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Quantifying The Complexity Of Geodesic Paths On Curved Statistical Manifolds

Through Information Geometric Entropies and Jacobi Fields

Carlo Cafaro∗ and Stefano Mancini†

Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy

We characterize the complexity of geodesic paths on a curved statistical manifold Ms through the
asymptotic computation of the information geometric complexity VMs and the Jacobi vector field
intensity JMs . The manifold Ms is a 2l-dimensional Gaussian model reproduced by an appropriate
embedding in a larger 4l-dimensional Gaussian manifold and endowed with a Fisher-Rao information
metric gµν (Θ) with non-trivial off diagonal terms. These terms emerge due to the presence of a
correlational structure (embedding constraints) among the statistical variables on the larger manifold
and are characterized by macroscopic correlational coefficients rk. First, we observe a power law
decay of the information geometric complexity at a rate determined by the coefficients rk and
conclude that the non-trivial off diagonal terms lead to the emergence of an asymptotic information
geometric compression of the explored macrostates Θ on Ms. Finally, we observe that the presence
of such embedding constraints leads to an attenuation of the asymptotic exponential divergence of
the Jacobi vector field intensity.

PACS numbers: Probability Theory (02.50.Cw), Riemannian Geometry (02.40.Ky), Chaos (05.45.-a), Com-
plexity (89.70.Eg), Entropy (89.70.Cf).

I. INTRODUCTION

Characterizing and understanding the mystery of the origin of life and the unfolding of its evolution are perhaps the
leading arguments motivating the quantification of the extremely elusive concept of complexity [1–3]. Of course there
are more pragmatic reasons that justify the study of complexity, for example the problem of quantifying how complex
is quantum motion. This issue is of primary importance in quantum information science. However, our knowledge of
the relations between complexity, dynamical stability, and chaoticity in a fully quantum domain is still not satisfactory
[4, 5]. The concept of complexity is very difficult to define, its origin is not fully understood [6–11] and it is mainly
for this reason that several quantitative measures of complexity have appeared in the scientific literature [1–3]. In
classical physics, measures of complexity are settled in a better way. The Kolmogorov-Sinai metric entropy [12], that
is the sum of all positive Lyapunov exponents [13], is a powerful indicator of unpredictability in classical systems and
it measures the algorithmic complexity of classical trajectories [14–17]. Other known measures of complexity are the
logical depth [18], the thermodynamic depth [19], the computational complexity [20], the stochastic complexity [21]
and many more. Ideally, a good definition of complexity should be mathematically rigorous and intuitive at the same
time so that it allows to tackle complexity-related problems in computation theory and statistical physics as well. Of
course, a quantitative measure of complexity is truly useful if its range of applicability is not limited to few unrealistic
applications. It is also for this reason that in order to properly define complexity measures, it should be clearly stated
the reasons why one is defining such a measure and what it is intended to capture.
It is known that classical complex systems exhibit local exponential instability and are characterized by positive

Lyapunov exponents [22]. Furthermore, the study of the relationship between entropy and the complexity of trajec-
tories of a dynamical system has always been an active field of research [14–16]. In particular, in [14] it was shown
that the algorithmic complexity of trajectories of points in a dynamical system is asymptotically equal to the entropy
of the system.
It is commonly accepted that one of the major goals of physics is modeling and predicting natural phenomena using

