Liu, 2006; Maynard and Kuempel, 2005; Wigginton
et al., 2007). It is particularly interesting that certain microbial species interact extraordinarily
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with nanomaterials or in certain instances even synthesize nanostructured materials (Gericke
and Pinches, 2006; He et al., 2007; Konishi et al., 2006, 2007; Marshall et al., 2006; Moreau
et al., 2007; Shankar et al., 2003). Combining efforts from environmental and biological
sciences not necessarily related to medicine could eventually help us understand how different
biological systems react cooperatively or uncooperatively with certain types of nanostructured
materials regardless of their overall size and content. Moreau et al. (2007), for instance, have
shown that extracellular proteins from microbial species can promote biomineralization of
metal-bearing nanoparticles and suggested that such an event can lead to limiting
nanoparticulate dispersion in the environment.

4. Nanomaterials for biomedical research: opportunities in neuroscience
4.1. Nanowires and patterned surfaces

Patterned surfaces, particularly, created with PDMS (poly (dimethylsiloxane)) elastomer have
been of high interest to many for cell attachment studies both for eukaryotic (Aizenberg et al.,
1998; Chen et al., 1998, 2005; Kane et al., 1999; Mrksich and Whitesides, 1996; Takayama et
al., 1999; Whitesides and Lamantia, 1995; Zhang et al., 1999) and prokaryotic (Weibel et al.,
2007) systems (Fig. 8a). Whitesides and co-workers have shown that micro- and nanoscale
patterns on flexible substrates can be excellent tools to study cell mechanics and function. In
fact, multitudes of projects now involve the use of soft lithography techniques (based on
cleanroom microtechnology used to make electronic materials and circuits) which allow facile
creation of highly reproducible surface patterns and subsequent systematic analysis of
biological systems. Jeon and co-workers at UC Irvine have successfully engineered lab-on-
chip systems (made out of PDMS and slide glass) which allow neuronal cell bodies to be
spatially separated from the out-growing neurites and axons (Park et al., 2006; Taylor et al.,
2005). Microtechnology have also been well utilized by Bhatia and co-workers at MIT to
control cellular level microenvironments which allowed three-dimensional cell cultures and
high-throughput screening of biomolecules such as extracellular matrix proteins possible
(Albrecht et al., 2006; Flaim et al., 2005; Hui and Bhatia, 2007; Khetani and Bhatia, 2008;
Underhill and Bhatia, 2007). Lithography techniques also allowed the development of lab-on-
chip devices (or platforms) which led to long-term low cell density (nano-liter volumes)
postnatal rat primary hippocampal neuron cultures as demonstrated by Millet et al. (2007) at
the University of Illinois. The June 2007 issue of Lab on a Chip journal published a special
issue on ‘Cell and Tissue Engineering in Microsystems’ which covers a variety of research
efforts involving cell biology investigation on microdevices and patterned surfaces (Bhatia and
Chen, 2007) and with the advancement of single cell analysis techniques (Jo et al., 2007;
Jurchen et al., 2005; Kruse and Sweedler, 2003; Monroe et al., 2005; Northen et al., 2007;
Rubakhin et al., 2000, 2003; Rubakhin and Sweedler, 2007), long-term cell culture experiments
with precisely controlled microenvironments can be done in a facile manner in conjunction
with high resolution real-time analysis of cellular products.

Nanowires with sub-micron diameters have also been utilized to study cell biology. Yang and
co-workers at UC Berkeley have recently reported that sub-100 nm (diameter) silicon
nanowires (SiNW) can be integrated into live cells without causing detrimental affects (Kim
et al., 2007c). Basically, they were allowed to grow mouse embryonic stem cells on the SiNW
and also use them as nanoscale needles to deliver biological materials such as GFP (green
fluorescent protein) plasmid (Fig. 8b) into cells. At almost the same time, Bertozzi and co-
workers have reported the use of a modified nanosized AFM (atomic force microscopy) tip to
favorably deliver fluorescent nanoparticles such as CdS (Chen et al., 2007)(Fig. 8c). The
diameter of the AFM tip was sub-10 nm and it proved that length scales much smaller than the
cell was very important for the survival and subsequent delivery of materials inside the cell.
Making sub-micron patterns of biomolecules as well as functionalizing the sub-patterns with
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inorganic nanowires and nanopores which can incorporate biological materials will offer
additional key functions to any device that may incorporate such sub-units. For neuroscience
research, microdevices with sub-cellular (sub-micron) features, patterns, and functional
surfaces can eventually aid in carrying out nanosurgeries to cells linked to the CNS and also
in studying the interface that is created between neurons and neuronal implants in vitro and in
vivo.

