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Abstract

Recently Ali et al. (2009) proposed a Generalized Uncertainty Principle (or
GUP) with a linear term in momentum (accompanied by Plank length). Inspired
by this idea we examine the Wheeler-DeWitt equation for a Schwarzschild black
hole with a modified Heisenberg algebra which has a linear term in momentum.
We found that the leading contribution to mass comes from the square root of the
quantum number n which coincides with Bekenstein’s proposal. We also found that
the mass of the black hole is directly proportional to the quantum number n when
quantum gravity effects are taken into consideration via the modified uncertainty
relation but it reduces the value of mass for a particular value of the quantum num-
ber.
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A remarkable amount of research on the physics of black holes over the last few
decades has helped us understanding some very fundamental and unanswered questions
of principle. One of them is “Is the Hawking radiation [1] truly thermal?”. The most
important ingredient to answer this question involve a consistent quantization of the black
hole geometry. Bekenstein first proposed the quantization of black holes [2]. Later Vaz
et al. [3] examined the Wheeler-deWitt equation for a static, eternal Schwarzschild black
hole and obtained its energy eigenstates of definite parity. Mass quantization of black
holes in terms of the quantum number n implies that Hawking radiation is not thermal.

The idea that the uncertainty principle could be affected by gravity was first given
by Mead [4]. Later modified commutation relations between position and momenta com-
monly known as Generalized Uncertainty Principle ( or GUP ) were given by candidate
theories of quantum gravity ( String Theory, Doubly Special Relativity ( or DSR ) Theory

1barunbasanta@iiserkol.ac.in

1

http://arxiv.org/abs/1105.5314v2


and Black Hole Physics ) with the prediction of a minimum measurable length [5, 6, 7, 8].
Similar kind of commutation relation can also be found in the context of Polymer Quan-
tization in terms of Polymer Mass Scale [9]. There has been much attention devoted to
resolving the quantum corrections to the black hole entropy with the generalized uncer-
tainty principle. Many researchers have expressed a vested interest in fixing the coefficient
of the subleading logarithmic term. Using the generalized uncertainty principle as the
primary input, a perturbative calculation of the quantum-corrected entropy, which can
readily be extended to any desired order, can be done [10].

In this Letter we examine the Wheeler-DeWitt equation for a Schwarzschild black
hole with a modified Heisenberg algebra which has a linear term in momentum. We
found that the leading contribution to mass comes from the square root of the quantum
number n which coincides with Bekenstein’s proposal. We also found that the mass of
the black hole is directly proportional to the quantum number n when quantum gravity
effects are taken into consideration via the modified uncertainty relation but it reduces
the value of mass for a particular value of the quantum number. Bina et al. [17] used the
deformed Heisenberg algebra as introduced by [7] and found similar kind of dependence
of mass on the quantum number but there the mass of the black hole increases with the
proportionality factor n.

We start with the classical Hamiltonian for a Schwarzschild black hole which can be
written as [11]

H =
p2

2a
+
a

2
, (1)

where pa is momentum canonically conjugate to a. The phase space co-ordinates a and pa
are deduced from the phase space co-ordinates m and pm by means of the canonical
transformation m(t) := M(t, r) and pm(t) :=

∫∞

−∞
pM(t, r). The variable m can be

related to the mass M of the black hole when the Einstein’s equations are satisfied.
To get equation (1) we have to consider a Hamiltonian quantum theory of a spherically
symmetric spacetime. The physical phase space of such a spacetime is spanned by the
mass together with the corresponding canonically conjugate momentum. In this phase
space we can perform canonical transformations such that the resulting variables describe
the dynamical properties of the Schwarzschild black holes. The Wheeler-deWitt equation
for the Schwarzschild black hole can be written as [11, 12]

a−s−1 ∂

∂a

(

as
∂

∂a
ψ(a)

)

= (a− 2M) ψ(a) , (2)

where the substitution pa → −i ∂
∂a

is made. Here we have considered the choice of units
where c = ~ = G = 1 and s is the factor ordering parameter. With a particular choice
s = 2 and identifying Rs = 2M we get

1

a

∂2ψ

∂a2
+

2

a2
∂ψ

∂a
= (a− Rs) ψ . (3)

The following transformation ψ(a) = U
a
with x = a−Rs/2 transforms equation (3) into

− ∂2U

∂x2
+ x2U =

R2
s

4
U . (4)
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The variable x describes the gravitational degrees of freedom. As the total energy of the
black hole is included and the ADM energy is equal to zero so we consider that the energy
of excitation of a is not positive. Equation (4) is exactly the differential equation for a
quantum harmonic oscillator with energy levels

R2
s

4
= (2n+ 1) , (5)

n being an non-negative integer. So we get the mass of the black hole as

M2(n) = 2(n+
1

2
) . (6)

This result coincides with Bekenstein’s argument [2] as we can see that the mass of the
black hole is proportional to

√
n.

