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Abstract

We discuss the possibilities of producing the X(3872), which is assumed to be a DD̄∗ bound
state, in radiative decays of charmonia. We argue that the ideal energy regions to observe the
X(3872) associated with a photon in e+e−–annihilations are around the Y (4260) mass and
around 4.45 GeV, due to the presence of the S-wave DD̄1(2420) and D∗D̄1(2420) threshold,
respectively. Especially, if the Y (4260) is dominantly a DD̄1 molecule and the X(3872) a DD̄∗

molecule, the radiative transition strength will be quite large.
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1 Introduction

Since its discovery by the Belle Collaboration [1], the X(3872), which is extremely close to the
D0D̄∗0 threshold, has stimulated a lot of efforts, both experimental and theoretical. It is regarded
as one of the most promising candidates for a hadronic molecule, which are formed of two or more
hadrons — analogous to the deuteron, the shallow bound state made of a proton and a neutron. The
quantum numbers of theX(3872) have been determined to be JPC = 1++ [2], in accordance with the
hadronic molecular interpretations which can be either an S-wave bound state [3, 4, 5, 6] or a virtual
state in the DD̄∗ system [7]. Another puzzling new charmonium state is the Y (4260) with quantum
numbers JPC = 1−−, which was observed by the BaBar Collaboration [8]. It is difficult to be put in
the vector family of the cc̄ in potential models. Various interpretations were proposed. One intriguing
possibility is that the main component of the Y (4260) is a DD̄1(2420) bound state [9, 10, 11]. 1 For
a comprehensive review of the X(3872), Y (4260) and other XY Z states observed in the last decade,
we refer to Ref. [14].

So far the X(3872) has been observed in several different processes. The discovery was made
in B-meson decays in the processes B± → K±J/ψπ+π− by the Belle Collaboration [1] and later
confirmed by the BaBar Collaboration [15]. It was also observed in the proton–antiproton annihila-
tions pp̄ → J/ψπ+π−X by both the CDF [16] and D0 [17] Collaborations, and in proton–proton
collisions by the LHCb Collaboration [2, 18]. It is quite natural to search for the X(3872) also in the
decays of higher charmonia, especially the 1−− states, which can be easily and copiously produced
in electron-positron collisions at, e.g., the Beijing Electron-Positron Collider II (BEPC-II). However,
so far no evidence of the X(3872) in the radiative charmonium decays has been reported. In this pa-
per, we will investigate the production of the X(3872) in the radiative decays of charmonium states,
which include the ψ(4040), the ψ(4160), the Y (4260) and the ψ(4415), which are all in the energy
range of the BESIII experiment [19] at the BEPC-II. As will be shown later on, among the vector
charmonium(-like) states, the Y (4260) is the most promising one for producing the X(3872), if the
long-distance part of its wave function is dominated by the DD̄1 hadronic molecule component —
note that the mass of the Y (4260) is located close to the S-wave DD̄1 threshold.

Our paper is organized as follows: In Sec. 2, based on a nonrelativistic effective field theory
(NREFT), we will identify the most important mechanism for the X(3872) production, namely the
triangle loops with the coupling of the initial charmonium(-like) state with charmed mesons being
S-wave. Using the effective Lagrangians given in Sec. 3, we will calculate the partial decay widths of
the radiative transitions of the charmonia, especially parameter-free predictions for the Y (4260) →
X(3872)γ and will be made, and the results will be given in Sec. 4. A brief summary will be given in
the last section.

2 Identifying the most important mechanism

In general, a hadronic molecule is not a pure two-meson state since it can couple to other components,
such as a qq̄ or a compact multiquark state, when these have the same quantum numbers. Thus, such
a hadronic molecule can be produced through either the compact quark component or the hadronic
constituents. It is a process-dependent question and in some cases one of those two mechanisms is

1Notice that there are two D1 states of similar masses, and the one in question should be the narrower one, i.e. the
D1(2420), because it is not sensible to discuss a constituent with a width comparable or even larger than the range of
forces [12, 13].
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Figure 1: Relevant triangle loops for the production of the X(3872) in the vector charmonium radia-
tive decays. The charge-conjugated diagrams are not shown.

more important than the other. Let us take the X(3872) as an example, which may be decomposed as

|X(3872)〉 = α1|cc̄〉+
α2√

2

∣∣DD̄∗ + c.c.
〉
. (1)

Then the production amplitude is composed of two parts, PX(3872) = α1 Pcc̄ + α2 PDD̄∗ , where
Pcc̄ and PDD̄∗ represents the production of the cc̄ and DD̄∗ + c.c., respectively (in the following,
the charge conjugated channel will not be shown for simplicity but will be included in the numerical
calculation). We assume that the X(3872) is mainly a DD̄∗ molecule, i.e. |α2| � |α1|. In this case,
if PDD̄∗ is not heavily suppressed, then the X(3872) will dominantly be produced through the long
distance DD̄∗ component — see Refs. [20, 21] for a more detailed discussion.

