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This study investigated the terpene profiles as determined by GC–EIMS analysis of in vitro cultured plants
of Vitis vinifera exposed to a ‘‘field-like’’ dose of UV-B (4.75 kJ m�2 d�1) administered at two different flu-
ence rates (low, 16 h at 8.25 lW cm�2, and high 4 h at 33 lW cm�2). Low UV-B treatment increased lev-
els of the membrane-related triterpenes sitosterol, stigmasterol and lupeol, more notable in young leaves,
suggesting elicitation of a mechanism for grapevine acclimation. By contrast, accumulation of compounds
with antioxidant properties, diterpenes a and c tocopherol and phytol, the sesquiterpene E-nerolidol and
the monoterpenes carene, a-pinene and terpinolene had maximum accumulation under high UV-B,
which was accentuated in mature leaves. Also the levels of the sesquiterpenic stress-related hormone
abscisic acid (ABA) increased under high UV-B, although 24 h post irradiation ABA concentrations
decreased. Such increments of antioxidant terpenes along with ABA suggest elicitation of mechanism
of defense. The adaptative responses induced by relatively low UV-B irradiations as suggested by synthe-
sis of terpenes related with membrane stability correlated with augments in terpene synthase activity.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Ultraviolet solar radiation (UV) is mostly absorbed by the
stratospheric ozone layer and other atmospheric gases, being
UV-B (wavelength 280–315 nm) only 0.5% of the total solar radia-
tion energy reaching the earth’s ground. Environmental UV-B
levels are regulated by altitude, latitude, season, day time and
cloud cover (McKenzie et al., 2003). Despite the relatively low lev-
els of UV-B irradiance that reach the vegetation canopy, the biolog-
ical impact on plant tissues may be important and depend on a
number of factors, including UV-B irradiation level, duration, and
wavelength of the UV-B treatments (Blanding et al., 2007; Brosché
and Strid, 2003; Frohnmeyer and Staiger, 2003; Jenkins and Brown,
2007). It has been reported that elevated UV-B irradiation levels in-
duce expression of many genes usually involved in defense,
wounding, or general stress responses (A-H-Mackerness, 2000;
Brosché and Strid, 2003; Kilian et al., 2007; Ulm and Nagy, 2005).
High fluence rates of UV-B can damage macromolecules like DNA
and proteins, as well as membrane lipids, the photosynthetic appa-
ratus and even generate tissue necrosis (Casati and Walbot, 2004;
Jansen et al., 1998; Julkunen-Titto et al., 2005; Rozema et al., 1997).
It has also been demonstrated that UV-B generates reactive oxygen
species (ROS) (Allan and Fluhr, 1997; Barta et al., 2004; Hideg et al.,
2002), eventually producing oxidative damage (Brosché and Strid,
ll rights reserved.
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2003). Plants respond to this damage through induction of a com-
plex antioxidant defense system involving different enzymes and
secondary metabolites (Jansen et al., 1998, 2001; Brosché and
Strid, 2003; Berli et al., 2010).

UV-B radiation is not always a damage-inducing source of stress
but it also can act as a key environmental signal regulating diverse
metabolic responses of defense and development in plants (Bro-
sché and Strid, 2003; Caldwell et al., 2003; Frohnmeyer and Stai-
ger, 2003; Jenkins, 2009). Transcriptome analyses show that
UV-B increases expression of several genes related with reducing
oxidative stress (Brown et al., 2005; Casati and Walbot, 2003,
2004; Kilian et al., 2007; Pontin et al., 2010; Ulm et al., 2004). How-
ever, although changes in the transcriptome are involved in
modulation of secondary metabolites by UV-B, variations in en-
zyme activity and accumulation of defense metabolites do not nec-
essarily correlate with changes in gene expression (Dolzhenko
et al., 2010). Also, UV-B stimulates protective responses that affect
the plant’s resistance to other biotic and abiotic stresses (Ballaré,
2003; Frohnmeyer et al., 1999; Kim et al., 1998). Additionally,
UV-B-generated ROS may act as signaling molecules mediating
the acquisition of tolerance to both biotic and abiotic stresses (Les-
hem et al., 2007; Torres and Dangl, 2005).

Despite the many reports on damage of UV-B to different plant
tissues, there is a rather limited understanding regarding the role
of secondary metabolites in protective mechanisms against poten-
tially harmful UV-B irradiation. Most information available deals
with biosynthesis and accumulation of phenolics in epidermal leaf
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tissues that attenuate penetration of UV-B into deep cell layers,
including grapevines (Berli et al., 2008, 2010; Rozema et al., 1997).
However, little is known about the UV-B radiation protective role
played by other compounds, such as isoprenoid-derived terpenes
(Chapman, 2009; Zavala and Raveta, 2002). In autotrophic metabo-
lism, isoprenoids act as photosynthetic pigments (chlorophylls and
carotenoids), electron carriers (quinones), radical scavengers
(tocopherols), membrane components (sterols), as well as the
stress-related phytohormone abscisic acid (ABA; Zhu, 2002). Not-
withstanding, the role of ABA in UV-B-induced responses has just
begun to be studied (Berli et al., 2010, 2011).