4.2. Multifunctional nanoparticle
Recent trends in nanoparticles engineered for biomedical applications involve nanoparticles
having multiple components in the nanomaterial (Fig. 9). In most cases, as depicted in the
schematic, a multifunctional nanoparticle system (MFNPS) would be comprised of four main
components: a matrix which is few hundred nanometers in size or smaller, a magnetic domain
(e.g. Fe3O4) for MR imaging, an optical probe (usually fluorescent such as FITC) for
microscopy, and pores or functionality that allows the incorporation of a small molecule (i.e.
therapeutic agent) or a biomolecule (i.e. antibody). MFNPSs can have four distinctive types.
Type 1 is non-porous but spherical SiO2 based sub-100 nm nanoparticles with two or more
components. Type 2 is sub-200 nm spherical nanoparticles that is either porous or can
incorporate and, in time, release small molecules such as drug molecules. Type 3 is sub-20 nm
nanoparticles with functionalizable ligands or biomolecules stabilized (passivated) onto the
nanoparticles and are, in most cases, first synthesized in organic conditions and then phase
exchanged. Finally, type 4 is non-spherical nanoparticle systems that have multiple
components such as fluorescent tags and antibodies. (Fig. 9) This last type 4 MFNPs will
essentially have very different biological responses compared to spherical systems. According
to a recent study by Discher and co-workers (Geng et al., 2007) showed that particle flow and
subsequent delivery of drugs are affected by shape in vivo. Filament (non-spherical) type
particles resided approximately ten times longer than spherical particles and due to their
prolonged existence drug delivery was more effective as well. Cell uptake efficiencies also
differed.

Multiple examples of MFNPS exist that have small molecule therapeutic agents incorporated
(Josephson et al., 2002; Kim et al., 2006b, 2007a; Lee et al., 2004b, 2006c; Levy et al., 2002;
Lin et al., 2006c; Pellegrino et al., 2005; Rieter et al., 2006, 2007a,b; Santra et al., 2005a,b,c).
The overall theme for MFNPS is very straightforward but finding a balance between rationally
designing the system and, at the same time, practically screening will be key issues in the
development of MFNPS for biomedical application.

In contrast to inorganic based systems, biodegradable polymers such as poly(L-lactic acid)
(PLLA), poly(lactide-co-glycolide) (PLGA), BSA (bovine serum albumin) have been in
existence for a while now and is widely used for the controlled delivery of drugs and proteins
in the form of microspheres or nanospheres (Giovagnoli et al., 2005; Ibrahim et al., 2005;
Langer, 1990; Song et al., 1997; Suslick and Grinstaff, 1990; Wei et al., 2004, 2006; Yeo and
Park, 2004). Based on these types of degradable polymeric systems, antibody conjugated
magnetic PLGA nanoparticles were reported recently for the diagnosis and treatment of cancer
(Yang et al., 2007). The drug molecule incorporated into this PLGA nanoparticle was
doxorubicin (DOX) which is very similar in structure with minocycline (Choi et al., 2007)(Fig.
9) which has recently been shown to have potent anti-Alzheimer’s disease effect. In fact,
although not a multifunctional particle, Huperzine A was encapsulated in PLGA in its
microspherical form and was used in the treatment of memory impaired rodents (Chu et al.,
2007; Gao et al., 2007). Microemulsion methods have also been used to deliver
pharmaceuticals, specifically metal chelators to treat CNS related diseases (Cui et al., 2005b).
Veiseh et al. (2005) have reported that multifunctional nanoprobes which contained glioma
cell targeting functions were also capable of being detected via MRI and fluorescent
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microscopy methods. This multifunctional nanoparticle is made up of iron oxide and poly
(ethylene glycol) with dual functional groups.

With just single-component nanoparticles, researchers have used the nanoparticles to aid in
their quest to find a cure for dementia related diseases such as Alzheimer’s disease and
Parkinson’s disease. Nanostructured gold materials have been used to promote/suppress local
protein aggregations such as Aβ (Kogan et al., 2006). In an earlier study, silver nanoparticles
were utilized to study the interaction between amyloid β-derived diffusible ligand (ADDL)
and the anti-ADDL antibody (Haes et al., 2004, 2005a).

In summary, tailoring the size, contents, and surface electronic properties through chemistry
and physical methods within sub-200 nm nanoparticles will be key factors in the quest of using
MFNPS (multifunctional nanoparticles) for the treatment and diagnosis of brain related
abnormalities. Many review papers (Cornford and Hyman, 1999; Liu et al., 2005a; Lockman
et al., 2002; Roney et al., 2005) have been written in recent years that talk about size being a
key issue in drug delivery to the brain past the blood—brain barrier (BBB). That is very true
in cases where spherical morphologies are observed in the nanomaterials but it raises a big
question about particles of different shapes such as carbon nanotubes (Geng et al., 2007). In
addition, although not in the field of neuroscience, lessons learned from blood related research
using inorganics (Baker et al., 2007; Boettcher et al., 2007; Ostomel et al., 2006a,b,c, 2007)
might help to improve particle design, synthesis and final usage as therapeutic or diagnostic
agents in CNS related disorders.

We would like to end this section by providing a table listing various multifunctional
nanoparticles (shown in Fig. 9) that have been developed in the past several years. This table
is aimed to give a straightforward component and characteristic analysis thus providing
unfamiliar neuroscientists (or any other biologist) to pick and choose what they think might
improve their current research. In majority of the cases, as outlined in Fig. 9, the particles are
comprised of a matrix and two or more sub-components that can be detected using fluorescence
microscopy or magnetic resonance imaging. The key structural differences arise from varying
formulations among these three main contents but biological functions are more strongly
affected by the surface chemistry which is not always straightforward to analyze. The ability
to control the size and contents within a multifunctional nanoparticle system seems to have
been explored to a much greater extent which focuses on bioimaging rather than actually using
them to control specific biological functions. Expanding the state-of-the-art research
represented in Table 5 to control bioprocesses involved in various biological systems and
functions such as directing neuronal growth and influencing stem cell differentiation seems to
be the next logical step in nanobiotechnology utilizing MFNPS.

