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Abstract 

To investigate effects of soil moisture heterogeneity on shoot physiology and root and 

foliar gene expression, three treatments were implemented in sunflower plants growing 

with roots split between two compartments: a control (C) treatment supplying 100% of 

plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, 

either evenly distributed to both compartments (deficit irrigation-DI) or unevenly 

distributed to ensure distinct wet and dry compartments (partial rootzone drying-PRD). 

After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, 

concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA 

concentration. Six water-stress responsive genes were highly induced in roots of PRD 

plants exposed to drying soil, but not in roots of DI plants exposed to higher soil 

moisture content. In leaves of PRD plants, gene expression was correlated with 

increased xylem ABA concentration and decreased Ψleaf. PRD triggered stronger 

physiological and molecular responses than DI in roots and leaves suggesting a more 

intense and systemic stress response due to local dehydration of the dry compartment. 

Physiological vs. molecular correlation studies in PRD/DI plants provide insights into 

the severity and location of water deficit and may enable a better understanding of long-

distance signalling mechanisms.  
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1. Introduction       

Alterations in rainfall patterns caused by climate change, and increasing competition for 

water between industrial/domestic and agricultural sectors will mean that less water will 

be available for irrigated agriculture in the future. While farmers may have traditionally 

irrigated to satisfy crop water requirements, crops of the future are likely to receive less 

water than their requirements, termed “deficit irrigation” (DI; [1]). Deliberate 

application of deficit irrigation can both reduce agricultural water use and modify crop 

quality and crop water use efficiency; thus considerable research has aimed to determine 

which deficit irrigation techniques allow water savings with minimal effects on crop 

yield. 

There has been considerable recent interest in whether the spatial distribution of 

water alters crop physiological responses. Partial rootzone drying (PRD) applies water 

to only half the root zone (eg. one side of a row) while the other half is allowed to dry 

[2-3]. Part of the rootzone may remain irrigated throughout the growing season (fixed 

PRD) or more commonly the roots are exposed to sequential drying/re-wetting cycles. 

Meta-analyses have shown that this technique can increase crop yield in 20-40% of 

experiments, compared with crops receiving the same irrigation volumes via 

conventional deficit irrigation where the entire rootzone is irrigated [4-5].  Thus there 

has been considerable interest in determining the physiological mechanisms that cause 

differences in plant response according to irrigation placement.   
 PRD was originally applied to field-grown grapevines to stimulate root-to-shoot 

chemical signalling to limit excessive vegetative vigour [6]. Subsequent biochemical 

analyses showed that plant roots exposed to drying soil had increased ABA 

concentrations and decreased cytokinin concentrations, concurrent with stomatal closure 

[7]. However, prolonged soil drying of one soil compartment resulted in stomatal re-
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opening [7], as sap flow (and signalling) from roots in drying soil decreased [8-10]. For 

this reason, the wet and dry parts of the root system are frequently alternated to ensure 

root viability and transiently stimulate ABA signalling [11] which increases crop water 

use efficiency [12].  

Although many papers have investigated plant ABA dynamics during different 

deficit irrigation treatments, PRD has either increased [13-14], decreased [13] or had no 

effect [15] on xylem ABA concentration compared to DI plants, probably since root-to-

shoot ABA signaling may depend on total soil water availability [16]. Other 

experiments demonstrated that PRD could also enhance foliar ethylene evolution [3] 

and decrease foliar cytokinin concentrations [17], although it is not clear whether these 

responses are unique to PRD (or occur more generally in response to soil drying). 

Despite some evidence of differences in chemical signalling between DI and PRD 

plants, there has been limited research on whether plants subjected to these different 

irrigation techniques show differential expression of water-stress responsive genes. 

Tomato (Solanum lycopersicum) plants exposed to DI and PRD showed no consistent 

changes in the expression of genes related to ABA biosynthesis (SlTAO1 and SlNCED) 

and ethylene sensitivity (SlEIL1; [18]), and these changes were not consistently related 

to soil or plant water status.  

Water deficit up- or down-regulates the expression of many genes [19-22]. 

Aquaporins are important in regulating water fluxes through the plant [23]. The 

sunflower aquaporin gene HaTIP7 is expressed in guard cells and root phloem, and its 

transcript accumulation is induced by water deficits in the root [24] and correlates with 

stomatal closure in the leaf [25]. Hydrophilins and late-embryogenesis abundant (LEA) 

genes, including the subgroup of plant dehydrins, are highly soluble proteins that 

preserve cellular integrity in drying conditions [26-27], which are typically induced by 
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water deficit in different tissues. The sunflower HaDHN1 is a drought-responsive 

dehydrin gene isolated from a tolerant sunflower line (Ouvrard et al. 1996; Cellier et al. 

1998). ACCO (1-aminocyclopropane-1-carboxylic acid oxidase) is a key regulatory 

enzyme in ethylene synthesis. The HaACCO2 transcript is preferentially accumulated in 

sunflower leaves (Liu et al. 1997), where this gene is induced in response to drought 

and exogenous ABA application (Ouvrard et al. 1996). ABI5-Interacting Proteins 

(AFPs) are potentially involved in regulating stress responses mediated by ABA (Garcia 

et al. 2008). The sunflower HaABRC5 gene is a member of the AFP family that is 

constitutively expressed at very low levels in leaves, seedling shoots and roots, and is 

upregulated by drought and exogenous ABA application (Liu et al. 2004). Non-specific 

Lipid Transfer Proteins (LTPs) are epidermal cell wall proteins involved in secretion 

and deposition of extracellular lipophilic material. LTP genes are typically induced by 

water deficit and ABA application (Colmenero-Flores et al, 1997). The sunflower 

HaLTP transcript is accumulated in response to drought and ABA treatment (Ouvrard et 

al. 1996). The thylakoid early light-inducible proteins (ELIPs) protect plants from 

photooxidative damage when exposed to high light intensities or abiotic stress (Hutin et 

al, 2003). The sunflower HaELIP1 gene is induced in leaves by water stress, but not by 

exogenous ABA application (Ouvrard et al. 1996).  

 Physiological and hormonal responses of sunflower plants to partial rootzone 

drying were studied in previous work (Masia et al. 1994; Dodd et al. 2008a,b; Dodd et 

al. 2010). To ascertain whether gene expression provides additional insights into the 

severity and location of water stress in plants subjected to different deficit irrigation 

strategies, transcript levels of HaTIP7, HaDHN1, HaACCO2 HaABRC5, HaLTP and 

HaELIP1 genes was investigated in sunflower plants subjected to both DI and PRD 

treatments. Gene expression was compared between DI and PRD treatments and 
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correlated with different water status variables such as soil water content, leaf water 

potential and xylem ABA concentration.  

