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Here we present theoretical studies of the effect of vibronic coupling on nonlinear transport 
characteristics (current-voltage and conductance-voltage) in molecular electronic devices. Considered 
device is composed of molecular quantum dot (with discrete energy levels) weakly connected to 
metallic electrodes (treated within the wide-band approximation), where molecular vibrations are 
modeled as dispersionless phonon excitations. Nonperturbative computational scheme, used in this 
work, is based on the Green’s function theory within the framework of mapping technique (GFT-MT) 
which transforms the many-body electron-phonon interaction problem into a one-body multi-channel 
single-electron scattering problem. In particular, it is shown that quantum coherent transport of virtual 
polarons through the molecule can be a dominant factor justifying some well-known discrepancies 
between theoretical calculations and experimental results.  
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1. Introduction 
 
Inelastic electron tunneling spectroscopy (IETS) is a powerful experimental tool for 
identifying and characterizing molecular species within the conduction region [1-17]. 
Standard ac modulation techniques, along with two lock-in amplifiers, are utilized to measure 
current-voltage ( VI − ) characteristics as well as the first and second harmonic signals 
(proportional to dVdI /  and 22 / dVId , respectively). This method provides information on 
the strength of the vibronic coupling between the charge carriers and nuclear motions of the 
molecules. The IETS experiment can also be helpful in identifying the geometrical structures 
of molecules and molecule-metal contacts, since junctions with different geometries disclose 
very different spectral profiles [16,17]. The measured spectra show well-resolved vibronic 
features corresponding to certain vibrational normal modes of the molecules. It is also well-
known that the IETS spectra are very sensitive also to few other factors, such as: (i) the device 
working temperature, (ii) the strength of the molecule-metal bonding, and (iii) the 
intramolecular conformational changes.  
  In the literature, we can distinguish two different approaches to the problem of 
inelastic transport. One of them is based on low order perturbative treatment, where the 
tunneling current is computed in the lowest order in the electron-phonon coupling [18-22]. 
However, this approach is not fully consistent with the nonequilibrium conditions under 
which such measurements are done as well as with the boundary restrictions imposed by the 
Pauli principle. The second mentioned method is associated with non-perturbative treatment, 
where the many-body electron-phonon interaction problem is transformed into a one-body 
many-channel scattering problem within the so-called mapping technique [23-32]. It is 
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believed that this approximation is well-justified in the boundary case of the high voltages, 
while it does not involve any restrictions on the model parameters.  
 The main purpose of this work is to use non-perturbative method, based on Green’s 
function theory and mapping technique (GFT-MT) [10-16], to study the effect of vibronic 
coupling on the shape of transport characteristics (current-voltage and conductance-voltage) 
in the IETS experiments. We hypothetically divide the molecular device into three parts, 
where the central molecular bridge is isolated from two electrodes (source and drain) via 
potential barriers. Since the molecule is weakly connected to the electrodes, a molecule itself 
is treated as a quantum dot with discrete energy levels, while source and drain are described 
within a broad-band theory. Molecular vibrations are modelled as dispersionless (Einstein) 
phonon excitations which can locally interact with conduction electrons. The electrons 
passing through energetically accessible molecular states (conducting channels) may 
exchange a definite amount of energy with the nuclear degrees of freedom, resulting in an 
inelastic component to the electrical current. Such molecular oscillations can have essential 
influence on the shape of transport characteristics especially in the case, when the residence 
time of a tunneling electron on a molecular bridge is of order of magnitude of the time 
involved in nuclear vibrations ( ps~ ).  

 
2. Theory 
 
Now we briefly outline our theoretical approach. Let us write the full Hamiltonian of 
considered system as a sum:  
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where: L=α  for left (source) electrode and R=α  for right (drain) electrode, respectively, in 
the case of two-terminal junction. Both metallic electrodes are treated as reservoirs for non-
interacting electrons and described with the help of the following Hamiltonian:                                             
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Here: kε  is the single particle energy of conduction electrons, while +

kc  and kc  denote the 
electron creation and annihilation operators with momentum k  in the α  electrode. The third 
term describes molecular bridge with Holstein-type phonons:  
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Here: iε  is single energy level of molecular quantum dot, jΩ  is phonon energy in the j  
mode, jλ  is the strength of on-level electron-phonon interaction. Furthermore, +

id  and id  are 
electron creation and annihilation operators on level i , while +

ja  and, ja  are phonon creation 
and annihilation operators, respectively. The last term represents the coupling of molecular 
quantum dot to the electrodes:  