relevant information about the system of interest. Taking this statement seriously, it is reasonable to expect that the
laws of physics should reflect the methods for manipulating information. Indeed, the less controversial opposite point
of view may be considered where the laws of physics are used to manipulate information. This is exactly the point of
view adopted in quantum information science where information is manipulated using the laws of quantum mechanics
[23].
Here we make use of the so-called Entropic Dynamics (ED) [24] and Information Geometrodynamical Approach
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to Chaos (IGAC) [25, 26]. ED is a theoretical framework that arises from the combination of inductive inference
(Maximum Entropy Methods, [27–30]) and Information Geometry [31]. The most intriguing question being pursued
in ED stems from the possibility of deriving dynamics from purely entropic arguments. This is clearly valuable
in circumstances where microscopic dynamics may be too far removed from the phenomena of interest, such as
in complex biological or ecological systems, or where it may just be unknown or perhaps even nonexistent, as in
economics. The applicability of ED has been extended to temporally-complex (chaotic) dynamical systems on curved
statistical manifolds and relevant measures of chaoticity of such an information geometrodynamical approach to chaos
have been identified [25]. IGAC arises as a theoretical framework to study chaos in informational geodesic flows
describing physical, biological or chemical systems. A geodesic on a curved statistical manifold MS represents the
maximum probability path a complex dynamical system explores in its evolution between initial and final macrostates.
Each point of the geodesic is parametrized by the macroscopic dynamical variables {Θ} defining the macrostate of the
system. Furthermore, each macrostate is in a one-to-one correspondence with the probability distribution {p (X |Θ)}
representing the maximally probable description of the system being considered. The quantity X is a microstate of
the microspace X . The set of macrostates forms the parameter space DΘ while the set of probability distributions
forms the statistical manifold MS . IGAC is the information geometric analogue of conventional geometrodynamical
approaches [32, 33] where the classical configuration space ΓE is being replaced by a statistical manifold MS with
the additional possibility of considering chaotic dynamics arising from non conformally flat metrics (the Jacobi metric
is always conformally flat, instead). It is an information geometric extension of the Jacobi geometrodynamics (the
geometrization of a Hamiltonian system by transforming it to a geodesic flow [34]). The reformulation of dynamics
in terms of a geodesic problem allows the application of a wide range of well-known geometrical techniques in the
investigation of the solution space and properties of the equation of motion. The power of the Jacobi reformulation
is that all of the dynamical information is collected into a single geometric object in which all the available manifest
symmetries are retained- the manifold on which geodesic flow is induced. For example, integrability of the system
is connected with existence of Killing vectors and tensors on this manifold. The sensitive dependence of trajectories
on initial conditions, which is a key ingredient of chaos, can be investigated from the equation of geodesic deviation.
In the Riemannian [32] and Finslerian [33] (a Finsler metric is obtained from a Riemannian metric by relaxing the
requirement that the metric be quadratic on each tangent space) geometrodynamical approach to chaos in classical
Hamiltonian systems, an active field of research concerns the possibility of finding a rigorous relation among the
sectional curvature, the Lyapunov exponents, and the Kolmogorov-Sinai dynamical entropy [35].
In this article, inspired by the work presented in [36], using statistical inference and information geometric tech-

niques, we characterize the complexity of geodesic paths on a curved statistical manifold Ms through the asymptotic
computation of the information geometric complexity VMs

and the Jacobi vector field JMs
. The manifold Ms is a

2l-dimensional Gaussian model reproduced by an appropriate embedding in a larger 4l-dimensional Gaussian manifold
and endowed with a Fisher-Rao information metric gµν (Θ) with non-trivial off diagonal terms. These terms in the
information metric on the embedded manifold emerge due to the presence of a correlational structure (embedding
constraints) among the statistical variables on the larger manifold and are characterized by macroscopic correlational
coefficients rk. First, we observe a power law decay of the information geometric complexity VMs

(τ ) ≈ exp [SMs
(τ )]

at a rate determined by the coefficients rk and conclude that the non-trivial off diagonal terms lead to the emergence
of an asymptotic information geometric compression of the explored macrostates Θ on Ms. Finally, we observe that
the presence of such embedding constraints leads to an attenuation of the asymptotic exponential divergence of the
Jacobi vector field intensity.
The layout of this article is as follows. In Section II, we present few remarks on the theoretical structure of the

IGAC and outline few selected applications concerning the complexity characterization of geodesic paths on curved
statistical manifolds. In Section III, we describe the 2l-dimensional curved statistical model considered, the embedded
Gaussian model endowed with a Fisher-Rao information metric with non-trivial off diagonal terms. In Section IV, we
present the asymptotic computation of the information geometric entropy SMs

(τ). We observe a power law decay
of the information geometric complexity VMs

(τ ) at a rate determined by the coefficients rk and conclude that non-
trivial off diagonal terms lead to the emergence of an asymptotic information geometric compression of the explored
macrostates on the statistical configuration manifold considered. In Section V, we present the asymptotic computation
of the Jacobi fields on MS. We observe that the presence of the embedding constraints lead to an attenuation of the
asymptotic exponential divergence of the Jacobi field intensity. Finally, in Section VI we present final remarks and
suggest further research directions.

