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inhibitor. Furthermore, in vitro enzyme assay using microsomal fraction from yeast expressing 

CYP707A showed that all four Arabidopsis CYP707As contained both ABA 8'- and 9'-hydroxylase 

activities, although ABA 9'-hydroxylase activity is minor. These results demonstrate that ABA 9'-
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C-9’, or C-7’ and also through glycosylation. ABA 8’-hydroxyation is a key 

catabolic reaction, which is catalyzed by cytochrome P450 CYP707As. However, 

the gene coding ABA 9’-hydroxylases has not been identified. Here, we report 
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*Graphical Abstract



Arabidopsis CYP707As catalyze both ABA 8’- and 9’-hydroxylation, but ABA 

9’-hydroxylase activity is minor. Therefore, PA and neoPA are produced as 

major and minor catabolites of CYP707A, respectively.  
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Abstract  

Abscisic acid (ABA) catabolism is important for regulating endogenous ABA levels. 

Neophaseic acid (neoPA) is one of the ABA catabolites produced via ABA 

9’-hydroxylation, but the gene encoding ABA 9’-hydroxylase has not been identified. 

We found that endogenous neoPA levels reduced in loss-of-function mutants 

defective in ABA 8’-hydroxylase (CYP707A) genes. In addition, levels of both 

neoPA and PA reduced similarly when wild-type plants were treated with 

uniconazole-P, a P450 inhibitor. Furthermore, in vitro enzyme assay using 

microsomal fraction from yeast expressing CYP707A showed that all four 

Arabidopsis CYP707As contained both ABA 8’- and 9’-hydroxylase activities, 

although ABA 9’-hydroxylase activity is minor. These results demonstrate that ABA 

9’-hydroxylation is catalyzed by CYP707A as a side reaction in Arabidopsis.   

 

Keywords: Arabidopsis; abscisic acid; catabolism; P450; CYP707A; neophaseic 

acid; phaseic acid 
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1. Introduction 

  Abscisic acid (ABA) is a sesquiterpene plant hormone that regulates numerous 

processes during plant life cycle including seed maturation, induction and 

maintenance of seed dormancy and stress response including stomatal closure 

(Zeevaart and Creelman, 1988; Nambara and Marion-Poll, 2005). Endogenous 

ABA levels increase during seed maturation and during drought stress, whereas the 

levels reduce prior to germination and during rehydration of drought plants. In the 

stationary state, ABA levels are maintained as balance between biosynthesis and 

catabolism (Zeevaart, 1980). On the other hand, ABA biosynthesis and catabolism 

are specifically activated when plants respond to developmental and environmental 

stimulus (Yamaguchi-Shinozaki and Shinozaki, 2006; Nambara et al., 2010). 

  ABA is inactivated by the oxidation or conjugation, and several ABA catabolic 

pathways exist in plants (Fig. 1). Among them, ABA 8’-hydroxylation is a committed 

step in the major ABA catabolism (Nambara and Marion-Poll, 2005). Hydroxylation 

at C-8’ of ABA is catalyzed by ABA 8’-hydroxylase to form 8’-hydroxy ABA. In the 

subsequent step, 8’-hydroxy ABA is spontaneous isomerized to (-)-phaseic acid 

(PA), and is further reduced by unidentified reductase to dihydrophaseic acid (DPA). 

ABA 8’-hydoxylase is encoded by the CYP707A family of the cytochrome P450 

monooxygenase (Kushiro et al., 2004; Saito et al., 2004). ABA is also catabolized 

by the hydroxylation at C-7’ and -9’ of ABA to form 7’- and 9’-hydroxy ABAs, 

respectively (Hampson et al., 1992; Zhou et al., 2004). (-)-R-ABA, an ABA analog, is 

metabolized into (+)-phaseic acid in corn cell culture possibly by ABA 

7’-hydroxylase (Balsevich et al., 1994). Neophaseic acid (neoPA), an isomer of 

9’-hydroxy ABA is also observed in a variety of plant species (Zhou et al., 2004). 