Both the short and long distance production of theX(3872) in the radiative decays of the ψ(4040)
and ψ(4160) are considered in Refs. [22, 23] in the framework of the so-called X-EFT [24]. Here, we
will focus on the contribution from intermediate charmed meson loops, i.e. the quantity PDD̄∗ defined
above. The mechanism is shown in Fig. 1. Both the initial charmonium and the X(3872) couple to a
pair of charmed and anticharmed mesons. The X(3872) couples to the DD̄∗ pair in an S-wave. With
the quantum numbers being 1−−, the initial charmonium can couple to either two S-wave charmed
mesons in a P -wave, or one P -wave and one S-wave charmed mesons in an S- or D-wave. As we
will show in the following, the mechanism with an S-wave coupling to the initial charmonium will
greatly facilitate the production processes.

The charmed meson channels which could have significant effects are those close to the mass of
the considered charmonium. In this work we will consider the sP` = 1

2

− (S-wave), and sP` = 3
2

+

(P -wave) charmed mesons, where s` is the total angular momentum of the light quark system which
includes the light quark spin and orbital angular momentum. The pertinent triangle loops are shown
in Fig. 1. There is no D2 analogue of diagrams (d,e) because, different from the D1 case, its quantum
numbers does not allow that all vertices are in S-wave. One should notice that although the X(3872)
can have a sizableD+D∗− component [27, 28], because the magnetic coupling to the neutral charmed
mesons is much larger than that to the charged ones, see, e.g. Ref. [25], we only consider the neutral
charmed mesons in the loops. 2

Because all the charmonia considered are close to the open charm thresholds in question, the
intermediate charmed and anticharmed mesons are nonrelativistic. We are thus allowed to use a non-
relativistic power counting, the framework of which was introduced for studying the intermediate

2In fact, there can be photonic coupling to the charged charmed mesons from gauging the ψD(∗)D̄(∗) vertex and the
kinetic energy of the charmed mesons, see e.g. [26]. However, they are of order O(v), thus less important, in the power
counting scheme to be detailed in the following. Furthermore, the loops involving such vertices are divergent and hence
need unkown counterterms. In contrast, Ref. [29] states that including the charged charmed mesons would largely increase
the partial decay width of the X(3872)→ γJ/ψ based on a vector meson dominance model in a flavor SU(4) formalism.
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meson loop effects in certain hadronic transitions of charmonia in Refs. [30, 31, 32]. Being nonrel-
ativistic, the velocity of the intermediate mesons v is much smaller than 1. Thus, the loop diagrams
as shown in Fig. 1 can be organized through a velocity counting, where the three-momentum scales
as v, the kinetic energy scales as v2, and each of the nonrelativistic propagators scales as v−2. In
leading order, the S-wave coupling is momentum independent and does not contribute any power to
the velocity counting. The P -wave coupling scales as v [30] or as the external momentum [31, 32]
depending on the process in question.

Let us focus on the last two diagrams of Fig. 1 first. The D meson has s` = 1/2, and D1 has
s` = 3/2. Thus, they can couple to L = 2 but not to L = 0, where L is the orbital angular momentum,
in the heavy quark limit. As a result, only theD-wave charmonia can couple to theDD̄1 in an S-wave,
and for the S-wave charmonia the coupling must be D-wave. Thus, if the initial state is a D-wave
charmonium or has a significant DD̄1 molecular component (as might be the case for the Y (4260)),
the loop integral scales as

v5

(v2)3
Eγ =

Eγ
v
, (2)

where Eγ is the external photon energy. The decay amplitude is the product of the loop integral and
the coupling constants for the three vertices. One sees that the amplitude is greatly enhanced for small
velocity. It was shown in Ref. [33] that the value of the velocity should be understood as the average
of two velocities which correspond to the two cuts in the triangle diagram. These two velocities
may be estimated as

√
|m1 +m2 −Mi|/m̄12 and

√
|m2 +m3 −Mf |/m̄23, where m2 is the mass

of the charmed meson between the two charmonia, m1(3) is the mass of the meson between the initial
(final) charmonium and the photon, m̄ij = (mi + mj)/2, and Mi(f) is the mass of the initial (final)
charmonium. Therefore, the amplitude is most enhanced when both the initial and final charmonia
are close to the corresponding thresholds.