The authors in [13] proposed a generalized uncertainty principle which is consistent
with DSR theory, String theory and Black Hole Physics and which says

[xi, xj] = [pi, pj] = 0, (7)

[xi, pj] = i~

[

δij − l

(

pδij +
pipj
p

)

+ l2
(

p2δij + 3pipj
)

]

, (8)

∆x∆p ≥ ~

2

[

1− 2l〈p〉+ 4l2〈p2〉
]

, (9)

where l =
l0lpl
~
. Here lpl is the Plank length (≈ 10−35m). It is normally assumed that the

dimensionless parameter l0 is of the order unity. If this is the case then the l dependent
terms are only important at or near the Plank regime. But here we expect the existence
of a new intermediate physical length scale of the order of l~ = l0lpl. We also note that
this unobserved length scale cannot exceed the electroweak length scale [13] which implies
l0 ≤ 1017. These equations are approximately covariant under DSR transformations but
not Lorentz covariant [8]. These equations also imply

∆x ≥ (∆x)min ≈ l0 lpl (10)

and

∆p ≤ (∆p)max ≈ Mplc

l0
(11)

where Mpl is the Plank mass and c is the velocity of light in vacuum. The effect of this
proposed GUP is well studied recently for some well known physical systems in [13, 14, 15].

Equations (8) and (9) represents modified Heisenberg algebra. But the interesting
part of these two relations is the term which is linear in l (= l0lpl) with p. In the next
section of this Letter we will study the effect of this linear term in Plank length in the
context of Wheeler-deWitt quantization of a Schwarzschild black hole. Our analysis will be
perturbative as in the first approximation we will neglect terms O(l2) and more. Inspired
by this idea, for our purpose we will consider the modified Heisenberg algebra (modified
uncertainty principle) where x and p obeys the relation (α > 0)

[x , p] = i (1− α p) . (12)
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We have used units with ~ = 1. We can see that if α = 2l this is the same relation as that
of equation (8) only upto a linear term in l. It can be shown that the smallest uncertainty
in position occurs when 〈p〉 = 0 and ∆xmin = α

2
. The momentum space wave function

can be written as ψ(p) = 〈p |ψ〉. On a dense domain in Hilbert space x and p act as
operators such that

p ψ(p) = p ψ(p) , (13)

x ψ(p) = i
[

(1− α p)
∂

∂p

]

ψ(p) . (14)

This representation respects the commutation relation (12) and the scalar product of two
arbitrary wave functions in this representation is given by

〈φ | ψ〉 =
∫ ∞

−∞

dp φ∗(p) ψ(p) . (15)

Considering the standard derivation of the uncertainty relation we can see that if the
state |ψ〉 obeys ∆x∆p = |〈[x,p]〉|

2
then it will obey the relation

(

x− 〈x〉+ 〈[x,p]〉
2(∆p)2

(p − 〈p〉)
)

|ψ〉 = 0 . (16)

The states of absolutely maximal localization can only be obtained for 〈p〉 = 0 with
critical momentum uncertainty ∆ = 2

α
. With equation (14) and (16) we can calculate

these states in momentum space and the states are

ψ〈x〉(p) = N (1− α p)i
〈x〉
α e−

p

4 (1− α p)−
1

4α . (17)

Normalization of this wave function cannot be done as the integral required for this
diverges. (1 − α p) contains the first two terms of the series form of e−αp. As we have
mentioned earlier that our approach is in some sense perturbative, so here we use an
approximation (1− α p) ≈ e−αp. Using this we get

ψ〈x〉(p) = N ei〈x〉p . (18)