4.3. Nanoscale imaging
Imaging techniques have improved dramatically over the years, especially the ones that involve
nanometer level resolution. Electron microscopy (EM) have been well utilized in many science
and engineering fields but such techniques involve the samples to be highly dehydrated since
the imaging can only be done under vacuum (Allen et al., 2007; Graham and Orenstein,
2007; Kiseleva et al., 2007). Atomic force microscopy, however, has been the more sample-
friendly technique for imaging nanoscale biological and bioinspired materials which is done
under atmospheric pressure (Dufrene, 2008; Friedbacher et al., 1991; Hansma, 2001; Hansma
et al., 1992, 1996, 1997). Another instrument that biologists and environmental scientists have
increased usages of is the ESEM (environmental scanning electron microscope) which can
analyze hydrated samples (Bogner et al., 2007; Muscariello et al., 2005; Priester et al., 2007)
and is now frequently used to analyze biofilms. Fig. 10 shows characterization tools categorized
by type of analysis based on composition (elemental), size (resolution) and type of biological
sample analysis which can be linked to contents in Fig. 1. It is important to note that most of
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the high resolution instrumentation techniques require the samples to be under high vacuum
which complicates the sample preparation process especially for biological and wet-samples;
hence AFM is the method of choice when relatively unaltered (excluding the fixation process)
sample imaging analysis is desirable. For instance, studying protein interactions on surfaces
can be best done using AFM and when coupled with time and optical data, the dynamics of
protein folding and unfolding can be imaged, tracked and analyzed. In fact, physical scientists
have developed analysis platforms that couple together an AFM with a confocal microscope
which is now commercially available (Blow, 2008).

Protein misfolding and formation of aggregations have been linked to several
neurodegenerative diseases which include Parkinson’s, Alzheimer’s diseases and Down’s
syndrome (Bross and Gregersen, 2003). Research efforts focused on understanding the
structural variables dictating the ultimate abnormalities linked with such diseases have been
done using imaging techniques including AFM (Braga and Ricci, 2004). Suh and co-workers
have recently shown that Aβ peptide agglomeration characteristics influence the proliferation
and differentiation of murine adult neural stem cells (Heo et al., 2007). The nanoimaging
technique which the researchers utilized was AFM as shown in Fig. 11a and d and under
atmospheric pressure morphologically distinctive forms of Aβ peptide are formed; oligomeric
or fibrillar. Various other groups have utilized AFM to conduct morphological characterization
studies related to amyloid beta peptide and other proteineous species linked to neurological
disorders such as α-synuclein and tau (Lyubchenko et al., 2006). Not only in biology but also
synthetic inorganic nanomaterials can have distinctive morphologies as shown in Fig. 11b and
e which are made up of essentially the same material (i.e. Ti and O). This is why associating
structural factors to understand different outcomes in biological systems will be highly
important when nanotechnology and biotechnology are adjoined together. For direct cell
imaging, Lal et al. (1995) used AFM to image neurite outgrowth and cytoskeletal
reorganization in realtime using rat fibroblast cells (NIH/3T3) and rat tumor cells (PC-12) in
vitro. More recently, efforts of cell imaging using AFM have extended to other eukaryotic and
prokaryotic species to reveal nanoscale features under ambient conditions (Dufrene, 2008;
Kada et al., 2008).

Analyzing and understanding the toxic potentials of nanostructured beta amyloids vs. similar
proteineous structures in microbial organisms (i.e. bacterial toxins) have been one of the latest
developments in the efforts to understand the nature of structural and functional factors giving
rise to unique but detrimental properties in the CNS (Fowler et al., 2007; Lashuel and Lansbury,
2006). Whether it is the fibrillar or oligomeric or porous (channel like) forms of Aβ or α-
synuclein, the underling theme is that different nanostructures at different time-domains will
affect neurogenesis in a dynamic and complex manner. As mentioned above, nanomaterials of
metal oxides (Fig. 11b and e) can be engineered to mimic the structures of Aβ (as shown in
Fig. 11a and d) and have well-defined isoelectric points by utilizing constituent engineering
via synthetic chemistry methods.