For diagrams (a), (b) and (c) of Fig. 1, the vertex involving the initial charmonium is in a P -wave.
The momentum in that vertex has to be contracted with the external photon momentum q, and thus
should be counted as q. The decay amplitude through this type of loops scales as

v5

(v2)3

q2

m0
=

E2
γ

m0 v
, (3)

where m0 is a quantity of the dimension mass, and the factor of m−1
0 is introduced to make the above

expression have the same dimension as that obtained in Eq. (2). This factor in fact accounts for the
different dimensions of the coupling constants for the P -wave and S-wave vertices in diagrams (a, b,
c) and (d, e), respectively, i.e. m0 = |g4/g3| where g3 and g4 are the coupling constants to be defined
in Eq. (12) below. If all the coupling constants are of natural size, that is m0 ∼ 1 GeV, then this loop
should be suppressed relative to the one in Eq. (2) for a soft photon. This is supported by the numerical
results in Sec. 4. Notice that only neutral charmed mesons are involved so that the P -wave vertex,
although it contains a derivative, will not get gauged and the triangle diagrams are gauge invariant.

If the initial charmonium is the ψ(4040) or the ψ(4415), which are the radial exceptions of J/ψ
and thus S-wave charmonia, the coupling to the DD̄1 is in a D-wave in the heavy quark limit, as
outlined above. In this case, the ψDD̄1 vertex should be counted as v2. Using the same power
counting, the loops in Fig. 1 (d, e) should scale as v Eγ , and thus are suppressed rather than enhanced
for small values of v.

In the above discussions, we have neglected the width of the D1(2420), which presents a new
scale. One concern is whether it would break the power counting established above. The width of the
D1(2420) is 27.1± 2.7 MeV [34], thus Γ1 . |2 b12|, where b12 = m1 +m2 −Mi. From Eq. (A.4),
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which is the nonrelativistic scalar loop function where one of the intermediate mesons carries a finite
constant width, one can conclude that the power counting scheme will not be modified by the presence
of the finite width of the D1(2420) (as long as the width is sufficiently small).

3 Effective Lagrangians

Because the charmed mesons do not have definite charge parity, it is necessary to clarify the phase
convention under charge conjugation to be used in our paper, which is

CDC−1 = D̄, CD∗C−1 = D̄∗, CD1C−1 = D̄1. (4)

The X(3872) has a positive C-parity, and the Y (4260) as well as all the other vector charmonium
states have negative C-parity. Thus, the flavor wave functions of the X(3872) and Y (4260) in terms
of the charmed mesons are convention dependent. With the convention specified above, the DD̄∗ and
DD̄1 components of the X(3872) and Y (4260) can be written as 3

|X(3872)〉 =
1√
2

∣∣DD̄∗ +D∗D̄
〉
, |Y (4260)〉 =

1√
2

∣∣D1D̄ −DD̄1

〉
. (5)

Because we work with nonrelativistic kinematics for the charmed mesons and charmonia through-
out this work, the two-component notation introduced in Ref. [25] is very convenient. In this simpli-
fied notation, the field for the ground state charmed mesons is Ha = ~Va · ~σ + Pa, where ~σ are the
Pauli matrices, Pa and Va annihilates the pseudoscalar and vector charmed mesons, respectively, and
a is the flavor label for the light quarks. The quantum numbers of the light quark system in these two
mesons are sP` = 1

2

−. Under the convention specified in Eq. (4), the field annihilating the ground state
mesons containing an anticharm quark is [36]

H̄a = σ2

(
~̄Va · ~σT + P̄a

)
σ2 = − ~̄Va · ~σ + P̄a. (6)

The field for the sP` = 3/2+ charmed mesons can be written as

T ia = P ij2aσ
j +

√
2

3
P i1a + i

√
1

6
εijkP

j
1aσ

k, (7)

where P1a and P2a annihilate the charmed mesons D1(2420) and D2(2460), respectively. The
charmed antimesons are collected in T̄ ia = −P̄ ij2aσ

j +
√

2/3 P̄ i1a − i
√

1/6 εijkP̄
j
1aσ

k, where the
convention CD2C−1 = D̄2 is adopted. Under parity and charge conjugation and with the convention
specified above, these fields transform as