However, the genes encoding 7’- and 9’-hydroxylases have not been identified. In 

contrast to oxidative catabolic pathways, ABA glucose ester (ABA-GE) is one of the 

major inactive forms of ABA and is thought to be a stored or long-distance-transport 

form of releasable ABA (Sauter et al., 2002). Glucosylation at the carboxyl group of 

ABA is triggered by glucosyltransferase (Xu et al., 2002; Lim et al., 2005). 
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  ABA is mainly catabolized via ABA 8’-hydroxylation pathway in response to 

developmental and environmental signals such as drought stress, rehydration after 

drought stress, submergence or high humidity responses, seed maturation and 

germination process (Okamoto et al., 2006; Umezawa et al., 2006; Saika et al., 

2007; Okamoto et al., 2009; Matakiadis et al., 2009). On the other hand, it is unclear 

how other catabolic pathways are involved in the regulation of ABA levels. There 

are numerous reports showing the differential accumulation of other catabolites. For 

example, ABA-GE levels are increased in Xanthium strumarium plant subjected to 

long-term drought stress (Zeevaart, 1983), moist-chilled Arabidopsis seeds 

(Chiwocha et al., 2005), whereas 7’-OH ABA levels are high in western pine seeds 

(Feurtado et al., 2004). Nonetheless, physiological roles of each catabolic pathway 

need to be evaluated by genetic, molecular and pharmacological analyses. In the 

present study, we report that neoPA was produced by CYP707A as a minor 

byproduct during ABA catabolic reaction process in Arabidopsis. 

 

 

2. Results 

 

2.1. ABA catabolite profiles in the cyp707a double mutant 

  ABA catabolites accumulate eminently when ABA increases reach a plateau 

under drought stress conditions. To examine the accumulation pattern of ABA 

catabolites, LC-MS/MS was used to measure the levels of ABA, ABA-GE, PA, DPA, 

neoPA and 7’-OH ABA in 6-h-dehydrated wild-type and cyp707a1a3 double mutant 

plants (Fig. 2A). Six-h dehydrated wild-type plants accumulated catabolites of ABA 

8’-hydroxylation pathway (PA and DPA) more abundantly than other catabolites (Fig. 

2A). ABA-GE was less abundant than PA and DPA, but it was accumulated 

substantially in the dehydrated wild type. NeoPA was a minor catabolite detected in 

wild-type plants, whereas 7’-OH ABA levels were not determined due to its low 

abundance (Fig. 2A). The cyp707a1a3 double mutant accumulated ABA 2-fold 
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more abundantly than wild type in 6 h-dehydrated plants (Fig. 2A). As expected, 

levels of PA and DPA were severely reduced in the cyp707a1a3 double mutant 

compared with those in the wild type (Fig. 2A). The cyp707a1a3 double mutant 

accumulated ABA-GE more abundantly than those in wild type. Interestingly, neoPA 

levels were 10-fold lower in cyp707a1a3 double mutant than those in wild type. We 

could not detect 7’-OH ABA in the mutant similarly to the wild type. 

  We next analyzed levels of ABA catabolites in the siliques during mid-maturation. 

In siliques, ABA 8’-hydroxylation pathway was also predominant among ABA 

catabolic pathways (Fig. 2B, Okamoto et al., 2006). However, composition of ABA 

catabolites in the siliques was different from that in 6-h-drought-stressed plants (Fig. 

2B). A large amount of DPA was detected in the siliques, but PA levels in siliques 

were much lower compared with 6-h-drought-stressed plants. In addition to 

detection of ABA-GE and neoPA, 7’-OH ABA was also detected in the siliques. In 

cyp707a1a3 double mutant, ABA levels were 10-fold higher, whereas PA and DPA 

levels were 8-fold lower than wild type (Fig. 2B). On the other hand, levels of 

ABA-GE and of 7’-OH ABA in cyp707a1a3 double mutant were higher than those in 

the wild type. Interestingly, neoPA levels in the cyp707a1a3 double mutant siliques 

decreased compared with those in the wild type as the case in dehydrated plants. 

 

2.2. Effects of P450 inhibitors on PA and neoPA accumulation 

  The cyp707a mutations inhibited neoPA accumulation as well as PA and DPA (Fig. 

2). To test if an inhibitor for CYP707A also blocks neoPA accumulation, we 

examined levels of ABA catabolites in Arabidopsis plants treated with uniconazole-P. 

Uniconazole-P (Fig. 3A) was originally known as an inhibitor of CYP701, an enzyme 

catalyzing the oxidation of ent-kaurene to form ent-kaurenoic acid in gibberellin 

biosynthesis (Rademacher, 2000). However, it was reported that this compound 

also strongly inhibits other P450s including CYP707A (Kitahara et al., 2005; Saito et 

al., 2006). Uniconazole-P dose-dependently inhibited accumulation of both PA and 

neoPA in the 2-week-wild-type-plants supplied with exogenous 30 µM (+)-S-ABA 
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(Fig. 3B and C). In addition, dose-dependency of inhibiting neoPA accumulation by 

uniconalzole-P treatment was comparable to that of PA accumulation. 