 

2. Materials and methods 

2.1 Plant culture and treatments 

Sunflower (Helianthus annuus cv. Tall Single Yellow) seeds were planted into 

0.43 L pots (130 mm height, 65 mm diameter) containing sand (Redhill-T, J Wylie and 

sons, UK) and placed in a single walk-in controlled environment room (3 x 4 m) at the 

Lancaster Environment Centre under the environmental conditions described previously 

(Kudoyarova et al., 2007). After 4 weeks, seedlings having 6-8 leaves were carefully 

transplanted to new 3 L pots (200 mm diameter, 130 mm height) containing the same 

substrate, and the roots equally divided into two compartments separated by a vertical 

plastic wall within the pots. Plants were irrigated daily with a commercial nutrient 

solution (16:10:27 N:P:K ratio, Wonder-Gro, Wilkinson‟s, UK) until different irrigation 

treatments began. 

 Plants were distributed in three blocks with two pots per treatment in each block 

and treatments randomly arranged in the blocks. Three different irrigation treatments 

were applied: control (C) (well watered); deficit irrigation (DI); and PRD (Partial 

Rootzone Drying). The day before initiating treatments, mean evapotranspiration was 

independently determined for each group of plants (C, DI, and PRD) by weighing. Well 

watered plants received every day 100% of the calculated mean evapotranspiration 

applied equally between both soil compartments; DI plants received every day 50% of 

the calculated mean evapotranspiration applied equally between both soil compartments 

and PRD plants received every day 50% of the calculated mean evapotranspiration 
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applied to only one of the two soil compartments. Treatments were maintained for 3 

days.  

2.2 Physiological measurements  

Moisture status of the upper 6 cm of substrate from both pot compartments was 

measured immediately before and 20 minutes after daily irrigation with a theta probe 

(Model ML2x, Delta-T Devices, Burwell, UK). Readings were recorded in millivolts 

(mV) and transformed to gravimetric water content based on a substrate-specific 

calibration. In control and DI plants, values were averaged from both compartments, 

while both compartments were measured independently in PRD plants.  

Evapotranspiration was measured gravimetrically as the difference in pot weight 

determined 20 min after watering and immediately before the next watering. Measures 

were taken at 24, 48, 60 and 72h after the beginning of the assay. Leaf water potential 

was measured using a Scholander-type pressure chamber (Soil Moisture Inc.), and then 

leaves were subjected to an overpressure of 0.2-0.4 MPa, to allow xylem sap to be 

collected into pre-weighed microcentrifuge vials. Sap was immediately frozen in liquid 

nitrogen and stored at –20ºC prior to determination of ABA concentration by 

radioimmunoassay (Quarrie et al., 1988), using the monoclonal antibody AFRC MAC 

252. To minimize the time between leaf abscission and sealing the leaf into the pressure 

chamber, this was located near to the controlled environment room.   
2.3 RNA extraction  

After 72 h of the different irrigation treatments, plant roots were carefully washed from 

the pots, and leaf and root samples were immediately frozen in liquid nitrogen. To 

minimise diurnal changes in gene expression confounding our analysis, plants were 

harvested between 9,00 AM and 16,30 PM in different pools (each pool contained two 

control, two DI and two PRD samples) until harvesting was complete. Root samples 
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were combined from both compartments in control and DI plants, but roots from each 

compartment were treated separately in PRD plants. Total RNA was extracted from 

each individual plant using 1g (fresh weight) of roots or pooled leaves as described by 

Bekesiova et al. (1999). Genomic DNA was removed by DNase I treatment. 

2.4 Retrotranscription (RT) real-time PCR  

The expression profile of six water stress-responsive genes HaTIP7, HaDHN1, 

HaACCO2, HaABRC5, HaLTP and HaELIP1 was analysed in roots and leaves of PRD, 

DI and control plants by retrotranscription real-time PCR. Primers were designed with 

the Primer Express 2.0 program using sequences reported in the GenBank database 

(Table 1). Retrotranscription reactions were performed using 1 µg of DNA-free RNA 

with the QuantiTect
TM

 Reverse Transcription kit (Qiagen) following the manufacturer‟s 

instructions.  

Real time PCR was performed in a Chromo 4, Biorad thermocycler using the 

SensimixPlus SYBR kit (Bioline). The reaction mixture contained 0.5 µg of synthesised 

cDNA, 1x master mix, 0.6 µM of forward and reverse primers, respectively for HaTIP7, 

HaDHN1 and HaACCO2 genes, and 0.3 µM of forward and reverse primers for 

HaABRC5, HaLTP and HaELIP1 genes. PCR reactions were run with the following 

program: 95ºC for 10 min, and 40 cycles of 95ºC for 15 s and 60ºC for 45 s. A melting 

curve was applied for checking the specificity of the amplification. The dissociation 

program consisted of 95ºC for 15 s, 60ºC for 15 s followed by 20 min of slow ramp 

from 60 to 95ºC. Three technical replicates (3 wells/ PCR reaction) were included per 

sample.  

A standard curve was constructed using 10-fold serially diluted sunflower genomic 

DNA from 500 to 0.05 ng. Transcription levels of the studied genes in control plants 
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were calculated by interpolation of the RT real-time PCR results to the standard curve 

and calculation of the average and standard error (SE) of 6 biological and 3 technical 

replicates (3 PCR wells/sample). The expression levels of the studied genes in PRD and 

DI plants were determined relative to the gene expression level in the control treatment 

applying the 2
-ΔC

T method as previously described (Livak & Schmittgen, 2001). 

2.5 Statistical analysis 

Tukey´s Test determined treatment differences at 5% level of significance after analysis 

of variance (SAS Institute, Inc., Cary, NC, USA). Correlation analyses among soil and 

plant water parameters, as well as gene expression values, were performed with 

Pearson´s correlation coefficient at 5% level of significance (SAS Institute, Inc., Cary, 

NC, USA) on an individual plant basis. Soil and plant variables were soil water content, 

leaf water potential, xylem sap ABA concentration and root and leaf expression levels 

of the studied genes (HaTIP7, HaDHN1, HaACCO2, HaABRC5, HaLTP and 

HaELIP1). 