Ha
P→−Ha, Ha

C→ σ2H̄
T
a σ2, H̄a

P→ −H̄a, H̄a
C→ σ2H

T
a σ2 , (8)

T ia
P→ T ia, T ia

C→ σ2T̄
i T
a σ2, T̄ ia

P→ T̄ ia, T̄ ia
C→ σ2T

i T
a σ2 . (9)

Analogously, we can construct the field for the S-wave charmonia, which is J = ~ψ ·~σ+ηc, where
ψ and ηc annihilate the vector and pseudoscalar charmonia, respectively. The leading coupling of the
S-wave charmonium with the charmed and anticharmed mesons reads as

LS = i
g2

2

〈
H̄†a ~σ ·

←→
∂ H†a J

〉
+ H.c., (10)

3In the literature, some authors write the wave function of the X(3872) with a different relative sign of the two terms,
|X(3872)〉 = 1√

2

∣∣DD̄∗ −D∗D̄〉
. This corresponds to a different convention for the C-parity transformation for the D∗,

CD∗C−1 = −D̄∗. Notice that only the flavor neutral mesons are eigenstates of the C-parity, the physical observables
should be independent of the convention. For a detailed discussion in the case of the X(3872), see Ref. [35].
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where A
←→
∂ B ≡ A(~∂B) − (~∂A)B and 〈. . .〉 denotes the trace in flavor space. Notice that all the

charmed meson and charmonium fields in the above Lagrangian and the ones in the following are
nonrelativistic and have dimension mass3/2.

Some of the 1−− charmonia in question are D-wave states. For instance, the ψ(4160) is widely
considered as the 2 3D1 state [37, 38]. The field for theD-wave charmonia in two-component notation
can be written as [23]

J ij =
1

2

√
3

5

(
ψiσj + ψjσi

)
− 1√

15
δij ~ψ · ~σ, (11)

where only the 1−− state relevant for our discussions is included. Considering parity, C-parity, spin
symmetry and Galilean invariance, the leading order Lagrangian for the coupling of the D-wave
charmonia to the charmed and anticharmed mesons can be written as

LD = i
g3

2

〈
H̄†a σ

i←→∂ jH†a J
ij
〉

+
g4

2

〈(
T̄ j † σiH† − H̄† σiT j †

)
J ij
〉

+ H.c., (12)

where the first term has already been introduced in Ref. [23] (g3 is denoted by g in that paper).
In order to calculate the triangle diagrams depicted in Fig. 1, we need to know the photonic

coupling to the charmed mesons. The magnetic coupling of the photon to the S-wave heavy mesons
is described by the Lagrangian [39, 25]

LHHγ =
e β

2
Tr
[
H†aHb ~σ · ~B Qab

]
+
eQ′

2mQ
Tr
[
H†a ~σ · ~BHa

]
, (13)

where Bk = εijk∂iAj is the magnetic field, Q is the light quark charge matrix, and Q′ is the heavy
quark electric charge (in units of the proton charge e). These two terms describe the magnetic coupling
due to the light and heavy quarks, respectively. The E1 transition of the 3

2

+ charmed mesons to the
1
2

− states may be parameterized in terms of a simple Lagrangian

LTHγ =
∑
a

ca
2

Tr
[
T iaH

†
a

]
Ei + H.c. (14)

Note that here the coefficients are light-flavor-dependent.
At last, assuming that the X(3872) and Y (4260) are hadronic molecules, we parameterize their

coupling to the charmed mesons in terms of the following Lagrangian

LXY =
y√
2
Y i † (Di

1aD̄a −DaD̄
i
1a

)
+

x√
2
Xi † (D∗0 iD̄0 +D0D̄∗0 i

)
+ H.c., (15)

where we assume that the Y (4260) couples to the DD̄1 in an isospin symmetric manner so that the
light flavor index a runs through u and d, and neglect all the other components except for the D0D̄∗0

for the X(3872).