 

                                                      [ ]∑
∈

+ +=
ik

ikikT chdcH
;

, ..
α

γ ,                                                   (4) 

 



 3 

where the matrix elements ik ,γ  stands for the strength of the tunnel coupling between the dot 
and metallic electrodes.  
  The problem we are facing now is to solve a many-body problem with phonon 
emission and absorption when the electron tunnels through the dot. Let us consider for 
transparency only one phonon mode (primary mode), since generalization to multi-phonon 
case can be obtained straightforwardly. The electron states into the dot are expanded onto the 
direct product states composed of single-electron states and m -phonon Fock states:  
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where electron state i  is accompanied by m  phonons (0  denotes the vacuum state). 
Similarly the electron states in the electrodes can be expanded onto the states:  
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where the state k  with momentum k  is accompanied by m  phonons. In this procedure, the 
non-interacting single-mode electrodes (Eq.2) are mapped to a multi-channel model: 
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Since the channel index m  represents the phonon quanta excited in the reservoir, accessibility 
of particular conduction channels is determined by a weight factor:  

 

                                                  [ ] )exp()exp(1 Ω−Ω−−= ββ mPm .                                          (8) 

 

Here Boltzmann distribution function is used to indicate the statistical probability of the 
phonon number state m  at finite temperature θ , θβ Bk=−1  and Bk  is Boltzmann constant. 
Since we neglect nonequilibrium phonon effects and dissipative processes, the system 
conserves its total energy during the scattering process and therefore the electron energies are 
constrained by the following energy conservation law:  

 
                                                         Ω+=Ω+ nm outin εε .                                                       (9) 

 
Moreover, in practice, the basis set is truncated to a finite number of possible excitations 

maxmm =  in the phonon modes because of the numerical efficiency. The size of the basis set 
strongly depends on: (i) phonon energy, (ii) temperature in the reservoir under investigation 
and (iii) the strength of the electron-phonon coupling constant. In the new representation 
(Eq.5), molecular Hamiltonian (Eq.3) can be rewritten in the form:  
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which for each molecular energy level i  is analogous to tight-binding model with different 
site energies and site-to-site hopping integrals. Finally, the tunneling part can also be rewritten 
in terms of considered basis set as:  
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where m
ik ,γ  is the coupling between the m th pseudochannel in the electrode and the molecular 

system, respectively. To avoid unnecessary complexities, in further analysis we take into 
account molecular bridge which is represented by one electronic level – generalization to 
multilevel system is simple.  

 

 
 

Figure 1: A schematic representation of inelastic scattering problem for the device composed 
of molecular quantum dot with single energy level connected to two reservoirs.  

 
Now we proceed to analyze the problem of electron transfer between two reservoirs of 

charge carriers via molecular quantum dot in the presence of phonons. An electron entering 
from the left hand side can suffer inelastic collisions by absorbing or emitting phonons before 
entering the right electrode. Such processes are presented graphically in Fig.1, where 
individual channels are indexed by the number of phonon quanta in the left m  and right 
electrode n , respectively. Each of the possible processes is described by its own transmission 
probability, which can be written in the factorized form:  
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Such transmission function (Eq.12) is expressed in terms of the so-called linewidth functions 

αΓ  ( RL,=α ) and the matrix element of the Green’s function defined as:  
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Here: 1 stands for identity matrix, MH
~

 is the molecular Hamiltonian (Eq.10), while the effect 
of the electronic coupling to the electrodes is fully described by specifying self-energy 
corrections αΣ .  

In the present paper we adopt wide-band (WB) approximation to treat metallic 
electrodes, where the hopping matrix element is independent of energy and bias voltage, i.e. 