Biochemical and molecular biology analyses can be performed to further elucidate and
understand the structural effects that different nanoparticles will have on living system (i.e.
cells) at the sub-100 nm domain which is at a length scale where important cellular functions
(i.e. transcription, translation) are carried out. However, as mentioned in Section 3.2, the level
of understanding of association between cytotoxicity and structural and physicochemical
properties of nanomaterials is still not well established. On top of this unresolved complexity,
there are various examples and forms of protein aggregation and misfolding that occurs
naturally that is linked with neurodegeneration so a step-wise and systemic (high) throughput
approach (Shaw et al., 2008; Weissleder et al., 2005) will be helpful. Cellular level activities
involving small ion and molecular trafficking (i.e. Ca2+ signaling and gene imaging in vivo)
have received much attention as of late which focuses on nanometer level resolution and
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manipulation (Atanasijevic and Jasanoff, 2007; Atanasijevic et al., 2006; Palmer et al., 2004).
As mentioned in Section 2.3, gene transcription has been imaged in the brain of mice after
delivery of antisense nucleic acid decorated 15–20 nm superparamagnetic iron oxide
nanoparticles (also fluorescent) in vivo using magnetic resonance imaging (Liu et al., 2007b;
Masotti et al., 2008). Specific sequences for the antisense single-stranded phosphorothioate-
modified oligodeoxynucleotides (sODNs) were complementary to c-fos and β-actin mRNA
and avidinbiotin complexation method was crucial in the formation of the imaging probe.
Coupling multiple analysis tools (Fig. 10) to establish a well-defined understanding of sub-100
nm activities associated with cell biology will be invaluable in the further development of
nanobiotechnology.

4.4. Gene delivery
4.4.1. DNA based nanotechnology—DNA based nanotechnology, in many ways, has
been one of the most heavily studied fields that involves the use and the creation of bioinspired
materials for highly selective biosensing, nanoarchitecture engineering and nanoelectronics
(Ito and Fukusaki, 2004; Lu and Liu, 2006, 2007; Seeman, 2005; Shamah et al., 2008;
Stoltenburg et al., 2007; Wernette et al., 2008). Biologically, nucleic acid delivery in vitro and
in vivo has been well studied and lipid based gene delivery has become a common and essential
methodology for neuroscientists and biologists. Transfection techniques, for mammalian cells,
are primarily divided into non-viral and viral techniques and for many nanotech research groups
investigating gene and drug delivery methodologies, the focus is on the non-viral particle based
systems (Dobson, 2006; Labhasetwar, 2005; Li and Szoka, 2007) but increasing number of
nanotech projects are investigating and manipulating viruses (Kovacs et al., 2007; Loo et al.,
2007; Radloff et al., 2005; Sun et al., 2007).

For DNA delivery and utilization of DNA to study the dynamics of nanostructures, Au
nanoparticles (Daniel and Astruc, 2004) and silica nanoparticles have been the choice of
materials since there surface chemistries, physicochemical and optoelectronic properties are
well established (Hench and West, 1990; Livage et al., 1988; Yan et al., 2007). Nucleic acid
hybridization via base pairing (hydrogen bonding) and Au-thiol chemistry (Bain et al., 1989;
Laibinis et al., 1991; Love et al., 2005), for the most part, offered a unique opportunity for
investigating assembly of DNA functionalized gold nanoparticles which lead to the
development of novel sensing technologies (Sassolas et al., 2008) for detecting small molecules
(Liu and Lu, 2004b, 2006b; Liu et al., 2006), biomolecules (Cao et al., 2002; Hill et al.,
2007; Lee et al., 2004a; Tansil and Gao, 2006) and metal ions (Liu and Lu, 2003, 2004a,
2005, 2006a; Lu and Liu, 2007; Wernette et al., 2008) and nanoassembly/architecture projects
(Mirkin, 2000; Park et al., 2004, 2008). Gene delivery using Au nanoparticles have well been
demonstrated by Mirkin and co-workers on several occassions (Rosi et al., 2006; Seferos et
al., 2007). Surface modified (multifunctional) silica nanoparticles have also been well utilized
to deliver or detect DNAs (Bharali et al., 2005; Fuller et al., 2008; Gemeinhart et al., 2005;
Klejbor et al., 2007; Kneuer et al., 2000a,b; Radu et al., 2004; Torney et al., 2007).

4.4.2. RNA interference—RNA interference (RNAi) and targeting the translation process
which occurs in the cytosol, in rapid manner, paved the way to developing novel pathways to
alter protein synthesis by the break down of mRNAs using small interfering RNAs (siRNAs)
(Hannon, 2002). Along with siRNAs, microRNAs (miRNAs) are used by the genome of
various organisms to carry out similar regulatory assignments which stops the translation
process and recent research shows that miRNAs play critical roles in various neuronal pathways
and stem cell biology (Hebert and De Strooper, 2007; Kosik, 2006; Kosik and Krichevsky,
2005). The use of chemistry and nanotechnology based tools in discovering new types of
therapeutics based on non-viral carrier systems to deliver oligonucleotides into the cytosol to
control the translation process have increased over the years (Baigude et al., 2007; Guo,
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2005; Heidel et al., 2007; Howard et al., 2006; Schiffelers et al., 2004; Yuan et al., 2006). In
this section we would like to review some of the latest developments in the area of RNA
interference and DNA delivery using synthetic nanomaterials from polymeric systems to
inorganic systems (Fig. 12). The basic scheme, to highlight the state-of-the-art, is to penetrate
the cell membrane, deliver binding agents, stop the target gene expression pathway but without
damaging or killing the target cells.