3. Results 

3.1 Physiological traits 

Before harvesting the plants, soil water content (Ө) of control plants was significantly 

higher than that of DI plants and the wet part of PRD plants, whereas Ө of the dry 

compartment of PRD plants was significantly lower than the other treatments (Table 2). 

Evapotranspiration rates were similar in control and DI plants throughout the 

experiment, while it was about 20% less in PRD plants over the last two days (Fig. 1). 

Leaf water potential (Ψleaf) was significantly lower in PRD than in control and DI plants 

(P < 0.05) at the end of the experiment, while xylem ABA concentration was 
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significantly higher in PRD plants than control and DI plants (Table 2). Xylem ABA 

concentration and Ψleaf were statistically similar in DI and control plants (Table 2).  

Low soil moisture in the dry compartment of PRD plants (PRD-DR) correlated with low 

leaf water potential (Fig. 2A) and high xylem ABA concentration (Fig. 2B). At the same 

whole pot soil water content (PRD-AVG), PRD plants had a lower leaf water potential 

(Fig. 2A) and higher xylem ABA concentration (Fig. 2B) than DI plants. Pearson 

correlation studies of these parameters found significant (negative) correlations between 

whole pot and local soil water content and xylem ABA concentration (P < 0.05 and P < 

0.01). These correlations were more negative and significant when local soil water 

content of dry compartment was used (P < 0.01) (Table 3). Thus PRD plants exhibited 

more severe symptoms of water deficit (higher xylem ABA concentration and lower 

Ψleaf) than DI plants, even though both sets of plants were irrigated with 50% of their 

respective evapotranspiration. 

3.2 Expression of water stress responsive genes 

All genes studied had higher expression levels in leaves (than roots) of well-watered 

plants, with the exception of HaABRC5, which showed low and similar expression in 

both plant tissues (Fig. 3). HaLTP and HaTIP7 transcript levels were around 10 to 100-

fold higher than the other genes (Fig. 3B).   

To study the molecular responses to water deficit in sunflower plants, the differential 

(treated vs control) expression of the genes was quantified (Fig. 4). All studied genes 

were significantly induced in roots of the dry compartment of PRD plants, and the 

differential induction was always higher (P < 0.05) in this root compartment compared 

to the wet compartment of PRD plants and roots from DI plants, with the exception of 

HaTIP7 gene, in which the differential induction of PRD (DR) was significantly higher 
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than DI, but not than PRD (WR). In these root compartments (PRD-WR and DI), 

expression of the HaABRC5, HaELIP1 and HaLTP genes was not induced but HaTIP7, 

HaACCO2, and HaDHN1 genes were moderately induced (Fig. 4).  

Differential induction of HaACCO2, HaDHN1 and HaLTP genes was also significantly 

stronger (P < 0.05) in leaves from PRD plants compared to DI plants (Fig. 4). The 

HaELIP1 gene exhibited moderate induction in PRD plants and no induction in DI 

plants. The HaTIP7 gene was significantly (P < 0.05) down regulated in leaves from the 

PRD treatment compared to the DI treatment. Finally, gene expression of HaABRC5 in 

leaves of DI plants was significantly (P < 0.05) less than in PRD plants (Fig. 4).  

Generally, there was a stronger gene response to water deficit in roots and leaves of 

PRD plants compared to DI plants (Fig. 4).  

3.3 Correlations between plant water status and gene expression  

To determine correlations between gene expression and the measured soil and plant 

water status, Pearson correlation studies were performed (Tables 4 and 5). In the root 

(Table 4), gene expression of HaABRC5, HaACCO2, HaTIP7, and HaDHN1 genes was 

most significantly and negatively correlated with local soil water content, and 

significantly and positively correlated with xylem ABA concentration (except for 

HaABRC5). Only root expression of the dehydrin gene HaDHN1 was significantly and 

positively correlated with leaf water potential.  

Foliar gene expression was most significantly correlated with leaf xylem ABA 

concentration, with significant and positive correlations for expression of HaDHN1 and 

HaLTP, and a significant but negative correlation for HaTIP7 expression. Leaf water 

potential was positively and significantly correlated with HaDHN1 and HaELIP1, 

whereas whole pot soil water content was only negatively and significantly correlated 
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with expression of the dehydrin gene HaDHN1 in the leaf. No significant correlation 

was found between either root or leaf gene expression and evapotranspiration (data not 

shown). Interestingly, root and shoot HaDHN1 gene expression was significantly 

correlated with all parameters associated with water deprivation (decreased soil water 

content and Ψleaf, and increased xylem ABA concentration). 

4. Discussion       

While previous work has demonstrated that irrigation placement (PRD versus 

DI) can affect leaf water status, stomatal conductance and xylem ABA concentration in 

plants at the same soil water status (Dodd et al., 2008 a, b; Wang et al., 2012), relatively 

little work has aimed to determine whether these irrigation techniques alter gene 

expression in different organs or parts of the root system. Both ABA-dependent and 

ABA independent regulatory systems govern drought-inducible gene expression, which 

can be locally triggered in different plant organs due to tissue dehydration (causing loss 

of cell turgor or increased osmolarity) and/or ABA accumulation (Bartels and Sunkar, 

2005; Yamaguchi-Shinozaki and Shinozaki  2006; Fujii et al., 2009; Fujii and Zhu, 

2012; Huang et al., 2012). In this work, although both PRD and DI plants received 50% 

of their measured evapotranspiration, the PRD treatment induced stronger physiological 

(decreased Ψleaf and increased xylem ABA concentration) and molecular (gene 

expression) responses compared to the DI treatment, probably due to severe soil drying 

of the non-irrigated compartment, suggesting the importance of the watering pattern. 

These observations seem contrary to the stated aims of PRD, that of increasing 

xylem ABA concentration to maintain leaf water potential (Dry et al. 1996). Whether 

these changes occur in planta depend on irrigation volumes supplied to the crop, and 

thus total soil water availability (Romero et al. 2012). Supplying 50% less irrigation to 
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containerised plants has usually decreased Ψleaf (relative to well watered plants) 

irrespective of irrigation placement (Wakrim et al. 2005; Campos et al. 2009) although 

in some cases Ψleaf was statistically similar (Stoll et al., 2000; Sobeih et al., 2004) 

perhaps due to root system proliferation of PRD plants (Mingo et al., 2004). At the 

same irrigation volumes, PRD plants had either statistically similar or lower (Wang et 

al. 2012) Ψleaf (depending on the day of measurement) than DI plants, although the large 

difference (0.32 MPa) detected here requires further explanation.  