Tebuconazole (Fig. 3A) is a P450 inhibitor for sterol 14α-demethylases (CYP51s), 

but not for ABA 8’-hydroxylase (Kwok et al., 1993; Kitahara et al., 2005; Saito et al., 

2006). PA and neoPA accumulation was not affected by the tebuconazole treatment 

(Fig. 3B and C). These results suggest that uniconazole-P inhibits activities of both 

ABA 8’-hydroxylase and 9’-hydoxylase.  

 

2.3. CYP707A contains both ABA 8’- and 9’-hydroxylase activity in vitro 

  To determine whether CYP707As have ABA 9’-hydroxylation activity, we 

examined enzymatic activity using yeast expressing CYP707A heterologously. 

Microsomal proteins were prepared from recombinant yeast and were incubated 

with (+)-S-ABA. As reported previously, microsomal proteins expressing CYP707A1 

produced PA as a major product (Fig. 4A and B; Kushiro et al., 2004; Saito et al., 

2004). In addition, we found that retention time and mass spectra of a minor product 

coincided with those of authentic neoPA (Fig. 4A, B, D and E). We also examined 

whether other Arabidopsis CYP707As have ABA 9’-hydoroxylase activity. In the 

result, CYP707A2, CYP707A3 and CYP707A4 also produced neoPA, although 

neoPA production was much less than that of PA as CYP707A1 (data not shown).  

  We also tested enzyme activity of splice variants of CYP707A1 and CYP707A3, 

designated as CYP707A1S and CYP707A3S, respectively, which were found in the 

TAIR9 gene model (http://www.arabidopsis.org/). These splice variants were distinct 

from corresponding primary forms only in the C-terminal region of CYP707A, which 

includes a substrate recognition site (SRS) (Fig. S1). According to previous reports, 

replacement of SRS alters the enzymatic nature or substrate recognition of P450s 

(Lindberg and Negishi, 1989; Cosme and Johnson, 2000). To examine the 

involvement of splice variants in hydroxylation at C-8’ and -9’ of ABA, CYP707A1S 

and CYP707A3S were expressed in yeast, and microsomal proteins were 

incubated with (+)-S-ABA. However, PA and neoPA were not detectable in the 
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reaction mixture by LC-MS/MS (Fig. 4C) and no visible peaks was seen by the 

HPLC analysis except for incubated 100 ng (+)-ABA.  

 

 

3. Discussion  

 

NeoPA, the cyclic isomer of 9’-hydroxy ABA, is an ABA catabolite and was first 

found in Brassica napus siliques (Zhou et al., 2004). Although it is minor, it exists in 

a wide range of plant species including orange, tomato, barley, and Arabidopsis 

(Zhou et al., 2004). In the present study, we report several lines of evidence that 

indicates neoPA is produced by CYP707A as a side reaction product of ABA 

8’-hydroxylation in Arabidopsis. We found that neoPA levels were extremely 

reduced in the cyp707a1a3 double mutant compared with those in the wild type. We 

also found that accumulation of neoPA was inhibited by uniconazole-P, a P450 

inhibitor, with similar dose dependency to the PA accumulation. Moreover, 

CYP707As expressed in yeast contained a minor but remarkable activity for ABA 

9’-hydroxylation in vitro. Both in vivo and in vitro data supports the notion that ABA 

9’-hydroxylation is catalyzed by ABA 8’-hydroxylase (CYP707A) in Arabidopsis. 

Production of both PA and neoPA by CYP707A might reflect to the flexibility of 

substrate recognition of this enzyme. This means that ABA is able to turn in the 

pocket slightly along the side chain as an axis, which is consistent with prominent 

roles of the side chain in the ABA recognition by CYP707A (Ueno et al., 2005). It is 

noteworthy that all four Arabidopsis CYP707As contain ABA 9’-hydroxylation 

activity, suggesting that this is a conserved nature of CYP707As. These are 

consistent with the previous reports indicating that 9’-derivatives of ABA analogs 

are potent inhibitors of CYP707A equally to the 8’-derivatives (Cutler et al., 2000; 

Ueno et al., 2005).  