Keller and researchers thoroughly investigated several different lipid based carrier systems
(liposomal systems as mentioned in the paper) in relation to their protein downregulation
efficiency and overall in vitro cell toxicity (Spagnou et al., 2004). Variety of commercially
available lipid based nucleic acid delivery methods were investigated and compared for
silencing the β-Gal reporter gene in two cancer cell lines (HeLa and IGROV-1). The conclusion
was that cationic lipid based delivery of plasmid DNA vs. siRNA have distinctive differences
which warrant optimization of formulation for increased delivery efficiencies with low
toxicities. Related research efforts involving the use of inorganic nanomaterials as gene
delivery vehicles can readily utilize the nanotoxicology information reviewed (and tabulized)
in this review in Section 3.

Rana and co-workers used a non-toxic and cationically charged poly(lysine) based dendrimer
(spherical and oligomeric) nanoparticle with unsaturated hydrocarbon side chains (Baigude et
al., 2007). The target gene was apoB and the mRNA expression silencing efficiency was, first,
investigated in vitro using mouse liver cells (FL83B) and the results were comparable to
Lipofectamine 2000 which is an industrial standard for gene delivery into cells. The in vivo
silencing efficiency was highest at 1 mg/kg (reasonable dosage to be used in a therapeutic
application) but did not increase past that concentration. Results of this study suggest that using
both the cationically charged dendrimer and the chemically modified siRNA most efficiently
silences the oligonucleotide.

Amine terminated or functionalized nanocarriers with PEGylated sub-units within the
polymeric species were previously designed for complexation and delivery of siRNA to a
human hepatoma cell line (HuH-7 cells) to knockdown transfected luciferage genes as well as
the endogeneous Lamin A/C gene with excellent efficiencies (Itaka et al., 2004). Three amine
variations were tested and compared; the dipropylene triamine moiety instilled supramolecular
nanocarrier provided the best gene silencing ability. The other two were poly(L-lysine) and
poly(3-dimethylamino)propyl aspartamide containing nanocarriers. The carrier with the
dipropylene triamine has pKa values of 9.9 and 6.4 which allow facile siRNA complexation
and sufficient buffering capabilities inside the endosome. In addition, the PEG unit within the
dipropylene triamine nanocarrier allowed stable complexes to form with siRNAs even under
50% serum conditions and, in fact, the siRNA-nanocarrier complex even suppressed the
endogeneous gene of Lamin A/C, a cytoskeletal protein abunduntly expressed in the cell.
Kataoka and co-workers, furthermore, introduced a bioconjugate which covalently links
siRNA with lactosylated PEG via an acid-labile linkage (size between 90–145 nm with
approximately 36 PEG repeats) based on the fact that endosomes have a pH of about 5.5 and
internalization of the conjugate will release the siRNA (Oishi et al., 2005, 2007). It is worth
noting that PEGylation provides prolonged circulation time in vivo (Ogris et al., 1999) and has
since emerged as one of the key functionalization tools for developing pharmaceuticals and
nanobiocomposites for biomedical usages (Ballou et al., 2004; Brocchini et al., 2006; Harris
and Chess, 2003; Kostiainen et al., 2007; Mishra et al., 2004; Petersen et al., 2002; Tang et al.,
2003; Tu and Tirrell, 2004).

Inorganic based nanoparticles have also been utilized successfully for siRNA delivery and
analysis. Bakalova and Ohba with fellow researchers utilized a synthetic inorganic core—shell
and fluorescent nanoparticle made out of CdSe/ZnS (quantum dots; QD) to multifunctionalize
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and screen for siRNA sequences. FRET (fluorescence resonance energy transfer) was the main
tool for RNA analysis which was done after hybridizing the prepared QD-siRNA probe with
Cy5 labeled target mRNA (isolated from K-562 leukemia cells) (Kubo et al., 2008). In an
earlier study by Bhatia and co-workers, commercially available QDs that were PEGylated were
further functionalized with tumor-homing peptides and siRNA and then used to silence gene
(s) after targeting a specific cell (Derfus et al., 2007). Calcium phosphate nanoparticles
(approximately 100 nm in size) were also effective in silencing the EGFP gene in HeLa cells
in conjunction with siRNAs (Sokolova et al., 2007). In addition, gold nanoparticle (sized
approximate 13 nm) decorated with thiol-modified oligonucleotides (i.e. antisense and locked
nucleic acid) were also shown to be very effective in entering the target cell and stopping a
specific translational process in a non-toxic and controlled manner by the Mirkin group (Rosi
et al., 2006; Seferos et al., 2007).

McKnight and co-workers have demonstrated a non-particle based system for RNA
interference by using vertically aligned carbon nanofibers to deliver multiple genes (i.e. small
hairpin RNA (shRNA) vector and YFP marker gene) which will silence the cyan fluorescent
protein (CFP) synthesis in the presence of tetracycline in Chinese hamster ovary cells (CHO-
K1) (Mann et al., 2008). Previously, similar platform of materials were utilized to delivery
DNA into living cells with good efficiency (McKnight et al., 2003; McKnight et al., 2004).
This is very similar to the approach mentioned earlier in the review which highlights the work
by Kim et al. (2007c) where GFP plasmid DNA is delivered using silicon nanowires.

RNA dumbbells or nanocircular RNAs (Fig. 12) consisting of 23 base pairs (firefly luciferase
gene) and two 9-mer loops were designed and utilized as siRNA precursors after they were
processed by the Dicer enzyme inside the cell (Abe et al., 2007). The stem-loop (design)
combination allows the RNA dumbbells to be resistant to nucleases and provide a slow-acting
RNAi profile. Design concept of this kind will allow the development of well-defined RNAi
systems that will effectively silence gene expressions in a highly controllable and non-toxic
manner.