Severe soil drying increases hydraulic resistance at the root/soil interface, 

especially in sandy soils (Bristow et al., 1984) due to poor soil-root contact (Nobel and 

Nobel 1997). Although alternating wetting and drying parts of the rootzone every 10 

days increased whole root system hydraulic conductance (Lp) of maize by increasing Lp 

of roots in drying soil, maintaining some roots in dry soil (as applied here) for 40 days 

decreased Lp of these roots by 80-90% compared to those in irrigated soil (Hu et al., 

2012). Similar decreases in hydraulic conductance of roots in drying soil likely explains 

the decreased whole plant hydraulic conductance of PRD plants compared to DI plants  

(data not shown), even though both treatments were at similar total soil water 

availability. Although PRD decreased evapotranspiration by 20% (Fig. 1), leaf water 

potential fell by 38% (Table 2; Fig. 2), in contrast to the responses of DI plants. 

Whether decreased whole plant hydraulic conductance of PRD plants can be attributed 

directly to increased xylem ABA concentration is less certain. Recent reports suggest 

that supplying high (µM) exogenous ABA concentrations to detached leaves decreased 

leaf hydraulic conductance (Shatil-Cohen et al., 2011; Pantin et al. 2013) unlike ABA‟s 

stimulatory effect on root hydraulic conductance (Thompson et al. 2007). Further direct 

measurements of both leaf and root hydraulic conductance of PRD plants seem 
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necessary, since the direction of response of hydraulic conductance to ABA is highly 

dose-dependent (Dodd 2013).  

Elevated xylem ABA concentration of PRD plants also requires explanation. 

Previous work with “two-root, one-shoot” grafted plants grown in a range of substrates 

showed that xylem ABA concentration increased more sensitively in response to 

decreased soil matric potential in sand (used in this work) than in other substrates such 

as loam and clay soils (Dodd et al., 2010). Sand water content was significantly 

correlated with xylem ABA concentration (Table 3), likely since roots in drying soil 

were exposed to a critical soil moisture threshold (Fig. 2). While roots in drying soil 

accumulate ABA as soil moisture decreases (Zhang and Davies 1989; Puertolas et al. 

2013), there is less certainty that much of this ABA is actually transported to the shoots 

since excessive soil drying decreases sap flow (and thus transport of root-to-shoot 

signals such as ABA) from root systems of severely dehydrated plants (Gomez-Cadenas 

et al, 1996) or from root systems of plants exposed to PRD for prolonged periods of 

time (Romero et al. 2012). An alternative explanation is that the increased xylem ABA 

concentration of PRD plants was triggered by leaf water deficit (Fig. 2B), even though 

xylem ABA concentration and leaf water potential were not correlated across all 

treatments (Table 3). The relatively rapid decline in Ψleaf of PRD plants (-0.1 MPa day
-

1
) may not have allowed sufficient osmotic adjustment to maintain turgor as evidenced 

visually from the wilted appearance of these plants, triggering ABA biosynthesis in 

response to decreased turgor (Pierce and Raschke 1981).  

Comparing gene expression in response to DI and PRD treatments in different 

organs can help elucidate the site of primary responses and how they are transduced. In 

this work, the largest response at the gene expression level occurred in roots present in 
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the dry compartment of the PRD treatment (Fig. 4), where all the genes tested were 

significantly induced, and more intensely, than in other treatments and compartments. 

Thus gene expression correlated better with local soil water content (Table 4), 

supporting the concept that soil dehydration is the primary effector leading to secondary 

responses like ABA accumulation and gene expression. In other root compartments with 

higher soil water contents (the well-watered compartment of the PRD treatment and the 

DI compartments), root gene expression was similar to control conditions (differential 

expression values close to zero in HaABRC5, HaELIP1, HaDHN1 and HaLTP; Fig. 4) 

or the induction value was significantly lower than that of the PRD dry compartment (in 

HaTIP7 and HaACCO2; Fig. 4). Typical drought-responsive genes like those encoding 

the dehydrin and the lipid transfer proteins (HaDHN1 and HaLTP respectively; 

Colmenero-Flores et al 1997; Bartels et al, 2005) were not induced in DI roots under the 

experimental conditions described here, indicating that root gene expression responded 

primarily to local dehydration of the dry compartment of PRD plants rather than to total 

irrigation volume.  

In leaves, consistent with the arguments above, the strongest molecular response 

was also observed in PRD plants, with four genes (HaLTP, HaDHN1, HaACCO2, and 

HaTIP7) significantly responding to PRD and a single gene (HaABRC5) barely 

responsive to DI (Fig. 4). Altered foliar gene expression was better correlated with leaf 

xylem sap ABA concentration and/or Ψleaf than soil water content (Table 5), indicating 

that foliar gene expression is better related to local (rather than systemic) processes. In 

contrast to the roots, where expression of selected genes was universally upregulated in 

response to soil drying, foliar gene expression showed differential responses according 

to the gene of interest. PRD significantly increased the expression of some genes 

(HaLTP, HaDHN1, HaACCO2) while strongly downregulating the tonoplast aquaporin 
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HaTIP7. Downregulation of the HaTIP7 gene in leaves in response to drought was 

previously described (Poormohammad Kiani et al, 2007). It has been broadly illustrated 

how some gene families can be differentially regulated within different organs. This is 

usual in membrane transporters, where biological function can vary depending on the 

location, even when placed in the same cell type (see for instance Brumos et al, 2009; 

Wei-hong et al, 2013), supporting the idea that the biological role played by these type 

of proteins in water stress conditions requires simultaneously increased activity in the 

root and lower activity in the leaf (Fig. 4).  

The expression in roots and leaves of genes like HaLTP, HaDHN1, HaACCO2 

HaTIP7, previously described as ABA-responsive in sunflower and other plant species 

(Ouvrard et al. 1996; Colmenero-Flores et al. 1997; Wei-hong et al. 2013), was indeed 

correlated with xylem ABA concentration (Table 4 and 5). This group of ABA-

responsive genes was particularly responsive to soil water deficits applied as PRD, in 

both root and leaf organs (Fig. 4). In contrast to this group of genes, HaELIP1 was the 

only drought-inducible gene that did not respond to exogenous ABA application 

according to Ouvrard et al. (1996). Interestingly, HaELIP1 did not respond to water 

deficit (PRD) in leaves (Fig. 4), providing an additional line of evidence supporting the 

correlation between foliar gene expression and shoot ABA accumulation. Therefore, 

gene expression of HaELIP1 measured in root and leaves could potentially distinguish 

the primary dehydration response in the root from secondary responses caused by leaf 

water deficit.  