4 Results and discussion

Considering a state slightly below an S-wave two-hadron threshold, the effective coupling of this
state to the two-body channel is related to the probability of finding the two-hadron component in the
physical wave function of the bound state, λ2, and the binding energy, ε = m1 +m2 −M [40, 41]

g2
NR = λ2 16π

µ

√
2ε

µ

[
1 +O

(√
2µε r

)]
, (16)
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where µ = m1m2/(m1 +m2) is the reduced mass and r is the range of forces, and the nonrelativistic
normalization is used. After proper renormalization (see Ref. [42]), the coupling constants in Eq. (15)
are given by the one in the above equation. Notice that the coupling constant gets maximized for a
pure bound state, which has λ2 = 1 by definition.

The threshold of the D0 and D∗0 using the PDG fit values for the masses [34] is 3871.84 ±
0.20 MeV. The mass of the X(3872) is 3871.68 ± 0.17 MeV [34]. With MY = 4263+8

−9 MeV, and
the isospin averaged masses of the D and D1 mesons, we obtain the mass differences between the
X(3872) and Y (4260) and their corresponding thresholds, respectively,

MD0 +MD∗0 −MX = 0.16± 0.26 MeV, MD +MD1(2420) −MY = 27+9
−8 MeV. (17)

Assuming that the X(3872) and Y (4260) are pure hadronic molecules, which corresponds to the
probability of finding the physical states in the two-hadron states λ2 = 1, we obtain

|x| = 0.97+0.40
−0.97 ± 0.14 GeV−1/2, |y| = 3.28+0.25

−0.28 ± 1.39 GeV−1/2 , (18)

where the first errors are from the uncertainties of the binding energies, and the second ones are due
to the approximate nature of Eq. (16). The range of forces is estimated by r−1 ∼

√
2µ∆th where µ

is the reduced mass and ∆th is the difference between the threshold of the components and the next
close one, which is MD∗+ +MD+ −MD∗0 −MD0 for the X(3872) and MD1 +MD∗ −MD1 −MD

for the Y (4260), respectively.
The value of β in the magnetic coupling of the S-wave charmed mesons is not precisely known.

We will use the value β−1 = 276 MeV determined with mc = 1.5 GeV in Ref. [25]. There is no
experimental measurement on the radiative decays of the P -wave charmed mesons. However, there
have been a few calculations using various quark models. Taking the predictions of Γ(D0

1 → D(∗)0γ)
in Refs. [43, 44, 45] as a guidance, the value for the coupling constant for the neutral charmed mesons
c0 is in the range [0.3, 0.5].

4.1 ψ(4040) → γX(3872) and ψ(4415) → γX(3872)

The ψ(4040) and ψ(4415) were widely accepted as the 3S and 4S vector charmonium states, respec-
tively [37]. In the heavy quark limit, spin symmetry requires that the S-wave charmonium couples to
the D(∗)D̄1 in a D-wave. As shown in Sec. 2, such a D-wave vertex will cause the charmed meson
loops to be suppressed. Thus, we will neglect these loops, and consider only the loops involving the
S-wave charmed mesonsD andD∗, which correspond to the diagrams shown in Fig. 1 (a), (b) and (c).
Assuming that the two-body S-wave charmed mesons saturate the decay width of the ψ(4040) and
90% of width of the ψ(4415) — the only relatively well measured branching fraction is the sequential
decay into the D0D−π+ + c.c. through the DD̄2(2460) which is (10± 4)%, we may obtain an upper
limit for the coupling constant g2 for both the 3S and 4S charmonium states,∣∣g2[3S]

∣∣ < 0.85 GeV−3/2 ,
∣∣g2[4S]

∣∣ < 0.23 GeV−3/2 . (19)

As a result, the upper limits for the production of the X(3872) are

Γ(ψ(4040)→ γX(3872))(a,b,c) < 0.25 keV, Γ(ψ(4415)→ γX(3872))(a,b,c) < 0.63 keV,
(20)

which correspond to tiny branching fractions of order 10−5.
However, even a smallD-wave cc̄mixture would greatly enhance the decay width of the ψ(4415).

This is because the ψ(4415) is only 10 MeV below the D∗D̄1 threshold, and the velocity, the relevant

7



parameter for the power counting, is as small as 0.04. Considering such an admixture, we obtain from
the last two diagrams in Fig. 1

Γ(ψ(4415)→ γX(3872))(d,e) = 287 sin2 θ (g4 xGeV)2 c2
0 keV . 89 sin2 θ

(
g2

4 GeV
)

keV , (21)

where c0 ' 0.4 is used, and sin θ is the mixture of the D-wave component in the ψ(4415) wave
function. In Ref. [46], θ ≈ 34◦ is suggested from an analysis of the e+e− decay widths of the
vector charmonia. We have assumed spin symmetry for the coupling of the initial charmonium to the
charmed mesons.