5. Conclusions
Size means everything in linking nanotechnology together with biotechnology. Much
biotechnology relies heavily on biomolecules such as proteins and DNA. Research in the field
of neuroscience will definitely benefit with the advent of chemical and materials synthesis (e.g.
multifunctional nanoparticle systems) that allows incorporation of these biomolecules to
nanostructured inorganic and organic materials. The foremost areas are likely to involve
bioimaging, biomedical-diagnostics, drug delivery, tissue engineering, and neuronal (network)
systems studies. Most particularly, studies involving stem cell differentiation and
transplantation, neural implants, targeted drug delivery with real-time monitoring capabilities,
in vivo RNAi will prove very attractive. Multidisciplinary approaches will allow these sorts of
projects to be successful research efforts and eventually lead to innovations that will ultimately
help mankind. Close collaborations among researchers with different backgrounds will succeed
best when nanostrutures are created and characterized by chemists and materials scientists and
implementation of nanomaterials in specific biomedical applications are done by
neuroscientists and clinicians. Most importantly, the roles of scientists trained and having
experience working at the interface of biotechnology and nanotechnology will play
increasingly important roles in the new wave of biomedical research and application. The
scientific language and the way research is conducted, valued and evaluated between scientific
disciplines have subtle differences which can slow down and even act as sources of deterrents
in the road to a successful collaboration. Nanobiotechnology (or bionanotechnology) has
advanced significantly now that synthesis and implication of applications need to be followed
by practical and realistic usages. New advances, especially in neuroscience, will arise from
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systematic investigations starting from synthesis to application where the central efforts are
probing and understanding events occurring at the nano—bio interface.
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Abbreviations

3T3 derived from primary mouse embryonic fibroblast cells, 3-day
transfer, inoculum 3 × 105 cells

A-431 (or A431) human epithelial carcinoma cell line

A549 human lung epithelial cell line

Ab antibody

Aβ amyloid beta

AD Alzheimer’s disease

ADDL amyloid β-derived diffusible ligand

AFM atomic force microscopy

AM alveolar macrophages

APP amyloid precursor protein

AsPC-1 human pancreatic cancer, epithelial cell line

A*STAR Agency for Science Technology and Research

ATP adenosine triphosphate

BAL bronchoalveolar lavage

BBB blood—brain barrier

BD-AM primary alveolar macrophages from beagle dogs

BEAS-2B human bronchial epithelial cell lines

BET Brunauer, Emmett and Teller

β-Gal β-galactosidase

bipy 2,2′-Bipyridine

BRL 3A rat liver derived cell lines
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BSA bovine serum albumin

BV2 (or BV-2) murine brain microglia

C57BL/6 C57 black 6, most common inbred lab mouse

CAT catalase

CBEN Center for Biological and Environmental Nanotechnology

CFP cyan fluorescent protein

CFU colony forming unit

CNS central nervous system

CNT carbon nanotubes

Colon-26 (or Colon 26) murine rectum carcinoma cell line

CREKA Cys-Arg-Glu-Lys-Ala

CRL8798 normal breast epithelial cell line

CRP C-reactive protein

DHED dehydroevodiamine hydrochloride

DLS dynamic light scattering

DMEM Dulbecco’s Modified Eagle’s Medium

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

DOX doxorubicin

EC endothelial cell

EC50 half maximal effective concentration

EGFP enhanced GFP

EM electron microscopy

ESEM environmental SEM

FITC fluorescein isothiocyanate

FRET fluorescence resonance energy transfer

GAP-43 growth associated protein-43

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GFP green fluorescent protein

GPX (GPx or GSH-Px) glutathione peroxidase

GR glutathione reductase

GSH glutathione

H&E staining hematoxylin and eosin staining

HA hydroxyapatite

HAEC human aortic endothelial cell

HEK293 human embryonic kidney 293 cells
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HeLa human cervical cancer cell line derived from Henrietta Lacks

HER human epidermal growth factor receptor

hMSC human mesenchymal stem cell

HPRT hypoxanthine-guanine phosphoribosyltransferase

HRTEM high resolution transmission electron microscope

HT-1080 (or HT1080) human fibrosarcoma cell line

HT-22 (or HT22) mouse hippocampal nerve cell line

IACUC Institutional Animal Care and Use Committees

IBN Institute of Bioengineering and Nanotechnology

ICON International Council on Nanotechnology

ICP-MS inductively coupled plasma mass spectrometry

IEP isoelectric point

IMN immuno-magnetic nanoparticle

ISI Institute for Scientific Information

IUPAC International Union of Pure and Applied Chemistry

J774A.1 murine macrophage

Jurkat human T lymphocyte cell line

K-562 (or K562) human myelogenous leukemia cell line

L929 murine fibroblast

LBNL Lawrence Berkeley National Laboratory

LDH lactate dehydrogenase

LD50 lethal dose for 50% of population

LPO lipid peroxidation

MCF mesocellular siliceous foam

MCF-7 human breast carcinoma cell line

MCM-41 Mobil Catalytic Material number 41

MCP-1 monocyte chemoattractant protein

MDA malondialdehyde

MFNPS multifunctional nanoparticle system

MG63 osteoblast-like cells

miRNA microRNA

MN micronuclei

MOF metal-organic framework

MR magnetic resonance

MRC-9 human lung fibroblast

MRI magnetic resonance imaging
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mRNA messenger RNA