Although both HaLTP and HaDHN1 genes were similarly induced by PRD in 

root and leaf organs (Fig. 4), HaDHN1 expression correlated much better than HaLTP 

with plant and soil variables (Table 4 and 5). This probably occurs because HaLTP is 



 

 17 

highly expressed in leaves under control conditions (Fig. 3) due to its involvement in 

housekeeping and defence functions (Carvalho and Gomes 2007) whereas LEA genes 

(including dehydrins), are almost exclusively expressed under stress conditions in 

vegetative tissues, showing negligible transcript levels in well-watered plants and strong 

induction by stress (Close, 1997; Colmenero-Flores et al., 1997; Garay-Arroyo et al., 

2000; Poormohammad Kiani et al., 2007). Gene expression of the dehydrin HaDHN1 

was significantly correlated with all soil and plant water status variables measured in 

both root and leaf organs, making this gene a highly sensitive marker of water deficit. 

In conclusion, measuring gene expression may inform our understanding of 

water stress development, severity and location. Furthermore, the coordinated 

expression analysis of ABA-responsive (like HaLTP, HaDHN1, HaACCO2 HaTIP7) 

and ABA-insensitive (like HaELIP1) genes in leaf tissues provides information on the 

water status of both leaf and root organs. Further identification of additional drought-

responsive and ABA-insensitive genes may enable a better understanding of the role of 

different long-distance signalling mechanisms regulating gene expression in response to 

different irrigation regimes. 

Acknowledgements  

This work was part-supported by the EU SIRRIMED (FP7- KBBE-2009-3-245159) 

project, which allowed AA to conduct research at the Lancaster Environment Centre, 

and the Spanish Ministry of Science and Innovation-FEDER grant AGL2009-

08339/AGR  

References 

[1] E. Fereres, MA. Soriano, Deficit irrigation for reducing agricultural water use, 

Journal of Experimental Botany 58 (2007) 147-159. 

[2] P.R. Dry, B.R.Loveys, D. Botting,  H. Düring, Effects of partial root-zone drying on 

grapevine vigour, yield, composition of fruit and use of water, in: C.S. Stockley, 



 

 18 

A.N. Sas, R.S. Johnstone, T.H. Lee (Eds.) Proc 9th Australian Wine Industry 

Technical Conference (1996), pp. 129-131.  

[3] W. Sobeih, I.C. Dodd, M.A. Bacon, D.C. Grierson, W.J. Davies, Long-distance 

signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon 

esculentum) plants subjected to partial rootzone drying, Journal of Experimental 

Botany 55 (2004) 2353-2364. 

[4] I.C. Dodd, Rhizosphere manipulations to maximize „crop per drop‟ during deficit 

irrigation, Journal of Experimental Botany 60 (2009) 2454-2459. 

[5] V.O. Sadras, Does partial root-zone drying improve irrigation water productivity in 

the field? A meta-analysis, Irrigation Science 27 (2009)183–190. 

[6] B.R. Loveys, How useful is a knowledge of ABA physiology for crop 

improvement?, in: W.J. Davies, H.G. Jones (Eds.), Abscisic acid physiology and 

Biochemistry, Bios Scientific Publishers (1991), pp. 245–260. 

[7] M. Stoll, B. Loveys, P. Dry, Hormonal changes induced by partial rootzone drying 

of irrigated grapevine, Journal of Experimental Botany 51 (2000) 1627–1634. 

[8] I.C. Dodd, G. Egea, W.J. Davies, Abcisic acid signalling when soil moisture is 

heterogeneous: decreased photoperiod sap flow from drying roots limits abcisic acid 

export to the shoots, Plant Cell and Environment 31 (2008) 1263-74. 

[9] I.C. Dodd, G. .Egea, W.J. Davies, Accounting for sap flow from different parts of 

the root system improves the prediction of xylem ABA concentration in plants 

grown with heterogeneous soil moisture, Journal of Experimental Botany 59 (2008) 

4083–4093. 

[10] T.T. Hu, S.Z. Kang, F.S. Li, J.H. Zhang, Effect of partial root-zone irrigation on 

hydraulic conductivity in the soil-root system of maize plant, Journal of 

Experimental Botany 62 (2012) 4163–4172. 

[11] I.C. Dodd, J.C. Theobald, M.A. Bacon, W.J. Davies, Alternation of wet and dry 

sides during partial rootzone drying irrigation alters root to-shoot signalling of 

abscisic acid, Functional Plant Biology 33 (2006) 1081–1089. 

[12] M.J. Collins, S. Fuentes, E.W.R. Barlow, Partial rootzone drying and deficit 

irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric 

grapevines, Functional Plant Biology 37 (2010) 128-138. 

[13] I.C. Dodd, Soil moisture heterogeneity during deficit irrigation alters root-to-shoot 

signalling of abscisic acid, Functional Plant Biology 34 (2007) 439–448. 

[14] Y. Wang, F. Liu, A. de Neergaard, L.S. Jensen, Jesper Luxhøi, C.R. Jensen, 

Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N 

mineralization and improve N nutrition in tomatoes, Plant Soil 337(2010) 167–177. 

[15] Y. Wang, F. Liu, C.R Jensen, Comparative effects of deficit irrigation and alternate 

partial root zone irrigation on xylem pH, ABA and ionic concentrations in 

tomatoes, Journal of Experimental Botany (2012) 1907–1917 

[16] P. Romero, I.C. Dodd, A. Martinez-Cutillas, Contrasting physiological effects of 

partial root-zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) 

according to total soil water availability, Journal of Experimental Botany 63 (2012) 

4071-4083. 

[17] G.R. Kudoyarova, L.B. Vysotskaya, A. Cherkozyanova, I.C. Dodd, Effect of 

partial rootzone drying on the concentration of zeatintype cytokinins in tomato 

(Solanum lycopersicum L.) xylem sap and leaves, Journal of Experimental Botany 

58 (2007) 161–168. 

[18] A. Milosavljević, L. Prokić, M. Marjanović, R. Stikić, A. Sabovljević, The effects 

of drought on the expression of TAO1, NCED and EIL1 genes and ABA content in 



 

 19 

tomato wild-type and flacca mutant, Archives of Biological Science Belgrade 64 

(2012) 297-306. 