4.2 ψ(4160) → γX(3872)

As discussed before, being the 2D charmonium state, the ψ(4160) couples to a pair of S-wave
charmed mesons in a P -wave, and to one S-wave and one P -wave charmed mesons in an S-wave.
Thus all the diagrams shown in Fig. 1 contribute to its radiative decay into the X(3872). For the
diagrams (a), (b) and (c), we can derive an upper limit for their contributions. The upper limit for the
coupling g3 for the ψ(4160) may be obtained by saturating its total decay width by two-body decays
into a pair of S-wave charmed mesons. We obtain

∣∣g3[2D]

∣∣ < 0.72 GeV−3/2. Using this value, the
contribution of the S-wave charmed mesons to the width of the ψ(4160) → γX(3872) is less than
0.20 keV. We should mention that our numerical result for the width of the ψ(4160)→ γX(3872) is
smaller than the estimate in Ref. [23] using a different method and using the BaBar measurement of
the X(3872)→ γψ′ [47], which was not confirmed by the Belle Collaboration [48], as input.
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Figure 2: Dependence of the partial decay width of aD-wave charmonium into γX(3872) on the mass
of the charmonium. The solid and dotted curves are obtained with and without taking into account the
width of the D1(2420), respectively. Here, only the contributions from Fig. 1 (d) and (e) are included,
and c0 = 0.4 is used.

The value of g4, which is needed for evaluating the diagrams (d) and (e), is unknown. Thus, we
express the result from these two diagrams in terms of g4

Γ(ψ(4160)→ γX(3872))(d,e) = 19.4 (g4 xGeV)2 c2
0 keV . 6.0

(
g2

4 GeV
)

keV, (22)
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where we have taken c0 ' 0.4. Expressing g4 by g4 = g3m0, if m0 ∼ 1 GeV, then the approximate
upper limit obtained from diagrams (d) and (e), 3 keV, is one order of magnitude larger than that
from diagrams (a), (b) and (c). This can be understood from the power counting. The momentum
of the photon in this decay is 280 MeV. Thus, the factor q/m0 presents a suppression of the first
three diagrams relative to the last two at the amplitude level. With the total width of the ψ(4160)
being 103 ± 8‘MeV [34], a width of a few keV only amounts to a branching fraction of the order of
10−5. Although larger than the 0.2 keV arising from the first three diagrams, it is still small so that an
experimental observation will be difficult.

However, notice that theψ(4160) is far off the optimized region for the observation of theX(3872).
This can be seen from Fig. 2, which shows the dependence of the radiative decay width of a D-wave
charmonium into the γX(3872) on the charmonium mass, where the solid and dotted curves represent
the results with and without taking into account the finite width of the D1(2420), respectively. One
sees pronounced peaks slightly above the DD̄1 and D∗D̄1 thresholds in the dashed curve. This is
due to the closeness of the X(3872) to the DD̄∗ threshold, which makes the kinematics so special
that (c′ − c)/(2

√
−a c) — a, c and c′ are defined in Eq. (A.3) — is close to 1, and thus produces the

maxima (recall that the imaginary part of arctan(i) is infinite, c.f. Eq. (A.2)). The pronounced peaks
get smeared by the finite width of the D1(2420), as can be seen from the solid curve. Still, the width
divided by g2

4 peaks around 4.29 GeV and 4.45 GeV. Thus, as stated in Sec. 4.1, one might be able to
make an observation through a D-wave admixture in the ψ(4415).

4.3 Y (4260) → γX(3872)

We assume that the Y (4260) is aDD̄1 molecule according to the suggestions of Refs. [9, 10, 11]. The
production of the recently observed charged charmonium Zc(3900) [49, 50, 51] can be understood in
this interpretation [11, 52] if it is a DD̄∗ hadronic molecule [11, 53, 54, 55, 56]. Radiative decays of
the Y (4260) into a pair of charmed mesons was studied based on this assumption very recently [57].
In this picture, the radiative decay of the Y (4260) into the X(3872) will be a long-distance process,
and the dominant decay mechanism is shown in Fig. 1 (d). With the the loop function given in the
Appendix, we obtain the width