MDA-MB-231 human metastatic breast cancer cell

MSDS Materials Safety And Data Sheet

MSTO human mesothelioma

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay

MWCNT multi-walled carbon nanotube

N/A not available

NCI National Cancer Institute

NCL Nanotechnology Characterization Laboratory

NGF nerve growth factor

NIH National Institute of Health

OECD Organisation for Economic Co-operation and Development

ORMOSIL organically modified silica or silicate

PAA poly(aspartic acid)

PANC-1 human pancreatic carcinoma cell line

PBS phosphate buffer saline

PC12 cancer cell line derived from a pheochromocytoma of the rat
adrenal medulla

PDMS poly(dimethylsiloxane)

PEG polyethylene glycol

PEI polyethyleneimine

PLGA poly(lactide-co-glycolide)

PLLA poly(L-lactic acid)

PM particulate matter

ppb parts per billion

ppm parts per million

QC Quikclot®

QD quantum dot

RAW164 murine macrophage cell line

RAW 264.7 mouse leukemia macrophage cell line

RBC red blood cell

RIF-1 murine fibroblastic sarcoma cell line

RNA ribonucleic acid

RNAi RNA interference

ROS reactive oxygen species

SBA-15 Santa Barbara Amorphous 15
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SBF simulated body fluid

SCE sister-chromatid exchange

SEM scanning electron microscope

SH-SY5Y a third generation human neuroblastoma derived from SH-SY5

SiNW silicon nanowires

siRNA small interfering RNA

SMMC-7721 human hepatoma (liver cancer) cell line

SOD superoxide dismutase

SPIO superparamagnetic inorganic or iron oxides

SPION superparamagnetic inorganic or iron oxide nanoparticle

SRB sulforhodamine B assay

SWCNT single-walled carbon nanotube

TEM transmission electron microscope

TEOS tetraethyl orthosilicate

THB-1 human alveolar macrophage

THP-1 (or THP1) human acute monocytic leukemia cell line

TNF-α tumor necrosis factor-alpha

TUNEL terminal uridine deoxynucleotidyl transferase dUTP nick end
labeling

U297 human lymphoblast

UF ultrafine

USPIO ultrasmall superparamagnetic iron oxide

UV ultraviolet

VMD visual molecular dynamics

WIL2-NS human B-cell lymphoblastoid cell line

WSIO water-soluble superparamagnetic iron oxides

WST-1 water-soluble tetrazolium number 1, (2-(4-iodophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium) assay

WT wild type

XPS X-ray photoelectron spectroscopy

XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
carboxanilide)

YFP yellow fluorescent protein
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Fig. 1.
The sizes of biologically relevant entities. (Top row above scale bar) From left to right: (a)
Potent Alzheimer’s disease candidate drug, dehydroevodiamine HCl (DHED) X-ray crystal
structure, (b and c) porous metal oxide microspheres being endocytosed by BV2 microglia cell
(close-up and low magnification) SEM images, (d and e) SEM and fluorescence micrograph
of DHED microcrystals (DHED is blue-green luminscent). (Bottom row below the scale bar)
Left to right: Small molecules, such as dopamine, minocycline, mefenamic acid, DHED, and
heme, are ∼1 nm or smaller. The lipid bilayer is a few nanometers thick. A biomolecule such
as a (22 bp) microRNA and a protein is only a few nanometers in size. A single cell or neuron
is tens or hundreds of microns in size. Illustration of a human brain which is tens of centimeters
in size.
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Fig. 2.
Size matters. (a) Compared to a 10 nm nanoparticle, proteins (e.g. APP; X-ray crystal structure
obtained from www.pdb.org (Berman et al., 2000), protein ID 2FKL; visualization done by
Accelrys Discovery Studio Visualization 1.7 software) and small molecules (e.g. DHED) are
small in size and volume. A mammalian cell which is made up of proteins, nucleic acids, and
other small to large molecules is thousand times larger in volume and size compared to a 10
nm nanoparticle. (b) Cell membrane incorporating various proteins and a single 10 nm
nanoparticle.
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Fig. 3.
Published papers in nanomaterials synthesis papers published in 1970–2007. Number of
publications was obtained from ISI Web of Science (one of Thomson Scientific databases and
part of Web of Knowledge) using a combination of search terms that represent nanomaterial
and synthesis.
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Fig. 4.
Contents of DMEM vs. 10 nm nanoparticle. Red chemical structures (first three rows) represent
amino acids, black chemical structures (fourth row) represent inorganic salts, and blue
structures (rows 5–8) represent vitamins and other small organic molecules. The contents
information of DMEM (Dulbecco’s Modified Eagle’s Medium) were readily available on-line
at various biochemical vendor websites such as HyClone and Sigma—Aldrich.
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Fig. 5.
Cell and particle interactions. Toxicological effects of nanomaterials can be simplified into
eight events as shown in the illustration above but limiting the interaction between a
nanoparticle and a cell to eight events is an over simplification and the details of actual
phenomena that are happening at the interfaces are very difficult to analyze and understand.
(1) Reactive oxygen species products such as superoxide (•O2