[19] E.A. Bray, Classification of genes differentially expressed during water deficit 

stress in Arabidopsis thaliana: An analysis using microarray and differential 

expression data, Annals of Botany 89 (2002) 803-811. 

[20] L. Xiong, J.K. Zhu, Molecular and genetic aspects of plant responses to osmotic 

stress. Plant Cell and Environment 25 (2002) 131-139. 

[21] D. Bartels, R. Sunkar, Drought and Salt Tolerance in Plants, Critical Reviews in 

Plant Science 24 (2005) 23-58. 

[22] T. Hirayama, K. Shinozaki, Research on plant abiotic stress responses in the post-

genome era: past, present and future, Plant Journal 61(2010) 1041-1052. 

[23] C. Maurel, Plant aquaporins: Membrane channels with multiple integrated 

functions, Annual Review of Plant Biology 59 (2008) 595-624. 

[24] X. Sarda, D. Tousch, K. Ferrare, E. Legrand, J.M. Dupuis, F. Casse-Delbart, T. 

Lamaze, Two TIP-like genes encoding aquaporins are expressed in sunflower 

guard cells, The Plant Journal 12 (1997) 1103–1111. 

[25] X. Sarda, D. Tousch, K. Ferrare, F. Cellier, C. Alcon, J.M. Dupuis, F. Casse, T. 

Lamaze, Characterization of closely related d-TIP gene encoding aquaporins which 

are differentially expressed in sunflower roots upon water deprivation through 

exposure to air, Plant Molecular Biology 40 (1999) 179–191. 

[26] A. Garay-Arroyo, J.M. Colmenero-Flores, A. Garciarrubio, A.A. Covarrubias, 

Highly hydrophilic proteins in prokaryotes and eukaryotes are common during 

conditions of water deficit, The Journal of Biological Chemistry 275 (2000) 5668-

5674. 

[27] J.L. Reyes, M.J. Rodrigo, J.M. Colmenero-Flores, J.V. Gil, A. Garay-Arroyo, F. 

Campos, F. Salamini, D. Bartels, A.A. Covarrubias, Hydrophilins from distant 

organisms can protect enzymatic activities from water limitation effects in vitro, 

Plant Cell and Environment 28 (2005) 709–718. 

[28] O. Ouvrard, F. Cellier, K. Ferrare, D. Tousch, T. Lamaze, J.M. Dupuis, F. Casse-

Delbart, Identification and expression of water stress- and abscisic acid-regulated 

genes in a drought-tolerant sunflower genotype, Plant Molecular Biology 31(1996) 

819–829. 

[29] F. Cellier, G. Conejero, J.C. Breitler, F. Casse, Molecular and physiological 

responses to water deficit in drought-tolerant and drought-sensitive lines of 

sunflower accumulation of dehydrin transcripts correlates with tolerance, Plant 

Physiology 116 (1998) 319-328. 

[30] J.H. Liu, S. Hwee Lee-Tamon, D.M. Reid, Differential and wound-inducible 

expression of 1-aminocylopropane-1-carboxylate oxidase genes in sunflower 

seedlings, Plant Molecular Biology 34 (1997) 923-933. 

[31] M. Garcia, T. Lynch, J. Peeters, C. Snowden, R. Finkelstein, A small plant-specific 

protein family of ABI five binding proteins (AFPs) regulates stress response in 

germinating Arabidopsis seeds and seedlings, Plant Molecular Biology 67 (2008) 

643-658. 

[32] X. Liu, W.M. Vance Baird, Identification of a novel gene, HaABRC5, from 

Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, 

and abscisic acid, American Journal Botany 91(2) (2004) 184–191 

[33] J.M. Colmenero-Flores, F. Campos, A. Garciarrubio, A.A. Covarrubias, 

Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: 

Identification of a novel late embryogenesis abundant-like protein. Plant Molecular 

Biology 35 (1997) 393-405 



 

 20 

[34] C. Hutin, L. Nussaume, N. Moise, I. Moya, K. Kloppstech, M. Havaux, Early light-

induced proteins protect Arabidopsis from photooxidative stress, Proceeding 

National Academy Sciences USA 100 (2003) 4921-4926. 

[35] A. Masia, A. Pitacco, L. Braggio, C. Giulivo, Response to partial drying of the root 

system of Helianthus annus, Journal of Experimental Botany 45 (1994) 69-76. 

[36] I.C. Dodd, G. Egea, C.W. Watts, W.R. Whalley, Root water potential integrates 

discrete soil physical properties to influence ABA signalling during partial 

rootzone drying, Journal of Experimental Botany 61 (2010) 3543–3551. 

[37] S.A. Quarrie, P.N. Whitford, N.E.J. Appleford, T.L. Wang, S.K. Cook, I.E. 

Henson, B.R. Loveys, A monoclonal antibody to (S)-abscisic acid: its 

characterization and use in a radioimmunoassay for measuring abscisic acid in 

crude extracts of cereal and lupin leaves. Planta 173 (1988) 330–339. 

[38] I. Bekesiova, J.P. Nap, L. Mlynarova, Isolation of high quality DNA and RNA 

from leaves of the carnivorous plant Drosera rotundifolia, Plant Molecular Biology 

Rep 17 (1999) 269-277. 

[39] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-

time quantitative PCR and the 2(T)(-Delta Delta C) method, Methods 25 (2001): 

402-408. 

[40] K. Yamaguchi-Shinozaki, K. Shinozaki, Transcriptional regulatory networks in 

cellular responses and tolerance to dehydration and cold stresses, Annual Review 

of Plant Biology 57 (2006) 781-803. 

[41] H. Fujii, J.K. Zhu Osmotic stress signaling via protein kinases, Cellular and 

Molecular Life Sciences 69 (2012) 3165-3173. 

[42] G.T. Huang, S.L. Ma, L.P. Bai, L. Zhang, H. Ma, P. Jia, J. Liu, M. Zhong, Z.F. 

Guo, Signal transduction during cold, salt, and drought stresses in plants, 

Molecular Biology Reports 39 (2012) 969-987. 

[43] R. Wakrim, S. Wahbi, H. Tahi, B. Aganchich, R. Serraj, Comparative effects of 

partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations 

and water use efficiency in common bean (Phaseolus vulgaris L.), Agriculture, 

Ecosystem and Environment 106 (2005) 275-287. 