  NeoPA is known as a minor catabolite of ABA presents widely in many plant 

species. In general, abundance of such catabolite does not necessarily correlate 
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with either regulatory functions or with metabolic flow of the catabolic pathway, 

because these catabolites are not the end products. Indeed, the ratios of PA/DPA 

were different among the tissues examined (Fig. 2). It is also true for the ratios of 

PA/neoPA. Levels of neoPA were higher than those of PA in siliques. Similar 

observation is also reported in Brassica napus siliques (Zhou et al., 2004). This 

might be due to the difference in half-life of PA and neoPA, which are determined by 

downstream enzymes, such as unidentified reductases or glucosyltransferases. 

Therefore, these enzymes probably recognize PA and neoPA differentially.  

  ABA glucose ester and 7’-OH ABA levels were higher in the cyp707a1a3 double 

mutants than in the wild type (Fig. 2). It is unclear whether or not this increase 

involves active regulatory mechanisms to activate or to induce these catabolic 

pathways as a homeostatic regulation. It is also possible that this is simply due to 

the increase of endogenous ABA without any regulatory functions of these 

pathways. ABA glucose ester is reportedly known as a storage form of ABA, which 

releases ABA quickly after hydrolysis (Lee et al., 2006). However, ABA 

glucosylation itself is not a regulatory step for ABA catabolism. Overexpression of 

CYP707A3 effectively reduced endogenous ABA levels (Millar et al., 2006; 

Umezawa et al., 2006), but overexpressing UGT71B6, an ABA glucosyl transferase 

gene, had only minor effect on reducing ABA levels, in which ABA 8’-hydroxylation 

pathway seems to involve in homeostatic regulation (Priest et al., 2006).  

  Recent development of inhibitors for ABA biosynthesis and catabolism might be 

useful to investigate regulatory functions of ABA metabolism among various plant 

species. More importantly, inhibitors of CYP707A lead to enhancing plant’s stress 

tolerance, thus, this is a potentially useful target for biotechnology (Kitahata et al., 

2005; Todoroki et al., 2009). The present work would help to understand the 

reaction mechanism of this enzyme, which ultimately leads to the development of 

specific inhibitors. 

 

4. Conclusion 
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ABA catabolism is important to reduce the cellular concentrations of ABA, which is 

essential for its function as a signal molecule. CYP707A catalyzes ABA 

8’-hydroxylation, which is the committed step in a major catabolic pathway. To date, 

however, enzyme(s) that catalyzes other ABA hydroxylation reactions at C-7’ and 

C-9’ positions were unknown. The present work reports that ABA 9’-hydroxylation is 

catalyzed by CYP707A as a side reaction. 

 

 

5. Experimental 

 

5.1. Plant materials and growth conditions 

  Arabidopsis (Arabidopsis thaliana) wild type and mutant used in this study were 

of Columbia accession. The cyp707a1-1 cyp707a3-1 double mutant used as 

previously described (Okamoto et al., 2006). For drought stress treatment, 

four-week-old plants were grown on soil in pots at 22°C, RH 60% under a 16-h 

light/8-h dark cycle, and detached leaves were put on the filter paper for 2 h and 

then were incubated into the plastic plate for 4 h. Siliques were harvested 

approximately 10-12 days after flowering and were used for LC-MS/MS analysis. 

For the inhibitor treatment, plants were grown for 2 weeks on 1% agar plates 

containing 1/2 MS salt and 0.5% sucrose under the continuous light condition. 

Two-week-old plants were incubated on 30 µM (+)-S-ABA solution containing 

various concentrations of uniconazole-P and of tebuconazole for 2 h. 

 

5.2. Chemicals 

  Authentic neoPA, deuterium-labeled d3-DPA, d3-neoPA, d3-PA, d4-7’OH-ABA and 

d5-ABA-GE were prepared as described in Zhou et al., 2005. Deuterium-labeled 

d6-ABA was purchased from Icon Isotopes (Summit, NJ, USA). (+)-S-ABA was 

obtained from Dr. Tadao Asami (The University of Tokyo), uniconazole-P and 

tebuconazole were kindly provided from Dr. Masaharu Mizutani (Kobe University). 
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5.3. Determination of ABA and its catabolites 

  Extraction, purification and quantification of ABA and its catabolites were carried 

out as described in Okamoto et al. (2009). 