In a previous paper (Pontin et al., 2010) in vitro grape plants
were treated with a single UV-B dose equivalent to that grape
plants receive in a vineyard but in two different intensities: low
UV-B (16 h at 8.25 lW cm�2) or high UV-B (4 h at 33 lW cm�2

UVB). Although a group of ca. 650 probe sets were up- or down-reg-
ulated by both UV-B intensities, high UV-B specifically regulated a
group of more than 2000 probe sets while low UV-B induced differ-
ential expression of other group of approximately 650 probe sets.
These results suggested that different ‘‘environmental’’ intensities
regulate gene expression in diverse ways; purportedly, relatively
low intensities may induce responses of adaptation while high
intensities could induce defense-related genes.

The hypothesis of this study was that grapevine tissues have
two kind of metabolic responses, one in which the signal induces
adaptation of the leaf tissues to UV-B, other in which the tissue
responds to the UV-B injury. The aim was to investigate the effects
of a ‘‘field-like’’ dose of UV-B administered at two different fluence
rates (low and high), as compared with a control without UV-B, on
terpene profiles in young and mature leaves of in vitro cultured
grapevines. Changes in terpene levels and terpene synthase (TPS)
activity were monitored in order to discriminate between two pur-
ported responses, acclimation and response to UV-B-induced
damage.
2. Results

Only data for those compounds which levels varied in more
than double as compared with the values found in control (without
UV-B) tissues are presented.
Fig. 1. Triterpene (1–3) levels as assessed by GC–EIMS in ng mg�1 leaf FW.
Sitosterol (1) (a), stigmasterol (2) (b) and lupeol (3) (c) in young and mature leaves
of 45 d old Vitis vinifera cv. Malbec plants. Treatments: one dose (4.75 kJ m�2 d�1) of
low (8.25 lW cm�2 during a 16 h per day photoperiod) and high (33 lW cm�2

during the last 4 h of a 16 h per day photoperiod) UV-B irradiance, and a control in
which UV-B was filtered. P(UV-B): UV-B effect; P(leaf): leaf ontogeny effect; P(UV-B �

leaf): UV-B � leaf ontogeny interaction effect. Asterisk means significantly differ-
ences comparing upper with lower leaves for the same treatment. Values are
means ± SE, n = 3.
2.1. UV-B induces synthesis of membrane-related sterols

As shown in Fig. 1, the amount of sterols (1–3) measured in
leaves of grape plants significantly increased after both UV-B treat-
ments as compared with the control in which UV-B was filtered,
and these amounts were also affected by leaf ontogeny. It has been
reported that the most abundant plant sterols in nature are sitos-
terol (1) and stigmasterol (2) (Croteau et al., 2000), which regulate
membrane fluidity and play a role in the adaptation of membranes
to different stresses (Piironen et al., 2000; Schaller, 2003). Consis-
tent with this, sitosterol (1) was the most abundant sterol and in-
creased 16.4-fold in young leaves and 8.0-fold in mature leaves
under low UV-B irradiance, and 4.8-fold in young leaves and 1.8-
fold in mature leaves by high UV-B irradiance, as compared with
the control (Fig. 1a). Thus, sitosterol (1) levels were higher in youn-
ger leaves than in mature leaves under both, low and high UV-B
irradiance treatments. The concentration of stigmasterol (2) was
augmented 3.2-fold under low UV-B in young leaves as compared
to control, and 2.3-fold with respect to high UV-B, without differ-
ences in the rest of the treatments (Fig. 1b). Levels of another
triterpenoid related with antioxidant defense system, lupeol (3)
(Bracco et al., 1981), increased by low UV-B, 4.2-fold in young
leaves and 3.2-fold in mature leaves as compared with control
plants, without any effect of high UV-B (Fig. 1c). Under the three
light treatments, lupeol (3) levels were always higher in mature
leaves than in young leaves.

2.2. High UV-B irradiance increases antioxidant diterpenes in mature
leaf tissues

Tocopherols (4–6) are antioxidant diterpenes with a well-recog-
nized ability to protect cells from oxidative stress (Fryer, 1992).
Levels of c-tocopherol (4), a-tocopherol (5) and phytol (6) in-
creased in grape plants exposed to high UV-B irradiation (Fig. 2).
c-Tocopherol (4) was augmented 1.9-fold in young leaves and



M. Gil et al. / Phytochemistry 77 (2012) 89–98 91
3.3-fold in mature leaves under high UV-B respect to low UV-B
irradiation, and 3.6- and 6.1-fold as compared to their respective
controls (Fig. 2a). a-Tocopherol (5) levels were 2-fold increased
in mature leaves under high fluence UV-B conditions with regard
to the rest of the treatment. The highest concentration was mea-
sured in mature leaves exposed to high UV-B (Fig. 2b). Among
diterpenes measured in grapevine leaf tissue, phytol (6) was the
most abundant and its level was augmented 2.8-fold under high
UV-B as compared with controls and low UV-B irradiation, irre-
spective of leaf ontogeny (young or mature, Fig. 2c).
Fig. 2. Diterpene levels assessed by GC–EIMS in ng mg�1 leaf FW. c-Tocopherols (4)
(a), a-tocopherol (5) (b) and phytol (6) (c) in young and mature leaves of 45 d old
Vitis vinifera cv. Malbec plants. Treatments: one dose (4.75 kJ m�2 d�1) of low
(8.25 lW cm�2 during a 16 h per day photoperiod) and high (33 lW cm�2 during
the last 4 h of a 16 h per day photoperiod) UV-B irradiance, and a control in which
UV-B was filtered. P(UV-B): UV-B effect; P(leaf): leaf ontogeny effect; P(UV-B � leaf): UV-
B � leaf ontogeny interaction effect. Asterisk means significantly differences
comparing upper with lower leaves for the same treatment. Values are means ± SE,
n = 3.
2.3. UV-B increases level of defense-related terpenes

Levels of the sesquiterpene E-nerolidol (7), which is primarily
related with mechanisms of plant defense against pathogens (Park
et al., 2009), was increased according to the fluence rate of UV-B
with no differences between young and mature leaves (Fig. 3).
Although other sesquiterpenes such us a-farnesene and trans
a-bergamotene were identified in grapevine leaf tissue, they did
not show any difference among the treatments (data not shown).