[44] H. Campos, C. Trejo, B.C. Pena Valdivia, C. Ramirez-Ayala, P. Sanchez-Garcia, 

Effect of partial rootzone drying on growth, gas exchange, and yield of tomato 

(Solanum lycopersicum L.), Scientia Horticulturae 120 (2009) 493-499. 

[45] D.M Mingo., J.C. Theobald, M.A. Bacon, W.J. Davies, I.C. Dodd, Biomass 

allocation in tomato (Lycopersicon esculentum) plants grown under partial 

rootzone drying: enhancement of root growth, Functional Plant Biology 31(2004) 

971-978. 

[46] K.L. Bristow, G.S. Campbell, C. Calissendorff, The effects of texture on the 

resistance to water-movement within the rhizosphere, Soil Science Society of 

American Journal 48 (1984) 266–270. 

[47] G.B. North, P.S. Nobel, Root-soil contact for the desert succulent Agave deserti in 

wet and drying soil, New Phytologist 135 (1997) 21-29. 

[48] A. Shatil-Cohen, Z. Attia, M. Moshelion, Bundle-sheath cell regulation of xylem 

mesophyll water transport via aquaporins under drought stress: a target of xylem-

borne ABA?, Plant Journal 67 (2011) 72-80 

[49] F. Pantin, F. Monnet, D. Jannaud, J. Costa, J. Renaud, B. Muller, T. Simonneau, B. 

Genty, The dual effect of abscisic acid on stomata, New Phytologyst 197 (2013) 

65-72. 

[50] A.J. Thompson, J. Andrews, B.J. Mulholland, J.M..T McKee, H.W. Hilton, J.S. 

Horridge, G.D. Farquhar, R.C. Smeeton, I.R.A. Smillie, C.R. Black, I.B. Taylor, 



 

 21 

Overproduction of Abscisic acid in tomato increases transpiration efficicency and 

root hydraulic conductivity and influences leaf expansion, Plant Physiology 143 

(2007) 1905-1917. 

 [51] I.C. Dodd, Abscisic acid and stomatal closure: a hydraulic conductance 

conundrum?, Commentary New Phytologist 197 (2013) 6-8. 

[52] J. Zhang, W.J. Davies, Abscisic acid produced in dehydrating roots may enable the 

plant to measure the water status of the soil, Plant Cell and Environment 12 (1989) 

73–81. 

[53] J. Puértolas, R. Alcobendas, J.J. Alarcón, I.C. Dodd, Long-distance abscisic acid 

signalling under different vertical soil moisture gradients depends on bulk root 

water potential and average soil water content in the root zone, Plant Cell and 

Environment 36 (2013) 1465-1475. 

[54] A. Gomez-Cadenas, F. Tadeo, M. Talon, E. Primo-Millo, Leaf abscission induced 

by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires 

previous abscisic acid accumulation in roots, Plant Physiology 112 (1996) 401 -

408. 

[55] M. Pierce, K. Raschke, Synthesis and metabolism of abscisic acid in detached 

leaves of Phaseolus vulgaris L. after loss and recovery of turgor, Planta 153 (1981) 

156-165. 

[56] S. Poormohammad Kiani, P. Grieu, P. Maury, T. Hewezi, L. Gentzbittel, A. 

Sarrafi, Genetic variability for physiological traits under drought conditions and 

differential expression of water stress-associated genes in sunflower (Helianthus 

annuus L.), Theoretical and Applied Genetics 114 (2007) 193-207. 

[57] J. Brumós, J.M. Colmenero-Flores, A. Conesa, P. Izquierdo, G. Sánchez, D.J. 

Iglesias, M.F. López-Climent, A. Gómez-Cadenas, M. Talón, Membrane 

transporters and carbon metabolism implicated in chloride homeostasis 

differentiate salt stress responses in tolerant and sensitive Citrus rootstocks, 

Functional and Integrative Genomics 9 (2009) 293–309. 

[58] L. Wei-hong, F. Li L Zhang, Y. Liu, M. Li, H. Shi, H. Li, F. Shang, C. Lou, Q. Lin, 

J. Li, X. Yang, Effects of abiotic stress, light, phytochromes and phytohormones on 

the expression of OsAQP, a rice aquaporin gene, Plant Growth Regulation 69 

(2013) 21-27. 

[59] A.O. Carvalho, V.M. Gomes, Role of plant lipid transfer proteins in plant cell 

physiology: a concise review, Peptides 28 (2007) 1144–1153. 

[60] T.J. Close, Dehydrins: A commonality in the response of plants to dehydration and 

low temperature, Physiologia Plantarum 100 (1997) 291-296. 

 

 

 

 

 

 

 

 



 

 22 

Figure legends 

Figure 1. Evapotranspiration rate in sunflower plants under partial root drying (PRD), 

deficit irrigation (DI) and well-watered (C) irrigation treatments over time. Differences 

between C and DI plants (Volume) and between DI and PRD plants (Placement), as 

determined by Student‟s unpaired t-test, are indicated thus: NS, not significant; *P < 

0.05. Values are means ± SE of 6 biological replicates. 

Figure 2. Correlations between leaf water potential, leaf xylem ABA concentration and 

soil water content after 3 days in control (C), deficit irrigation (DI) and partial rootzone 

drying (PRD) treatments. For PRD plants, soil moisture values are given from the dry 

compartment (DR), and from the average soil water content of both dry and wet 

compartments (AVG). Paired measurements for each plant allowed data to be expressed 

as means ± SE of 6 biological replicates. 

Figure 3. Expression levels of water-stress responsive genes in roots and leaves of 

Helianthus annuus control plants. A) Genes with lower expression levels: HaABRC5, 

HaACO2, HaELIP1 and HaDHN1. B) Genes with higher expression levels: HaLTP and 

HaTIP7. Values are means ± SE of 6 biological and 3 technical replicates. 

Figure 4. Expression levels of the studied genes (HaABRC5, HaACO2, HaELIP1, 

HaDHN1, HaLTP and HaTIP7) in root and leaves tissues of Helianthus annuus under 

partial rootzone drying (PRD) and deficit irrigated (DI) treatments relative to the 

expression of well-watered plants. The relative transcript levels after 3 days treatments 

were determined by real-time RT PCR. Values are means ± SE of 6 biological and 3 

technical replicates.  