αγγ =m
ik , . In this case, the self-energy is given through the relation:  
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Here: αρ  is density of states in the α -electrode. This self-energy function is mainly 
responsible for level broadening and generally depends on: (i) the material that the electrode 
is made of, and (ii) the strength of the coupling with the electrode. There are few factors that 
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can be crucial in determining the parameter of the coupling strength, such as: (i) the atomic-
scale contact geometry, (ii) the nature of the molecule-to-electrode coupling (chemisorption 
or physisorption), (iii) the molecule-to-electrode distance, or even (iv) the variation of the 
surface properties due to adsorption of molecular monolayer. The consequences of WB 
approximation are: (i) negligence of the resonance shift due to the coupling with the 
electrodes, (ii) the loss of the correct description of the contact and (iii) quantitative error of 
order 30 % in the magnitude of calculated current [33]. However, our essential conclusions 
can be generalized well beyond this simplification. Both electrodes are also identified with 
their electrochemical potentials [34]:  

 

                                                              eVFL ηεµ −=                                                           (16) 
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which are related to the Fermi energy level Fε . The voltage division factor 10 ≤≤ η  
describes how the electrostatic potential difference V  is divided between two contacts and 
can be related to the relative strength of the coupling with two electrodes: RL γγη /2−= . In our 
analyses we can distinguish two boundary cases: 2/1=⇒= ηγγ RL  for interpretation of 
mechanically controllable break-junctions (MCB experiments) and 0≈⇒>> ηγγ RL  for 
interpretation of scanning tunneling microscopy (STM experiments), respectively. Here we 
assume the symmetric coupling case, where 2/1=η . It should also be noted that the case of 
asymmetric coupling ( 2/1≠η ) generates rectification effect [35].  
  The total current flowing through the junction can be expressed in terms of 
transmission probability of the individual transitions nmT ,  which connects incoming channel 
m  with outgoing channel n :  
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where:  
                                               [ ] 11)](exp[ −+−+= αα µωεβ mf m                                           (19) 

 

is the equilibrium Fermi distribution function. The factor of 2 in Eq.18 accounts for the two 
spin orientations of conduction electrons. The elastic contribution to the current is obtained 
can be obtained from Eq.18 by imposing the constraint of elastic transitions, where outin εε =  
or more precisely nm = :  
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The differential conductance is then given by the derivative of the current with respect to 
voltage: dVVdIVG /)()( = .  

 
3. Results and discussion 
 
Now we proceed to consider one electronic level 0ε  which is connected to two broad-band 
paramagnetic electrodes, where the electrons on the dot are coupled with the coupling 
strength λ  to a single phonon mode with energy Ω  (primary mode). This is a test case simple 
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enough to analyze the essential physics of inelastic transport problem in detail. Besides, 
generalization to multilevel system with many different phonons can be obtained 
straightforwardly. All of the key parameters can be inferred from different experimental data. 
The width parameters LΓ  and RΓ  are related to observed lifetimes of excess electrons on 
molecules adsorbed on metal surfaces and can be estimated from time-resolved two-photon 
photoemission experiments to be in the range of 0.1-1 eV for chemisorbed species [36,37]. 
The electron-phonon coupling parameter λ  can be estimated in molecular systems from 
reorganization energies: Ω≈ /2λreorgE , inferred from electron-transfer rate studies in similar 
environments. Since observed values of reorgE  are 0.1-1 eV and 1.0~Ω  eV, the magnitude of 
λ  is placed in the range of 0.1-0.3 eV. Finally, we choose the maximum number of the 
allowed phonon quanta 8max =m  to obtain converged results for all the parameters involved 
in this paper.  

 

 
 

Figure 2: The current-voltage )()( VIVI −−=  (a, b, c) and conductance-voltage 
)()( VGVG −=  (d, e, f) characteristics for three different values of vibronic coupling 

parameters: 1.0=λ  (a, d), 2.0=λ  (b, e), and 3.0=λ  (c, f). Total current (solid line) and its 
elastic part (dashed-dotted line) are compared with the current obtained in the absence of 
phonons (dashed line). The other parameters of the model (given in eV): 00 =ε , 3.1−=Fε , 

13.0=Ω , 1.0=Γ=Γ RL , 025.01 =−β .  
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The dependence of the electrical current on bias voltage for three different values of 
the λ -parameter is illustrated in Figs.2a-c. Since molecular vibrations are observed with 
equal intensity in the positive and negative bias polarity, thus for clarity we only show the 
positive bias region in the spectrum. Here we can observe the general tendency: the stronger 
the vibronic coupling, the smoother the VI −  characteristic and the lower values of the 
current flowing through the junction. The conductance-voltage ( VG − ) functions for three 
different values of the λ -parameter are demonstrated in Figs.2d-f. Here we can see that an 
amount of the visible peaks strongly depends on the vibronic coupling. Generally, the stronger 
the λ -parameter, the more peaks involved and the longer voltage distance between them. It 
can be deduced from the formula for polaron energies that the positions of the peaks in the 
conductance spectrum approximately coincide with the following expression:  
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where eV F /|| 00 εε −=  corresponds to the bias voltage for the case of non-phonon 
conductance peak. On the other hand, for the small values of λ , we can not distinguish 
particular peaks since they are merged into one misshapen peak. Because of this overlapping 
it could be difficult to determine the intrinsic line width of a single vibration mode.   