 

5.4. Functional expression of CYP707A in yeast 

  Functional analyses of CYP707A and splice variants of CYP707A1 and 

CYP707A3 were performed as described previously (Kushiro et al., 2004) with 

some minor modifications. To obtain the splice variant forms, PCR-based 

mutagenesis technique was carried out as described in Picard et al. (1994). Amino 

acid sequences of CYP707A1, CYP7073 and of those variant forms are shown in 

supplemental figure 1. Microsomal fractions were suspended in 0.1 M potassium 

phosphate buffer (pH 7.6). One hundred ng of (+)-S-ABA was incubated with 2 
µg of 

microsomal protein (in a volume of 100 µL) containing 0.5 mM NADPH, 0.5% (w/v) 

Triton X-100 at 22°C for 12 h. The reaction was stopped by adding 1M HCl, and 

then products were extracted with ethyl acetate, and dried under vacuum. Extracts 

were dissolved in 100 µl of methanol and 900 µl of 1% acetic acid solution (v/v) was 

added. Oasis HLB (30 mg, 1 ml) solid-phase extraction cartridges (Waters, Milford, 

MA, USA) were conditioned with 1 ml of acetonitrile followed by 1 ml of methanol 

and equilibrated with 1 ml of 1% acetic acid solution (v/v). Samples were loaded, 

followed by a wash with 1 ml of 1% acetic acid solution (v/v). Sample was eluted 

using 1 ml 50% acetonitrile, 49% water: 1% acetic acid (v/v) and were dried under 

vacuum. The resulting sample was dissolved in water, and PA, neoPA and 

7’OH-ABA were analyzed by LC-MS/MS. Retention time and MS/MS transitions of 

ABA catabolites and LC-MS/MS condition are described in Saika et al. (2007) and 

Okamoto et al. (2009). 
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Figure Legends 

 

Fig 1. ABA catabolic pathways in higher plants. 

 

Fig 2. Profiles of ABA and its catabolites in wild type and cyp707a double 

mutant. Endogenous ABA and its catabolite levels in the wilted plants (A) and 

siliques at 10-12 DAF (B). Experiment was performed four times using independent 

biological samples, and averages are shown with standard errors. N.D.; not 

detected due to low levels. 

 

Fig 3. Effect of P450 inhibitors on accumulation of PA and neoPA. (A) 

Chemical structure of P450 inhibitors in this study. Inhibition of PA (B) and neoPA 

(C) accumulation by P450 inhibitors at various concentrations in wild type. 

Two-week-old plants were incubated with the indicated concentrations of inhibitors 

in the presence of 30 µM (+)-S-ABA for 2 h. cyp707a1a3 double mutant were 

subjected to 30 µM of (+)-S-ABA without P450 inhibitors. Uni, Teb and M indicate 

uniconazole-P, tebuconazole, cyp707a1a3 double mutant, respectively. Experiment 

was performed three times using independent biological samples, and averages are 

shown with standard errors.  

 

Fig 4. LC-MS/MS analysis on reaction products of CYP707A recombinant 

protein with ABA. (A) Retention time of authentic ABA, PA, 7’-OH ABA and neoPA. 

Authentic compounds were injected 100 pg, and following MS/MS transition (m/z) 

was monitored: 263/153 (ABA), 279/139 (PA), 279/217 (7’-OH ABA), and 279/205 

(neoPA). Reaction products of CYP707A1 (B) and of CYP707A1S (C). One 

hundred ng of (+)-S-ABA was incubated with 2 
µg of microsomal protein expressing 

CYP707A1 or CYP707A1S. Mass spectra of authentic neoPA (D) and minor 

reaction product from ABA by CYP707A1 (E). (F) CYP707A mainly catabolize ABA 

to form PA and also produced neoPA as a result of minor enzymatic reaction.  
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Fig S1. Comparison of amino acid sequence of CYP707A and its splice 

variant form. CYP707A1S and CYP707A3S indicate splice variant forms of 

CYP707A1 and CYP707A3, respectively. SRS indicates putative substrate 

recognition site. 

 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

8'-hydroxy ABA Phaseic acid 

(PA)   

Dihydrophaseic acid 

(DPA)  

ABA glucose ester 

(ABA-GE)  

7'-hydroxy ABA 

(7’-OH ABA) 

9'-hydroxy ABA Neophaseic acid 

(neoPA) 

ABA 

OH

COOH
O

OH

COOH
O

HO

OH

COOH
O

O OH

COOH
O

HO

OH

COOH
O

OH

OH

COOH
O

O

OH

COOH
O OH

OH

CO-Glu
O

CYP707A 

Figure 1. Okamoto et al.,  



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Figure 2. Okamoto et al.,  
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Figure S1. Okamoto et al.,  