The volatile monoterpenes a-pinene (8), terpinolene (9) and
carene (10) were also identified by GC–EIMS in leaf tissue of plants
submitted to low and high UV-B irradiance, but not in the control
plants. As shown in Fig. 4a–c their levels were 2-fold higher under
high UV-B as compared with low UV-B irradiance treated-plants.

2.4. UV-B induces fluence rate-dependent ABA accumulation

ABA (11) is a sesquiterpene hormone which mediates adaptive
responses to different abiotic and biotic stresses in vegetative tis-
sues (Crozier et al., 2000). The highest ABA (11) levels, measured
immediately after the end of the UV-B treatments, were obtained
in young leaves exposed to high UV-B (Fig. 5a). ABA (11) levels
measured in young leaves increased 2.4-fold under low UV-B and
7.9 times with high UV-B irradiation, as compared to controls. In
mature leaves, ABA concentration was 3.7-fold and 3.4-fold higher
under high and low UV-B irradiance, respectively, as compared to
controls. However, 24 h after the UV-B treatments, the ABA (11)
concentration decreased to levels lower than the controls, been
highest in the control mature leaves (Fig. 5b).

2.5. UV-B increases TPS activity

The committed step in the biosynthesis of the different skeletal
types of terpenes is catalyzed by terpene synthases (TPS), a class of
enzymes that forms a large variety of terpenoids products from
prenyl diphosphate precursors (Croteau et al., 2000). To determine
if UV-B-induced terpene accumulation was due to de novo biosyn-
thesis, the activity of TPS on farnesyl diphosphate (FPP) (12) as
substrate was measured. The potential fates of FPP (12) are shown
in Fig. 8. TPS activity, assessed in terms a radioactivity in the hex-
ane-soluble fraction from tritiated FPP (12) increased 8-fold in
Fig. 3. Sesquiterpene E-nerolidol (7) content assessed by GC–EIMS in ng mg�1 leaf
FW in young and mature leaves of 45 d old Vitis vinifera cv. Malbec plants.
Treatments: one dose (4.75 kJ m�2 d�1) of low (8.25 lW cm�2 during a 16 h per day
photoperiod) and high (33 lW cm�2 during the last 4 h of a 16 h per day
photoperiod) UV-B irradiance, and a control in which UV-B was filtered. P(UV-B):
UV-B effect; P(leaf): leaf ontogeny effect; P(UV-B � leaf): UV-B � leaf ontogeny
interaction effect. Asterisk means significantly differences comparing upper with
lower leaves for the same treatment. Values are means ± SE, n = 3.



Fig. 4. Monoterpene levels assessed by GC–EIMS in ng mg�1 leaf FW. a-Pinene (8)
(a), terpinolene (9) (b) and carene (10) (c) in young and mature leaves of 45 d old
Vitis vinifera cv. Malbec plants. Treatments: one dose (4.75 kJ m�2 d�1) of low
(8.25 lW cm�2 during a 16 h per day photoperiod) and high (33 lW cm�2 during
the last 4 h of a 16 h per day photoperiod) UV-B irradiance, and a control in which
UV-B was filtered. P(UV-B): UV-B effect; P(leaf): leaf ontogeny effect; P(UV-B � leaf): UV-
B � leaf ontogeny interaction effect. Asterisk means significantly differences
comparing upper with lower leaves for the same treatment. Values are means ± SE,
n = 3.

Fig. 5. Abscisic acid (ABA) (11) levels assessed by GC–EIMS in ng mg�1 leaf FW in
young and mature leaves of 45 d old Vitis vinifera cv. Malbec plants. Treatments:
one dose (4.75 kJ m�2 d�1) of low (8.25 lW cm�2 during a 16 h per day photope-
riod) and high (33 lW cm�2 during the last 4 h of a 16 h per day photoperiod) UV-B
irradiance, and a control in which UV-B was filtered. P(UV-B): UV-B effect; P(leaf): leaf
ontogeny effect; P(UV-B � leaf): UV-B � leaf ontogeny interaction effect. Determina-
tions were done directly after the treatments (a) and after 24 h (b). Asterisk means
significantly differences comparing upper with lower leaves for the same treat-
ment. Values are means ± SE, n = 3.