Now we can use a delta-function normalization (for example [16]) and get

ψ〈x〉(p) =
1√
2π

ei〈x〉p , (19)

where we have used the relation

〈φ〈x′〉| ψ〈x〉〉 =
∫ ∞

−∞

φ∗
〈x′〉(p) ψ〈x〉(p) dp = δ(〈x′〉 − 〈x〉) . (20)

We could have also used the idea of box normalization for our purpose. The maximal
localization states for a deformed Heisenberg algebra with a linear term in p in the com-
mutation relation is a serious issue because the normalization is not possible. Kempf et
al. [7] first made use of the deformed algebra

[x , p] = i (1 + σ p2) , σ > 0 (21)

4



where σ is the deformation parameter. This relation is also seen in perturbative string
theory [5]. Here the normalization of the maximal localization states can be easily done
as the integral

∫∞

−∞
dp

1+σp2
converges.

It is a well established fact that the generalized uncertainty relation incorporates a
smallest possible length in quantum mechanics which is an effective consequence of any
quantum theory of gravity. This uncertainty relation especially refers to the variables of
quantum mechanics (position and momentum of a particle). Here we can extend this idea
for the quantization of the gravitational degree of freedom and its canonically conjugate
momentum which leads to the Wheeler-deWitt equation. In principle, we are making
an assumption that the variables describing the modified uncertainty relation given by
equation (12) can be treated as variables describing the gravitational degrees of freedom
of the Schwarzschild black hole. We now apply the above mentioned modified uncertainty
relation to study a quantum Schwarzschild black hole. If we apply equation (14) to
equation (4) we get the modified Wheeler-deWitt equation for a Schwarzschild black hole
and it is written as

(1− αp)2
∂2ψ(p)

∂p2
− α(1− αp)

∂ψ(p)

∂p
− (p2 −M2) ψ(p) = 0 . (22)

A change of variable from p to
η ≡ ln(1− αp) (23)

casts equation (22) in the form

∂2ψ

∂η2
−

[

ae2η + beη + k2
]

ψ = 0 , (24)

where a = 1
α4 , b = − 2

α4 and k2 = 1
α4 − M2

α2 . Now with a new change of variable z ≡ eη and
w ≡ z−k ψ, we get equation (24) in the form

z
∂2w

∂z2
+ (2k + 1)

∂w

∂z
− (az + b) w = 0 . (25)

Finally with the following transformation

w ≡ e−ξ/2 f (ξ) and ξ ≡ 2
√
a z , (26)

we can arrive at the equation

ξ f ′′ + (2k + 1− ξ) f ′ −
[

(2k + 1)
√
a+ b

2
√
a

]

f = 0 . (27)

Here prime denotes differentiation with respect to ξ. f (ξ) should be non-singular at ξ = 0
and we require a polynomial solution to equation (27). This requirement imposes the
following condition on the coefficient of f :

(2 k + 1)
√
a+ b

2
√
a

= −n , (28)

where n is a non-negative integer [18]. Equation (27) now becomes

ξ f ′′ + (2k + 1− ξ) f ′ + n f = 0 . (29)
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The solution is known in terms of associated Laguerre polynomials L2k
n (ξ) [18]. The

condition (28) gives the mass eigenvalues for the black hole. After a straightforward
algebra it says

M2(n) = 2 (n +
1

2
)− α2

[

n2 + n+
1

4

]

. (30)

This result coincides with Bekenstein’s proposal [2] that mass of a black hole is propor-
tional to

√
n. Our leading contribution to mass is also from

√
n. If we use the deformed

algebra of Kempf et al. [7] we can conclude that in quantum gravity regime the mass
of a black hole is proportional with the quantum number n [17]. Interestingly we also
found with a perturbative approximation that the mass of a black hole is proportional
to n when quantum gravity effects are taken into consideration. We also notice that the
modified uncertainty relation which we have used reduces the value of mass for a par-
ticular n. So in this Letter we have studied the quantum Schwarzschild black hole in
the modified uncertainty principle framework. It is quite difficult to get and normalize
the maximal localization states in our representation. We perturbatively found that the
leading contribution to the mass eigenvalue comes from

√
n which is in agreement with

Bekenstein’s proposal. We also found that there are contributions from the quantum
number n. Though the form of the uncertainty relation which we have used is different
from the one used in [17] but our results are similar (mass proportional to n). We also
noticed the fact that our modified uncertainty relation lessens the mass of the black hole
for a particular value of n.
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