II. ON THE IGAC: REMARKS AND APPLICATIONS

In this Section, we present few remarks on the theoretical structure of the IGAC and outline few selected applications
concerning the complexity characterization of geodesic paths on curved statistical manifolds. A more detailed review
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appears in [25].

A. Remarks

As stated in the Introduction, the IGAC arises as an information geometric framework to study chaos and complexity
in informational geodesic flows describing physical systems. A geodesic on a curved statistical manifold represents the
maximum probability path a complex dynamical system explores in its evolution between initial and final macrostates
Θi and Θf , respectively. Each point of the geodesic on a 4l-dimensional statistical manifold represents a macrostate
Θ parametrized by the macroscopic dynamical variables Θ ≡ (θ1,..., θ4l) defining the macrostate of the system.
Furthermore, each macrostate is in a one-to-one correspondence with the probability distribution P (X |Θ) representing
the maximally probable description of the system being considered. The set of macrostates forms the parameter space
while the set of probability distributions form the statistical manifold. In what follows, we schematically outline the
main features underlying the construction of an arbitrary form of entropic dynamics. First, the microstates of
the system under investigation must be defined. For the sake of reasoning, we assume the system is characterized
by an 2l-dimensional microspace with microstates X ≡ (x1,..., x2l). The main goal of an ED model is that of
inferring ”macroscopic predictions” in the absence of detailed knowledge of the microscopic nature of the arbitrary
complex systems being considered. More explicitly, by ”macroscopic prediction” we mean knowledge of the statistical
parameters (expectation values) of the probability distribution function that best reflects what is known about the
system. This is an important conceptual point. The probability distribution reflects the system in general, not the
microstates. Once the microstates have been defined, we then select the relevant information about the system. In
other words, we have to select the macrospace of the system.
In general, one is given a manifold of probability distributions arising from the maximum entropy formalism where

distributions arise from the maximization of the logarithmic relative entropy subjected to some statements concerning
averages (information constraints). Given the manifold of probability distributions, the (direct) problem is to find
the corresponding Fisher-Rao information metric. However, not all probability distributions are generated in this
way. For instance, probability distributions may emerge as a result of a change of variable technique (parametric
transformation law) [37]. Furthermore, in order to do physics, we are also concerned with the following (inverse)
problem: we want to design statistical manifolds with appropriate geometries [38].

B. Applications

In the following, we outline few selected applications concerning the complexity characterization of geodesic paths
on curved statistical manifolds.

1. Gaussian Statistical Models in the Absence of Correlations

In [36], we apply the IGAC to study the dynamics of a system with l degrees of freedom, each one described by
two pieces of relevant information, its mean expected value and its variance (Gaussian statistical macrostates). This
leads to consider a statistical model on a non-maximally symmetric 2l-dimensional statistical manifold Ms. It is
shown that Ms possesses a constant negative scalar curvature proportional to the number of degrees of freedom of
the system, RMs

= −l. It is found that the system explores statistical volume elements on Ms at an exponential rate.
The information geometric entropy SMs

increases linearly in time (statistical evolution parameter) and, moreover,

is proportional to the number of degrees of freedom of the system, SMs

τ→∞∼ lλτ where λ is the maximum positive
Lyapunov exponent characterizing the model. The asymptotic linear information geometric entropy growth may be
considered an information-geometric analogue of the von Neumann entropy growth introduced by Zurek-Paz, a quan-

tum feature of chaos. The geodesics on Ms are hyperbolic trajectories. Using the Jacobi-Levi-Civita (JLC) equation
for geodesic spread, we show that the Jacobi vector field intensity JMs

diverges exponentially and is proportional

to the number of degrees of freedom of the system, JMs

τ→∞∼ l exp (λτ ). The exponential divergence of the Jacobi

vector field intensity JMs
is a classical feature of chaos. Therefore, we conclude that RMs