Fig. 6. Terpene synthase activity (TPS) expressed as nmol [3H]-FPP (12) trans-
formed mg of protein�1 h�1 (see Section 5 for details) of young and mature leaves of
45 d old Vitis vinifera cv. Malbec plants. Treatments: one dose (4.75 kJ m�2 d�1) of
low (8.25 lW cm�2 during a 16 h per day photoperiod) and high (33 lW cm�2

during the last 4 h of a 16 h per day photoperiod) UV-B irradiance, and a control in
which UV-B was filtered. P(UV-B): UV-B effect; P(leaf): leaf ontogeny effect; P(UV-B �

leaf): UV-B � leaf ontogeny interaction effect. Asterisk means significantly differ-
ences comparing upper with lower leaves for the same treatment. Values are
means ± SE, n = 3.
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young leaves and 3-fold in mature leaves, under low UV-B as com-
pared to their controls, whereas those exposed to high UV-B irradi-
ance increased 5.8-fold in young leaves compared to control but in
the mature ones did not differ (Fig. 6). In general, TPS activity was
greater in the young leaves exposed to UV-B. TPS activity measured
in root tissue presented the same behavior, but with 10-fold lower
levels than leaf tissue (data not shown).
2.6. Principal component analysis (PCA) of metabolites

For an overall interpretation of the results obtained a PCA was
used (Fig. 7). The matrix for the analysis consisted of 6 cases corre-
sponding to the combination of the three UV-B regimes and the
leaves ontogeny (young and mature leaves), and 12 variables (com-
pounds which levels, assessed by GC–EIMS, varied in more than
double as compared with control, and TPS activity). PC1 explained



Fig. 7. Biplot display of the principal component analysis (PCA) of the metabolites analyzed in young and mature leaves of 45 d old Vitis vinifera cv. Malbec plants.
Treatments: one dose (4.75 kJ m�2 d�1) of low (8.25 lW cm�2 during a 16 h per day photoperiod) and high (33 lW cm�2 during the last 4 h of a 16 h per day photoperiod)
UV-B irradiance, and a control in which UV-B was filtered.
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56.6% of the variance and separated the treatments by UV-B re-
gimes. PC2 explained 25.5% of the variance and separated the treat-
ments by the leaves ontogeny in the low and high UV-B treatments,
not in the control. Monoterpenes, diterpenes and ABA (measured
immediately after the end of the UV-B treatments) levels were asso-
ciated with the high UV-B treatment. E-nerolidol (7), a-pinene (8),
terpinolene (9), carene (10) and ABA (11) were more associated
with the young leaves, while phytol (6), c-tocopherol (4) and a-
tocopherol (5) were more associated with mature leaves. Finally,
the variables of TPS activity (12), membrane-related sterols (sitos-
terol (1), stigmasterol (2)) and lupeol (3) were associated with low
UV-B irradiance (TPS activity and sterols with young leaves and lu-
peol (3) with the mature leaves).

3. Discussion

The results can be compared with the gene expression profile
reported in former work in which the grape whole transcriptome
response to UV-B was analyzed in an analogous experiment
(Pontin et al., 2010). The experimental design used allowed to
compare two situations; one in which a field-like UV-B dose
(4.75 kJ m�2 d�1) was administrated at a low irradiance, other
where the same dose was given in a rather high irradiance but in
a narrower period, and a control where UV-B was excluded. This
experimental approach allowed comparison and contrast of two
purported responses, one in which the UV-B signal would induce
adaptation of the plants to this radiation, and the other in which
the plant may respond to UV-B-induced damage. In plant tissues,
UV-B exposure causes an increase of the excitation energy, which
may lead to reduction of oxygen and therefore to generation of
ROS. These compounds are mainly responsible for UV-B-mediated
damage, but can also act as second messengers in different signal-
ing pathways (Hideg et al., 2002). In fact, ROS are considered sig-
naling molecules that initiate defense responses and their levels
increase after UV-B pulses (Allan and Fluhr, 1997). In this report,
it is shown that UV-B induces in grape leaf tissues a modulating ef-
fect on isoprenoid metabolism and this was differentially affected
by fluence rate of UV-B.