Γ(ψ(4260)→ γX(3872))(d) = 141+136
− 91

(
x2 GeV

)
c2

0 keV, (23)

where the uncertainty is dominated by the use of Eq. (16), which is mainly due to neglecting the
coupled channel D∗D̄1 in this case. The velocity counting is well controlled since v ' 0.06. Using
Eq. (A.4), we have checked that including a finite constant width for the D1 only causes a minor
change of about 3%. The value of c0 is in the range of [0.3, 0.5] using the width predictions in
three different quark models [43, 44, 45]. Taking c0 = 0.4, we plot the dependence of the width of the
Y (4260)→ γX(3872) on the binding energy of theX(3872) in Fig. 3, where the value of x is related
to the binding energy via Eq. (16). Therefore, depending on the precise location of the X(3872), the
branching fraction can reach the order of 10−3.

4.4 Using angular distributions to distinguish different loop contributions

We have argued that the triangle loops with all the intermediate states being the S-wave charmed
mesons are suppressed relative to the ones with one S-wave and one P -wave charmed mesons when
the initial charmonium is a D-wave state. This is based on the assumption that the coupling constants
are of natural size so that m0 = |g4/g3| ∼ 1 GeV. If g4 is unnaturally small, then these two kinds of
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Figure 3: Dependence of the width of the Y (4260) → X(3872)γ in terms of the binding energy of
the X(3872), εX = MD0 +MD∗0 −MX . Here the D0

1D
∗0γ coupling constant is taken as c0 = 0.4.

mechanisms might be comparable. One can check which one is dominant by measuring certain angu-
lar distribution. This is because the two different types of loops have a different angular dependence
— the one with two S-wave vertices does not depend on any angle with respect to the photon three
momentum while the other does, as can be seen from the expressions

A(d,e) = A (~εψ × ~εγ) · ~εX ,

A(a,b,c) = B q̂ · ~εψ(q̂ × ~εX) · ~εγ + C q̂ · ~εX(q̂ × ~εψ) · ~εγ , (24)

where q̂ is the unit vector along the three momentum of the photon, and ~εψ, ~εγ and ~εX are the corre-
sponding polarization vectors. The expressions for A, B and C in terms of loop functions are given in
Appendix B. Because the vector charmonium produced in e+e− collisions is transversely polarized,
the angle between the photon momentum and the ψ polarization vector can be related to that with
respect to the beam axis. The relation follows from∑

λ=1,2

∣∣∣q̂ · ~ε (λ)
ψ

∣∣∣2 =
1

2
sin2 θq,

∑
λ=1,2

∣∣∣q̂ × ~ε (λ)
ψ

∣∣∣2 =
1

2
(1 + cos2 θq), (25)

where θq is the angle between the photon momentum and the beam axis. Thus, we have the angular
distribution from diagrams (a,b,c)

dΓ(a,b,c)

d cos θq
∝
∑
λ=1,2

(
2|B|2

∣∣∣q̂ · ~ε (λ)
ψ

∣∣∣2 + |C|2
∣∣∣q̂ × ~ε (λ)

ψ

∣∣∣2) ∝ 1 + ρ cos2 θq, (26)

where ρ =
(
|C|2 − 2|B|2

)
/
(
2|B|2 + |C|2

)
. For the ψ(4160)→ γX(3872), the value is ρ = −0.98

so that the angular distribution is almost∼ sin2 θq. 4 Thus, when the long-distance part dominates the
production of the X(3872), one may use the angular distribution to distinguish the P -wave D(∗)D̄(∗)

threshold and S-waveD1D̄
(∗) threshold effects. A similar idea of using angular distributions to probe

the structure of the X(3872) was already proposed in Refs. [22, 23].
4The value of ρ shows that |B| � |C|, which is due to a strong cancellation between different loops in C.
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5 Summary

In this paper, we have investigated the production of the X(3872) in the radiative decays of excited
charmonia. These states include the ψ(4040), ψ(4160), ψ(4415) and the Y (4260), which are the
3S, 2D, 4S charmonium and a conjectured DD̄1 molecule, respectively. Assuming the X(3872) is
a DD̄∗ bound state, we considered its production through the mechanism with intermediate charmed
mesons. Using a NREFT, we argue that the meson loops with all the vertices being in an S-wave
should provide the most prominent contributions. We present a power counting that is confirmed by
our numerical studies. It predicts that the closer to the threshold of the open charm intermediate states
the initial charmonium is located, the more important the loops are. In this context, the production rate
in the decays of the S-wave charmonia ψ(4040, 4415), contrary to that for the D-wave charmonium
ψ(4160), should be small since they couple to the D(∗)D̄1 in a D-wave and D(∗)D̄(∗) in a P -wave.
The production in the Y (4260) decays will be strongly enhanced compared to all the other transitions
studied in this work, if the Y (4260) is a DD̄1 molecule, as suggested in Refs. [9, 10, 11], since the S-
wave coupling constant is maximized in such a case. Especially, if the mechanism for the production
of Zc(3900) in Y (4260) → πZc proposed in Ref. [11] is correct, the X(3872) must be copiously
produced in Y (4260)→ X(3872)γ.