 



Tables  

 

Table 1.  PCR amplification primers of studied genes  

Gene name GenBank Accession No. Primer sequence (5’-3´) 

HaTIP7 X95950 Forw:   CTCCAGCTCCATCAAGGCC          

Rev:     GGTGGATCTAGGGCAGCATCT    

HaDHN1 X92647 Forw:   GAACCTTCCAAAACCAACCCA     

Rev:     GAACGATGCAGAATGCCTGTT   

HaACCO2 X92651 Forw:   AGAAATGGTGGCTGCCAATG 

Rev:     GGGAGATGGCGGAGATAGAAAG 

HaABRC5 AY346009 Forw:   ATAGAAAGCGGTTGCAGTCGC 

Rev:     CGATGAAGAAAACCGCACCTT 

HaLTP X92648 Forw:   ATTCCATCTCCGGCGTCAA 

Rev:     TGCCAAAGCATCCCATATGTC 

HaELIP1 X02646 Forw:   TGATGACGTCTGATGCAGAGCT 

Rev:     TCATACAAGTGGACTGCCGGT 

 

 

 

Table 2. Cumulative evapotranspiration, along with soil and plant water status at 

the end of the experiment. 

Treatments 

Soil water content 

at 72 h 

 (g. g
-1

) (±SE)  

Evapo- 

transpiration 

(mL)  (±SE) 

ψ leaf  

(MPa) (±SE)  

Xylem [ABA]  

(nM) (±SE) 

Control 0.069 (± 0.015)  a 107.41 (±18.79) a -0.74 (±0.155) a 21.6 (±3.35) a 

DI 0.030 (± 0.012) bc 111.12 (±11.03) a -0.86 (±0.089) a 27.5 (±5.26) a 

PRD  (Wet Root) 0.046 (± 0.0037) ab 
86.15 (±9.38) b -1.18 (±0.108) b 164.9 (±46.81) b 

PRD (Dry Root) 0.008 ± (0.0044) c 

Different letters indicate significant differences by Tukey´s Test (P< 0,05) 

 

Table(s)



Table 3. Pearson Correlation coefficient between plant and soil variables 

of PRD Helianthus annuus plants after 3 days of drying treatments  
 Xylem [ABA] 

(nM) 

ψ leaf 

(MPa) 

Soil water content 

(g·g
-1

) 

ψ leaf 0.41
NS

 -  

Local soil water 

content
1 -0.77** -0.40

NS
 - 

Whole pot soil water 

content
2
 

-0.48* -0.08
NS

 - 

Evapotranspiration
3 0.19

NS
 0.24

NS
 -0.04

NS 

1,3
 using the local soil water content of the dry compartment of PRD pots 

 

2
 using the average soil water content of dry and wet compartments of PRD pots  

*, **, and NS indicate significance at 0.05 and 0.01 probability level and non-

significance, respectively 

 

 

Table 4. Pearson correlation coefficient between root gene expression and plant 

and soil variables after 3 days PRD and DI treatments 

 HaABRC5 HaACCO2 HaTIP 7 HaDHN1 HaELIP1 HaLTP 

Local soil water 

content 

-0.85*** -0.85*** -0.61* -0.69* -0.31
 NS

 -0.58
 NS

 

Xylem sap ABA 

Concentration  

0.60
NS

 0.67* 0.83*** 0.77*** -0.09
 NS

 0.40
 NS 

ψ leaf  0.33
NS

 0.39
 NS

 0.58
 NS

 0.69* 0.14
 NS

 0.33
 NS

 

*, **, *** and NS indicate significance at 0.05, 0.01, 0.001 probability level and non-significance, 

respectively 

 

 

Table 5. Pearson correlation coefficient between leaf gene expression and plant and 

soil variables after 3 days PRD and DI treatments 

 HaABRC5 HaACCO2 HaTIP 7 HaDHN1 HaELIP1 HaLTP 

Whole pot soil 

water content 

-0.22 NS -0.15
 NS

 0.41
 NS

 -0.60* -0.23
 NS

 -0.50
 NS

 

Xylem sap ABA 

Concentration 

0.44
 NS

 0.07
 NS

 -0.64* 0.73*** 0.38
 NS

 0.76*** 

ψ leaf  0.37
 NS

 0.00
 NS

 -0.22
 NS

 0.78*** 0.78*** 0.09
 NS

 

*, **, *** and NS indicate significance at 0.05, 0.01, 0.001 probability level and non-significance, 

respectively 
 

 



Figure 1. Evapotranspiration rate in sunflower plants under partial root drying (PRD), 
deficit irrigation (DI) and well-watered (C) irrigation treatments over time. Differences 
between C a nd DI plants (Volume) and between DI a nd PRD plants (Placement), as 
determined by Student’s unpaired t-test, are indicated thus: NS, not significant; *P < 
0.05. Values are means ± SE of 6 biological replicate s .  

Figure(s)



Figure 2. Correlations between leaf water potential, leaf xylem ABA concentration and 
soil water content after 3 days in control (C), deficit irrigation (DI) and partial rootzone 
drying (PRD) treatments. For PRD plants, soil moisture values are given from the dry 
compartment (DR), and from the average soil water content of both dry and wet 
compartments (AVG). Paired measurements for each plant allowed data to be expressed 
as means ± SE of 6 biological replicates. 



Figure 3. Expression levels of water-stress responsive genes in roots and leaves of 
Helianthus annuus control plants. A) Genes with lower expression levels: HaABRC5, 
HaACO2, HaELIP1 and HaDHN1. B) Genes with higher expression levels: HaLTP and 
HaTIP7. Values are means ± SE of 6 biological and 3 technical replicates. 



Figure 4. Expression levels of the studied genes (HaABRC5, HaACO2, HaELIP1, 
HaDHN1, HaLTP and HaTIP7) in root and leaves tissues of Helianthus annuus under 
partial rootzone drying (PRD) and deficit irrigated (DI) treatments relative to the 
expression of well-watered plants. The relative transcript levels after 3 days treatments 
were determined by real-time RT PCR. Values are means ± SE of 6 biological and 3 
technical replicates.  



Highlights 

 

 Deficit irrigation strategies (PRD and DI) induce differential genetic responses. 

 Local dehydration in PRD triggers stronger physiological and molecular 

responses. 

 Root gene expression mostly correlates with local soil water content.  

 Leaf gene expression correlates with xylem sap ABA and leaf water potential. 

 This may enable a better understanding of long-distance signalling mechanisms. 

 

*Highlights (for review)
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