The synthesis of the terpenes is initiated from isopentenyl and
dimethylallyl diphosphate precursors. Two independent pathways
contribute in higher plants to the formation of building block (C5)
of isoprenoids. In general, the cytosolic mevalonate pathway
(MVA) provides the precursors for sesquiterpenes, and sterols,
whereas the plastidial methylerythritol pathway (MEP) furnishes
the monoterpenes, diterpenes, tetraterpenes, prenyl moieties of
chlorophyll, plastoquinone, and tocopherol (Hampel et al., 2005;
McGarvey and Croteau, 1995; Tholl, 2006). The C5 units are con-
densed by prenyltransferases to synthesize geranyl diphosphate
(C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate
(C20). These prenyl diphosphates in turn undergo a wide range of
cyclizations and other transformations to produce the various
structural types of mono-, sesqui- and diterpenes. These steps
are catalyzed by terpene synthases (TPS), a very large family of
enzymes with multiple representatives in all plant species studied
so far (Degenhardt et al., 2009; Facchini and Chappell, 1992; Steele
et al., 1998; Wise et al., 1998), including grapevine (Lücker et al.,
2004; Martin et al., 2010). Grapevine leaf tissues exposed to
UV-B radiation showed increased TPS activity, and the response
was different depending on the irradiance level and the leaves
ontogeny. In this sense, the amount of substrate 3H-FPP (12) trans-
formed via the mevalonate pathway (MVA; Lichtenthaler et al.,
1997) was higher under low UV-B, and mainly in young leaves ex-
posed to both UV-B treatments. Such increase in TPS activity was
associated with augments in the membrane content of sitosterol
(1), stigmasterol (2) and lupeol (3), that is, enhancement of the ste-
rol-structural defense. This is in agreement with Sabater-Jara et al.
(2010), who observed that accumulation of sterols was induced as
defense response in elicited cell cultures of Capsicum annuum.
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Sitosterol (1) is usually the major sterol found in plant tissues,
and an increased sitosterol (1) to stigmasterol (2) ratio has been
suggested as a mechanism of plant adaptation to stress (Douglas,
1985). This, was confirmed in our study where the proportion of
sitosterol (1) to stigmasterol (2) was about 7-fold higher in the
young leaves of plants exposed to low UV-B irradiance. When their
levels were compared in control plants no differences were
observed between young and mature leaf tissues, and only under
UV-B treatment an increase was in these compounds detected. In
previous work, with grapevine mature leaves, the sitosterol (1)
content was 5-fold higher than that of stigmasterol (2) (Berli et
al., 2010). However, the ratio of sitosterol (1) to stigmasterol (2)
could be influenced by the plant species, stress intensity (Douglas,
1985) or tissue ontogeny (Geuns, 1973). Additionally, levels of the
triterpene lupeol (3) increased under low UV-B. However in this
case, such an increase was more notable in mature leaves, suggest-
ing metabolism from an immediate precursor and not de novo syn-
thesis via isoprenoid metabolism. Squalene synthase (SS) catalyses
the first step of the isoprenoid pathway towards sterol and triter-
pene biosynthesis (Abe et al., 1993). In plants, both sterols and
triterpenes are synthesized as products of cyclization of 2,3-oxido-
squalene (14), a reaction catalyzed by oxidosqualene cyclases
(OSCs; see Fig. 8). It has been suggested that biosynthesis of
triterpenes occurs when sterol formation has been sacrificed
(Flores-Sánchez et al., 2002; Kamisako et al., 1984). However,
simultaneous enhancement of sterols and triterpene biosynthesis
has been reported (Han et al., 2010; Lee et al., 2004). Probably,
overproduction of squalene (13) in UV-B irradiated plants stimu-
lates both, phytosterol and triterpene biosynthesis. In any case,
lupeol (3) and sterols, in addition to regulate fluidity and perme-
ability of the membranes have demonstrated capacity to intercept
free radicals (Bracco et al., 1981; Hartmann, 1998; Saleem et al.,
2001). Although the biological function of lupeol (3) in plants is
less clear, it may have protective functions. It has been shown in
mammal tissues that lupane derivatives have antioxidant, anti-
inflammatory and antiviral properties (Lee et al., 2007; Saleem
et al., 2004, 2005a,b, 2008). Other studies indicate that lupeol (3)
also plays a role in stabilization of lipids (Saratha et al., 2011)
and changes the tissue redox balance by scavenging free radicals
FPP
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2x

2,3-Oxidosq

Sterols

(1

Fig. 8. A simplified scheme of potential fa
(Nagaraj et al., 2000; Sunitha et al., 2001). Thus, these triterpenes
may protect leaf membranes against potential photo-oxidative
damage generated by low UV-B as part of a mechanism for grape
acclimation to UV-B radiation. When the UV-B dose was adminis-
trated at low fluence rate, the results suggested de novo synthesis
of membrane-related sterols. In fact, the highest levels of sitosterol
(1) and stigmasterol (2) were found in young leaves in correlation
with high TPS activity. This type of reaction is consistent with an
adaptative response that prepares tissues to cope with adverse
environmental conditions. Notwithstanding, in previous experi-
ments (Berli et al., 2010) it was found that such structural resis-
tance throughout an enhancement of membrane sterols is more
associated with ABA (11) effects than a direct consequence of
UV-B action. Therefore, as ABA (11) levels were also increased by
the low UV-B treatment, such levels may account for increase of
membrane-sterols in young tissues.

On the other hand, UV-B treatment somewhat promoted synthe-
sis of a-tocopherol (5), c-tocopherol (4) and phytol (6), all diter-
penes derived of the plastidic methylerythritol phosphate (MEP)
pathway (Lichtenthaler et al., 1997). These antioxidant compounds
prevent photo-oxidative deterioration of unsaturated fatty acids,
lipids and lipoproteins in the cell membrane of plants by detoxifica-
tion of ROS (Fahrenholtz et al., 1974; Neely et al., 1988), but are also
involved in the modulation of membrane fluidity and permeability
(Fryer, 1992). It is well known that tocopherols can scavenge ROS
directly by reactions through hydroxyl radicals avoiding propaga-
tion of lipid peroxidation in thylakoid membranes, and forming a
first line of defense against membrane photo-degradation (Asada,
1994; Foyer et al., 1994). Therefore, they are essentials components
for the plant protection against environmental stress and light-in-
duced disorders (reviewed by Fryer, 1992). In our experiments,
these diterpenes were even more abundant in mature leaves and
when the grapevine plants were irradiated with high UV-B. The
antioxidant function of tocopherols may contribute to avoid irre-
versible damages of membranes keeping them functional after
the UV-B treatment (Munné-Bosch and Alegre, 2000). Experimental
evidence has shown that tocopherols confer a protective effect to
the photosynthetic apparatus under thermal and oxidative stress
conditions (Copolovici et al., 2005; Delfine et al., 2000), acting as
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antioxidants that protect the membranes against peroxidation and
ROS (Loreto and Velikova, 2001; Loreto et al., 2001). Thus, the
induction and accumulation of both tocopherols (4, 5) and phytol
(6) could be interpreted as a mechanism to shorten duration of
the ‘‘oxidative burst’’ and to protect grapevine tissues against high
UV-B induced-ROS. These results are in agreement with the expres-
sion of genes involved in different antioxidant defense systems pro-
moted by exposure of grape plants to high UV-B, such as genes
encoding several heat shock proteins (with mitochondrial, chloro-
plastic, and cytoplasmic localization), different kind of lectins, and
antioxidant enzymes (Pontin et al., 2010).