We also show that the measurement of the angular distribution of the radiated photon in e+e− →
Y (4160)→ γX(3872) should be sensitive to the underlying transition mechanisms.

In this study, the ψ(4415) was assumed to be an S-wave charmonium. However, if it has a sizable
mixing with a D-wave cc̄ component or an S-wave D∗D̄1 component (notice that it is only 10 MeV
below theD∗D̄1 threshold), then it can also decay into theX(3872)γ through the enhanced loops with
S-wave couplings. Based on our calculation, we strongly suggest to search for theX(3872) associated
with a photon in the energy region around the Y (4260) and 4.45 GeV in the e+e− collisions.
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A Loop functions

When we neglect the widths of all the intermediate mesons, the decay amplitudes can be expressed in
the scalar three-point loop function

I(m1,m2,m3, ~q) = i

∫
d4l

(2π)4

1(
l2 −m2

1 + iε
) [

(P − l)2 −m2
2 + iε

] [
(l − q)2 −m2

3 + iε
] , (A.1)

where mi(i = 1, 2, 3) are the masses of the particles in the loop. This loop integral is convergent.
Since all the intermediate mesons in the present case are highly nonrelativistic, the explicit expression
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is derived as

I(m1,m2,m3, ~q)

=
−i

8m1m2m3

∫
ddl

(2π)d
1(

l0 − ~l 2

2m1
+ iε

)(
l0 + b12 +

~l 2

2m2
− iε

) [
l0 + b12 − b23 − (~l−~q)2

2m3
+ iε

]
=

µ12µ23

16πm1m2m3

1√
a

[
arctan

(
c′ − c

2
√
a(c− iε)

)
+ arctan

(
2a+ c− c′

2
√
a(c′ − a− iε)

)]
, (A.2)

where µij = mimj/(mi+mj) are the reduced masses, b12 = m1+m2−M , b23 = m2+m3+q0−M
with M the mass of the initial particle, and

a =

(
µ23

m3

)2

~q 2, c = 2µ12b12, c′ = 2µ23b23 +
µ23

m3
~q 2. (A.3)

For more information about the loop function, we refer to Refs. [32, 42]. The two arctangent functions
correspond to the two cuts in the triangle diagram [33].

In the following, we give the expression for the loop with one of the mesons having a finite width.
By assigning a constant width Γ1 to the meson with a mass m1, the first propagator in Eq. (A.2) is
modified to

1

l0 −~l 2/(2m1) + iΓ1/2
.

Thus, the first cut of the triangle diagram involving m1 will be influenced, and the scalar loop integral
becomes

I(m1,m2,m3, ~q)

=
µ12µ23

16πm1m2m3

1√
a

[
arctan

(
c′ − c

2
√
a(c− iµ12Γ1)

)
+ arctan

(
2a+ c− c′

2
√
a(c′ − a− iε)

)]
. (A.4)

B Coefficients in the decay amplitudes

A =

√
5

6
N g4 x c0Eγ

[
I
(
mD0

1
,mD0 ,mD*0 , ~q

)
+ I

(
mD0

1
,mD*0 ,mD0 , ~q

)]
B =

4

3

√
2

15
iN e g3 x ~q

2

(
β +

1

mc

)[
5I(1) (mD0 ,mD0 ,mD*0 , ~q ) + 2I(1) (mD∗0 ,mD∗0 ,mD0 , ~q )

]
C =

2

3

√
2

15
iN e g3 x ~q

2

[
5

(
β − 1

mc

)
I(1) (mD*0 ,mD0 ,mD∗0 , ~q )

−
(
β +

1

mc

)
I(1) (mD*0 ,mD*0 ,mD0 , ~q )

]
(B.5)

where N =
√
MXMψ accounts for the nonrelativistic normalization, and the expression for the

vector loop integral I(1)(m1,m2,m3, ~q ) can be found in Ref. [32].
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