 

 
 

Figure 3: Maximum value of the current maxI  (a) and maximal height of the conductance peak 

maxG  (b) are plotted against the vibronic coupling strength λ . Total values of the current 
(black circles, solid line) are compared with its elastic part (grey circles, dashed line). The 
other parameters of the model are the same as in Fig.2.  

 
 Furthermore, one of the most essential controversies in molecular electronics is 
associated with the fact that the calculated currents for single-molecule devices is usually two 
or even three orders of magnitude overestimated in comparison with experimental data [38]. 
In Fig.3a we plot the maximal value of the current maxI  (calculated for 5=V  Volts) as a 
function of the vibronic coupling λ . An increase of the λ -parameter from 0  to 3.0  eV 
results in reduction of the magnitude of the current flowing through the junction of about 40 
%, while its elastic contribution is suppressed of about 60 %. At the same time, the maximal 
height of the conductance peak is reduced of about 75 %, while the suppression of its elastic 
contribution is over 80 %, as documented in Fig.3b. So far, this divergence was closely 
connected to some coupling effects, such as: (i) the atomic-scale contact geometry, (ii) the 
nature of molecule-metal coupling, or even (iii) the changes of surface properties due to 
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adsorption of molecular layers (during the preparation of the sample). However, here we show 
that also the effect of inelastic tunneling due to polaron formation can reduce the current at 
the molecular scale. Besides, it should be emphasized that temperature has no effect on the 
maximum current and the maximal height of the conductance peak, affecting only the line 
widths in the conductance spectrum.  

 

 
 

Figure 4: Conductance gap ∆  as a function of vibronic coupling strength λ . The other 
parameters of the model are the same as in Fig.2.  
 
 Another discrepancy is related to theoretical overestimation of the conductance gap 
( ∆ ) due to state-of-art first-principles calculations in comparison with experimental data [38]. 
Figure 4 presents the λ -dependence of the ∆ -parameter. With an increase of the vibronic 
coupling strength from 0  to 3.0  eV, the conductance gap is reduced of about 35 % in relation 
to the initial value. This effect is a direct consequence of the so-called polaron shift in the 
direction to lower voltages. The approximate formula for the conductance gap has the 
following form:  
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It should be mentioned that the ∆ -parameter is mainly determined by the location of the 
Fermi level with respect to the molecular electronic structure, while it is also influenced by: 
(i) the strength of the molecule-metal connections, and (ii) the temperature of the system 
under investigation.  

 
4. Summary 
 
Summarizing, we have studied the effect of vibronic coupling on the shape of nonlinear 
transport characteristics ( VI −  and VG − ), using GFT-MT method. This non-perturbative 
computational scheme is entirely based on mapping which transforms the many-body 
electron-phonon interaction problem into a one-body multichannel single-electron scattering 
problem. Here we have shown that inelastic quantum transport through the molecule 
associated with polaron formation can play a key role in justifying some well-known 
discrepancies between theoretical calculations and experimental results.  However, it should 
be stressed that the present method on few drastic approximations. For example, here we have 
completely ignored the following effects: (i) phase decoherence processes in the treatment of 
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the electron-phonon exchange, (ii) Coulomb interactions between charge carriers, and (iii) 
phonon mediated electron-electron interactions.  

Anyway, inelastic transport is quite important for the structural stability [39] and the 
switching possibility of the molecular electronic devices. Recently, the polaron formation on 
the molecule was also suggested as a possible mechanism for generating the negative 
differential resistance (NDR effect) and hysteresis behaviour of the VI −  dependence [40]. 
Moreover, the problem of localized electron-phonon interactions is closely connected to the 
problem of local heating in current carrying molecular junctions [41,42].  
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