Among the terpenes identified and showing high variation
under UV-B were the sesquiterpene E-nerolidol (7) and the mono-
terpenes a-pinene (8), terpinolene (9) and carene (10). These
metabolites are produced by plants at low concentrations and their
production was increased in the presence of UV-B, more associated
with high UV-B and in young leaves. However, in the case of the
monoterpenes, they were not detected in control plants suggesting
that they were synthesized de novo as a result of UV-B elicitation.
In this sense, in previous work, it was found that this radiation reg-
ulated expression of genes encoding TPS (Pontin et al., 2010). These
substances are highly lipophylic and possess good antioxidative
capacity in the lipophilic test systems. Graßmann et al. (2001,
2003) demonstrated that terpinolene (9) protects low-density lipo-
protein from oxidation.

It is well-known that in vegetative tissues ABA (11) levels in-
crease when plants are exposed to adverse environmental condi-
tions, such as drought, salt and temperature stress (Crozier et al.,
2000). In the present experiments, and in agreement with previous
results (Berli et al., 2010) ABA (11) levels increased in response to
UV-B following a dose–response behavior according to the fluence
rate of UV-B and in the young leaves. However, no increase in
expression of genes involved in ABA (11) synthesis was previously
found (Pontin et al., 2010). Thus, increased ABA (11) levels could be
explained by hydrolysis of glycosylated ABA from vacuoles in
plants exposed to UV-B, since ABA (11) levels in UV-B treated tis-
sues experiment a sharp decrease 24 h post irradiation, even re-
spect to non-irradiated controls. In young leaves, ABA (11) levels
decreased 21.2-fold when submitted to high UV-B and 9.4-fold in
low UV-B irradiation, regarding the values obtained immediately
after the irradiation treatments had finished. Furthermore, in
mature leaves they decreased 5.7-fold in high UV-B and 8.3-fold
at low UV-B irradiation. Such a decay in ABA (11) levels below
the controls could be explained by an increase in its turnover,
which correlate fairly well with the induction of a gene encoding
ABA 80-hydroxylase in UV-B treated plants (the major ABA cata-
bolic pathway in higher plants; Pontin et al., 2010).

Several experiments have shown that volatile isoprenoids pro-
tect leaves against abiotic stresses as burst of heat (Delfine et al.,
2000; Loreto et al., 1998; Sharkey and Singsaas, 1995; Singsaas
et al., 1997) and ozone (Loreto et al., 2001), suggesting that isopre-
noids are effective antioxidants in leaves. Also, they are proposed
to act as chloroplast membranes stabilizers, a role that has been
assigned to other isoprenoids, for example xanthophylls and
a-tocopherol (5) (Havaux, 1998; Sharkey, 1996). Many volatile
plant monoterpenes and sesquiterpenes combine rapidly with
ROS (Calogirou et al., 1999), and their emission is stimulated by
high light and temperature conditions (Delfine et al., 2000; Duhl
et al., 2008). Thus, these compounds might also be involved in
resistance to abiotic stress. In this study, treated plants showed
that E-nerolidol (7), pinene (8), terpinolene (9) and carene (10) in-
creased either under high UV-B as well as low UV-B irradiation
when compared to control plants. These results are comparable
to those obtained by Chapman (2009) in lemon verbena (Aloysia
citriodora), where higher leaf concentrations of monoterpenes were
found when grown without protection to UV-B exposure as com-
pared to plants with UV-B exclusion. In the present work, maxi-
mum accumulation of both mono and sesquiterpenes was
observed in plants treated with high UV-B. Thus, induction of these
compounds could be interpreted as a mechanism in order to pro-
tect grapevine plants against UV-B-induced oxidative damage.
Our results suggest that endogenous terpenes may have an impor-
tant antioxidant role in plants since their levels are increased as
the tissues are exposed to high UV-B irradiation.

4. Conclusions

The results obtained, along with others from a previous paper
(Pontin et al., 2010) suggest that UV-B modulates the metabolism
of terpenes leading to specific responses according to fluence rate
of UV-B. Relatively low UV-B irradiation induces acclimation re-
sponses consisting in de novo synthesis of terpenes (sterols) related
with membrane stability, and sesquiterpenes involved in defense
against abiotic (like UV-B) and biotic stresses. While relatively high
irradiance induces mechanisms of defense against the oxidative
damage, diterpenes with antioxidant properties and ABA (11).
Therefore, it can be accepted the hypothesis that high UV-B irradi-
ation promoted in grapevine leaves production of plastidic terpenes
via the methylerytritol phosphate (MEP; Lichtenthaler et al., 1997)
pathway as a way to cope with ROS, while low UV-B induce synthe-
sis of enzymes of terpene cytosolic MAV pathway leading to pro-
duction of sterols and triterpenes involved in adaptation to stress.

5. Experimental

The general procedures to obtain plant material and the exper-
imental design and treatments were previously reported in Pontin
et al. (2010).