= −l, JMs

τ→∞∼ l exp (λτ )

and SMs

τ→∞∼ lλτ . Thus, RMs
, SMs

and JMs
behave as proper indicators of chaoticity and are proportional to the

number of Gaussian-distributed microstates of the system. This proportionality, even though proven in a very special
case, leads to conclude there may be a substantial link among these information geometric indicators of chaoticity.
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2. Gaussian Statistical Models in the Presence of Correlations between Microvariables

In [39], we apply the IGAC to study the information constrained dynamics of a system with l = 2 microscopic
degrees of freedom. As working hypothesis, we assume that such degrees of freedom are represented by two correlated
Gaussian-distributed microvariables characterized by the same variance. We show that the presence of microcor-
relations lead to the emergence of an asymptotic information geometric compression of the statistical macrostates
explored by the system at a faster rate than that observed in absence of microcorrelations. This result constitutes
an important and explicit connection between (micro)-correlations and (macro)-complexity in statistical dynamical
systems. The relevance of our finding is twofold: first, it provides a neat description of the effect of information
encoded in microscopic variables on experimentally observable quantities defined in terms of dynamical macroscopic
variables; second, it clearly shows the change in behavior of the macroscopic complexity of a statistical model caused
by the existence of correlations at the underlying microscopic level.

3. Ensemble of Random Frequency Macroscopic Inverted Harmonic Oscillators

In [38], we explore the possibility of using well established principles of inference to derive Newtonian dynamics
from relevant prior information codified into an appropriate statistical manifold. The basic assumption is that there
is an irreducible uncertainty in the location of particles so that the state of a particle is defined by a probability
distribution. The corresponding configuration space is a statistical manifold the geometry of which is defined by the
Fisher-Rao information metric. The trajectory follows from a principle of inference, the method of Maximum Entropy.
There is no need for additional ”physical” postulates such as an action principle or equation of motion, nor for the
concept of mass, momentum and of phase space, not even the notion of time. The resulting ”entropic” dynamics
reproduces Newton’s mechanics for any number of particles interacting among themselves and with external fields.
Both the mass of the particles and their interactions are explained as a consequence of the underlying statistical
manifold.
Following this line of reasoning, in [26, 40] we present an information geometric analogue of the Zurek-Paz quantum

chaos criterion in the classical reversible limit. This analogy is illustrated by applying the IGAC to a set of n-uncoupled
three-dimensional anisotropic inverted harmonic oscillators characterized by a Ohmic distributed frequency spectrum.

4. IGAC of regular and chaotic quantum spin chains

In [41, 42], we study the entropic dynamics on curved statistical manifolds induced by classical probability distribu-
tions of common use in the study of regular and chaotic quantum energy level statistics. Specifically, we propose an
information geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic
Ising spin chain in a tilted (transverse) external magnetic field. We consider the IGAC of a Poisson distribution
coupled to an Exponential bath (spin chain in a transverse magnetic field, regular case) and that of a Wigner-Dyson
distribution coupled to a Gaussian bath (spin chain in a tilted magnetic field, chaotic case). Remarkably, we show
that in the former case the IGE exhibits asymptotic logarithmic growth while in the latter case the IGE exhibits
asymptotic linear growth.

III. THE MODEL

In this Section, we emphasize the main reasoning underlying the choice of the new proposed statistical model and
study its information geometric properties.

A. Motivations

We want to make reliable macroscopic predictions when only partial knowledge on the micro-structure of a system
is available. As stated in the Introduction, the complexity of such predictions is quantified in terms of the IGE and
the Jacobi field intensity. In this manuscript we seek an answer to the following question: isn’t simpler to make
macroscopic predictions when the available pieces of information are not independent? Stated otherwise, does an
increase in the correlational structure of the dynamical equations for the statistical variables labelling a macrostate of
a system imply a reduction in the complexity of the geodesic paths? It is reasonable to expect that the emergence of
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a correlational structure in the form of constraints among the variables labelling the macrostates of a system would
lead to a highly constrained dynamics and, consequently, to a reduction in the complexity of making macroscopic
predictions. In what follows, we attempt to give a quantitative answer to the above-mentioned questions.
We propose to compare the complexity of making predictions in two different scenarios. In the first scenario (4l-

dimensional larger Gaussian model) , we assume a system with 2l degrees of freedom xk, each one being Gaussian
distributed. The probability distribution describing the whole system is given by,