-) and hydroxyl radical (•OH)
whether it is inside or outside can be key factors in nanostructured materials toxicological
effects (Nel et al., 2006). Cell membrane integrity leading to cell survivability will be affected
by ROS produced by a nanoparticle smaller than a cell (red particle) as shown. (2) Event 2
represents the situation where a nanoparticle is internalized and then creates ROS products
(Nel et al., 2006). (3) Particle dissolution affecting cellular function after nanoparticle
internalization is event 3 (Borm et al., 2006). (4) Event 4 represents any mechanical damage
to sub-cellular units such as the lysosome, endoplasmic reticulum, and nucleus (Yamamoto et
al., 2004). (5) Different functional groups and surface electronic structures arising from
different nanostructured materials will determine the level of interaction between the
nanoparticles and their surroundings which is represented by event 5 (Karakoti et al., 2006;
Kostarelos et al., 2007). (6) Overall size of the particle can play an important role as represented
by event 6 since large particles can potentially induce permanent damage to the cell membrane
while small particles can pass through the membrane and do harm inside cell (Yoshida et al.,
2003). (7) Non-spherical particles, on the other hand, might have a different biological response
compared to the spherical nanoparticles which is shown as event 7 (Geng et al., 2007). (8)
Event 8 represents dissolution characteristics of the nanomaterials outside the cell which can
affect the cell in various ways (event 8) (Borm et al., 2006).
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Fig. 6.
Nanobiocomposite formed from a nanoparticle (sub-micron) and a nanobacteria (e.g.
mycoplasma; sub-500 nm). This event is probable to happen under biogenic conditions where
polyelectrolytes (e.g. peptide) and soluble ionic species (e.g. Ca2+, Na+) are readily available.
Sub-micron engineered nanoparticles can form new composite materials with mycoplasma and
the new nanobiocomposite material can have vastly different chemistries and physical
properties which will lead to different biological properties.
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Fig. 7.
Spherical and non-tubular carbon nanomaterials. Sub-100 nm carbon nanoparticles that are
other than C60 or carbon nanotubes will offer another set of tools for neuroscientist as well as
other biologists. Illustrations were prepared based on data, schemes, and figures appearing in
the references with permission from the publisher.
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Fig. 8.
Controlling cell function by microscale patterns and nanowires. Details are provided for the
top three illustrations in the maintext. Making sub-micron patterns as well as functionalizing
the sub-patterns with unique nanostructures such as wires and pores will be very interesting to
utilize in neuroscience, especially studying interacting neurons and neuronal implants in
vivo.
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Fig. 9.
Multifunctional nanoparticle systems (MFNPS) for biomedical applications. MFNPSs can be
divided into four distinctive types. Type 1 is non-porous but spherical SiO2 based sub-100 nm
nanoparticles with two or more components. Type 2 is sub-200 nm spherical nanoparticles that
is either porous or can incorporate and, in time, release small molecules such as drug molecules.
Type 3 is sub-20 nm nanoparticles with functionalizable ligands or biomolecules stabilized
(passivated) onto the nanoparticles and are, in most cases, first synthesized in organic
conditions which offer good size control and then phase exchanged to become dispersable in
aqueous media. Finally, type 4 is non-spherical nanoparticle systems that have multiple
components such as fluorescent tags and antibodies. Illustrations were prepared based on data,
schemes, and figures appearing in the references of Table 5 with permission.
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Fig. 10.
Analysis of a cell. Sub-components of a cell include (but not exclusive) nucleic acids,
membrane fractions, proteins (e.g. secreted, surface displaying, localized), ion channels, and
cytoskeletal components. Considering the nature of such sub-cellular components and products
three categories of analyses can be drawn: (1) cell content (elemental) analysis, (2) chemical
bond/functional group analysis, (3) imaging (morphology, structure, localization) analysis.
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Fig. 11.
Nanoscale imaging of biomolecules and inorganic materials. (Top row) high aspect ratio
nanomaterials (e.g. fibrillar, tubular, and rod shaped); (bottom row) low aspect ratio
nanostructures (e.g. oligomeric, spherical, and sub-100 nm nanoparticles). (a) AFM image of
Aβ, tubular form. (b) TEM image of titanium oxide nanotubes. (c) Illustration representing
crystallization schemes for high aspect ratio nanomaterials. (d) AFM image of Aβ, oligomeric
form. (e) TEM image of titanium oxide nanoparticles. (f) Illustration representing
crystallization schemes of spherical nanomaterials. (a) and (d) (the AFM data) were adapted
from reference Heo et al. (2007) with permission from the publisher.
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Fig. 12.
RNA interference vehicles. Various shapes and forms are used as tools to deliver RNA that
will selectively silence gene translation; examples include dendrimers, copolymers, nucleic
acid decorated Au NPs, nanocomposite spheres, multifunctional QDs, carbon nanotube arrays,
and nanocircular RNAs. Illustrations were prepared based on data, schemes, and figures
appearing in the references with permission from the publisher.
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