5.1. Plant material

Plant material was obtained from a virus-free vineyard of Vitis
vinifera L. cv. Malbec; three-node wood cuttings were collected
and treated with 100 mg L�1 indole-3-butyric acid (IBA, Sigma
Chem. Co., St. Louis, MO, USA) in order to promote root develop-
ment. Then explants were planted in 2.5 L plastic pots filled with
hydrated-perlite and maintained under greenhouse conditions.
From three-month old plants, uninodal cuttings were taken to ob-
tain in vitro cultured plants. Shoots were surface sterilized by
immersion in EtOH–H2O (7:3, v/v) for 3 min followed by treatment
with 1.5% NaOCl for 10 min with occasional swirling, and washing
three times with sterilized distilled H2O for 5 min. Explants
(1–1.5 cm length) with one axillary bud were cultivated in glass
tubes containing 20 mL of solid MS medium plus salts and vita-
mins, 30 g L�1 sucrose, 1 mg L�1 6-benzylaminopurine (BAP), and
7.5 g L�1 agar. In vitro shoot tips were sub-cultured to fresh med-
ium at 6 weeks intervals into half-strength MS micro- and
macro-nutrients, excluding FeEDTA (0.1 mM Na2EDTA + 0.1 mM
FeSO4) and supplemented with full-strength MS vitamins,
30 g L�1 sucrose, 0.5 lM 1-naphthaleneacetic acid and 7.5 g L�1

agar. Explants (one per glass flask, 12 cm height � 6.5 cm diame-
ter) were incubated at 25 ± 2 �C and a photosynthetically active
radiation (PAR) of 80 lmol m�2 s�1 provided by cool fluorescent
tubes with a 16/8 h photoperiod. Flask tops were covered with
low-density polyethylene, which transmitted most of the PAR.

5.2. UV-B treatment

UV-B treatments were carried out with 45 d old in vitro grown
plants, having six fully expanded leaves, and in the same controlled
growth chambers described above. For different light treatments,
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supplemental UV-B was given using a TL 100W/01 tube (311 and
313 nm spectrum peaking; Philips, Eindhoven, The Netherlands)
suspended 40 cm above the flasks. A 4.75 kJ m�2 d�1 total effective
dose of UV-B normalized at 311 nm was provided in two different
irradiation treatments: ‘‘low UV-B’’ (8.25 lW cm�2 irradiance dur-
ing the 16 h per day photoperiod) and ‘‘high UV-B’’ (33 lW cm�2

irradiance during the last 4 h of the 16 h per day photoperiod).
For controls, UV-B was filtered by a clear polyester (100 lm, Oeste
Aislante, Buenos Aires, Argentina), which absorbs more than 95% of
UV-B, and reduced 15% of PAR. PAR was measured with a Li-250
light meter with a Li-190 quantum sensor (Li-COR Inc., Lincoln,
NE, USA) and UV-B irradiance was controlled at the top of the flask
with a PMA2200 radiometer with a PMA2102 UV-B detector (Solar
Light Company Inc., Glenside, PA, USA). After the treatments, three
fully expanded apical leaves (young) and two basal leaves (mature)
were harvested, weighed and used for the different analytical
determinations. Three independent biological replicates (n = 3)
were used for terpene analysis and TPS activity assays.

5.3. ABA (11) quantification

Samples of 100 mg leaf fr. wt were homogenized in a mortar
with liquid nitrogen and 2 mL of MeOH:twice-distilled H2O:H3PO4

(80:19:1, v/v/v). The extract was maintained over-night at 4 �C,
and then centrifuged 10 min at 10,000g. The supernatant was
added with [2H6]-ABA (100 ng; gift of J.D. Cohen, Department of
Horticulture, University of Minnesota, Saint Paul, MN, USA) dis-
solved in MeOH (100 lL) as internal standard, and allowed 1 h in
darkness and 4 �C for isotope equilibration. The solvent was evap-
orated in a Speed Vac at room temperature (Eppendorf-Concentra-
tor Plus; Westbury, NY, USA). The residue was dissolved in 3 mL of
twice-distilled H2O pH 3 (1% H3PO4) and passed through a Sep-
Pack C18 reversed phase cartridge (500 mg of material, Waters
Associates, Milford, MA, USA). This elution was performed using
n-hexane (2 mL) and MeOH (2 mL):twice distilled H2O:H3PO4

(80:19:1, v/v/v). The last fraction was collected and after solvent
evaporation in vacuo at room temperature, the residue was dis-
solved in twice-distilled H2O (1 mL) at pH 7.0 (1% NH4OH) and
transferred to Oasis WAX (weak anion exchanger) cartridges
(60 mg of material; Waters Associates). Then column was washed
with 5% NH4OH in MeOH (2 mL), MeOH (2 mL) and 3.5% H–CO2H in
MeOH (3 mL). The acidic eluate (which contained ABA) was evap-
orated at 35 �C and then converted to methyl-ester derivatives
with MeOH (3 lL) plus fresh ethereal CH2N2 (5 lL) (30 min at room
temperature). After organic solvents had been eliminated in a vac-
uum concentrator, samples were dissolved in n-hexane (50 lL),
and 1 lL was injected split–splitless into a Perkin–Elmer Elite-
5MS, crosslinked methyl silicone capillary column (30 m length,
0.25 mm inner diameter, and 0.25 lm film thickness) fitted in a
capillary gas chromatograph–electron impact mass spectrometer
(GC–EIMS; Clarus 500, PerkinElmer, Shelton, CT, USA). The GC col-
umn was eluted with He (0.7 mL min�1). The GC temperature pro-
gram was 100–200 �C at 20 �C min�1, then augmented to 280 �C at
4 �C min�1 and held for 15 min. The mass spectrometer was oper-
ated with electron impact ionization energy of 70 eV. The injector
temperature was 230 �C, ion source temperature was 120 �C and
the interface temperature was 150 �C. After performing selected
ion monitoring (SIM) the amount of ABA was calculated by com-
parison of the peak areas of the major ions for the methyl-ester
derivative of the deuterated internal standard [2H6]-ABA(194/
166) relative to its non-labeled counterpart (190/162).

5.4. Diterpenes and triterpenes derivatives quantification

Samples of leaf fr. wt (100 mg) were ground to a fine powder
using a mortar and pestle, and then macerated with CHCl3:MeOH
(2 mL, 1:1, v/v). The suspension was transferred to glass vials with
Teflon-coated screw caps and allowed to extract over-night in
darkness at 4 �C. The macerated residue was shaken and centri-
fuged 15 min at 10,000g. The supernatant was collected and evap-
orated to dryness in Speed Vac at room temperature. The residue
was dissolved with n-hexane (500 lL) of and then, 1 lL was in-
jected in split–splitless mode in a GC–EIMS system for analysis of
terpenes. The analysis was carried out with the same column and
equipment described above. The oven temperature program was:
initial temperature at 60 �C for 1 min followed by an increase of
10 �C min�1 to 280 �C and held at 280 �C for 22 min. To estimate
the concentration of the different metabolites, 50 ng lL�1 of n-
hexadecane as internal standard (Supelco, Bellefonte, PA, USA)
was added to each sample. The identities of compounds were con-
firmed by comparison of their retention times and full scan mass
spectra with those of authentic standards, and with mass spectra
of the National Institute of Standards and Technology (NIST)
library.
5.5. Monoterpenes and E-nerolidol determinations

Samples of CHCl3:MeOH (500 lL, 1:1, v/v) extract of above was
placed in glass vials with Teflon-coated screw caps (1.5 mL), added
with 500 lL of n-hexane, shaken and left over-night in darkness at
4 �C. From the hexane extract, an aliquot of 1 lL was injected in
split–splitless mode in the GC–EIMS system, with the same condi-
tions as for sterols and tocopherols determinations, except that the
oven temperature program was: initial temperature at 45 �C for
1 min, followed by an increase of 2 �C min�1 to 130 �C, then from
130 to 250 �C at a rate of 20 �C min�1 and held for 10 min at
250 �C. The ionization potential was 70 eV and a range of
40–500 amu was scanned. Compounds were identified by compar-
ison of retention times with a set of authentic standards, E-nerol-
idol (7), pinene (8), terpinolene (9), carene (10) obtained from
Fluka (Sigma–Aldrich, Steinheim, Switzerland), and peak areas
were referred to the standard n-hexadecane for quantification.
5.6. Terpene synthase activity measurements

Samples of leaf fr. wt. (100 mg) were homogenized in a cold-
ice mortar with pestle and 1 M potassium phosphate buffer
(800 lL, pH 6.5–7), 20% (w/v) glycerol, 10 mM sodium metabisul-
fite, 10 mM ascorbic acid, 15 mM MgCl2, 0.5% PVP (insoluble poly-
vinyl polypirrolidone, Sigma Chem. Co., St. Louis, MO, USA, MW
40.000) and 1.47 mM 2-b mercapthoethanol. Each total protein
homogenate was centrifuged 5 min at 14,000g and supernatant
(10 lL) was incubated with 0.2 lM of radioactive trans, trans-far-
nesyl pyro-phosphate triammonium salt (40 lL, [1-3H]-FPP, spe-
cific activity 20.5 Ci mM�1, Perkin Elmer, Boston, MA, USA), FPP
(12) (0.14 lM of Sigma Chem. Co., St. Louis, MO, USA) as carrier,
and reaction buffer containing 250 mM Tris:HCl (pH 6.5–7),
50 mM MgCl2. The mixture was incubated at 30 �C and after
20 min the reaction was stopped with H3PO4 (10 lL, 85%). The
reaction products were partitioned with n-hexane (150 lL) and
reacted with silica gel powder (5 mg, 240–300 Mesh, Sigma
Chem. Co., St. Louis, MO, USA). An aliquot of n-hexane (50 lL)
was located in a scintillation vial with Fluka cocktail (4 mL) (Sig-
ma Chem. Co., St. Louis, MO, USA) and radioactivity was deter-
mined by using a Tricarb liquid scintillation analyzer (Perkin
Elmer, Illinois, USA). TPS activity was expressed as nmol [3H]-
FPP transformed mg of protein�1 h�1 according to Vögeli and
Chapell (1988). The protein concentration of the extract was
determined by the method of Bradford (Bradford, 1976) using bo-
vine serum albumin (Bio-Rad Laboratories, Philadelphia, PA, USA)
as standard.
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5.7. Statistical analysis

Statistical evaluations were performed using the software Stat-
graphics Centurion XVI version 15.0.10 (Statpoint Technologies
Inc., Warrenton, VA, USA). Significance of differences was con-
ducted with LSD of Fisher test. Differences were considered signif-
icant at a probability level of P 6 0.05. The effect of UV-B, leaf
ontogeny and their interaction were determinate by multifactorial
ANOVA. Results are reported as a mean of three independent rep-
licated assays, and each experiment was repeated three times.
Principal component analysis (PCA) was applied to the data set,
and performed with the InfoStat software (InfoStat version 2008.
Grupo InfoStat, Argentina). The results of this analysis are then pre-
sented as a two-dimensional graphical display of the data (Biplots).
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