P (X |Θ) =

2l∏

k=1

p (xk|µk, σk) , (1)

where X ≡ (x1,..., x2l), Θ ≡ (µ1,..., µ2l, σ1,..., σ2l) and p (xk|µk, σk) is defined as,

p (xk|µk, σk)
def
=

1√
2πσ2

k

exp

[
− (xk − µk)

2

2σ2
k

]
. (2)

In [36, 44], we provided an analytical estimate for the complexity of geodesic paths on the statistical manifolds of
distributions given in (1). In the second scenario (2l-dimensional embedded Gaussian model), we consider the very
same system with 2l degrees of freedom xk. However, the microvariables xk are described by probability distributions
characterized by statistical variables subject to a set of 2l-constraints,

σ2j = σ2j−1 and, µ2j = µ2j

(
µ2j−1, σ2j−1

)
(embedding constraints), (3)

with j = 1,..., l. Therefore, the probability distribution describing the whole system in this second scenario becomes,

P̃
(
X |Θ̃

)
=

l∏

j=1

p̃
(
x2j−1, x2j |µ2j−1, σ2j−1

)
, (4)

where X ≡ (x1,..., x2l), Θ̃ ≡
(
µ1, µ3,..., µ2l−1, σ1, σ3,..., σ2l−1

)
and p̃

(
x2j−1, x2j |µ2j−1, σ2j−1

)
is defined as,

p̃
(
x2j−1, x2j |µ2j−1, σ2j−1

) def
=

1

2πσ2
2j−1

exp

[
−
(
x2j−1 − µ2j−1

)2
+
[
x2j − µ2j

(
µ2j−1, σ2j−1

)]2

2σ2
2j−1

]
, (5)

with j = 1,..., l. Our purpose is computing the complexity of geodesic paths on the 2l-dimensional statistical

manifold M(embedded)
S ≡ MS =

{
P̃
(
X |Θ̃

)}
and compare it with the one obtained on the 4l-dimensional manifold

M(larger)
S = {P (X |Θ)}. We expect that the emergence of the correlational structure defined in (3) between pairs of

macroscopic statistical variables will give rise to a reduction of the system’s complexity.
Except for an overall scale constant and a convenient re-scaling of variables, the information metric on the 2l-

dimensional embedded manifold MS is given by (see Appendix A for the explicit derivation),

dS2
MS

=
l∑

j=1

1

σ2
2j−1

(
dµ2

2j−1 + 2r2j−1dµ2j−1dσ2j−1 + 2dσ2
2j−1

)
, (6)

where the coefficients r2j−1 are defined as,

r2j−1
def
=

∂µ2j

∂µ2j−1

∂µ2j

∂σ2j−1

[
1 +

(
∂µ2j

∂µ2j−1

)2] 1
2
[
2 + 1

2

(
∂µ2j

∂σ2j−1

)2] 1
2

(7)

The explicit expressions of such coefficients depend on the functional parametric form given to the embedding con-
straints µ2j = µ2j

(
µ2j−1, σ2j−1

)
. More details are given in Appendix A. From (7) it follows that the coefficients r2j−1

are non-zero if and only if µ2j depends on both µ2j−1 and σ2j−1. Therefore, we may conclude that the emergence of
the non-trivial off-diagonal terms in (6) is a consequence of the previously mentioned correlational structure arising
from the embedding constraints. Motivated by these considerations, we will name from now on the coefficients r2j−1,
macroscopic correlational coefficients.
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B. Information Geometry of the Model

In this Subsection, we discuss the main steps leading to computation of the asymptotic temporal behavior of
the dynamical complexity of geodesic trajectories for the 2l-dimensional Gaussian statistical model. For the sake
of notational simplicity and in view of the involved analysis that we will present shortly, we replace Θ̃ in (4) with

Θ ≡ (µ1,..., µl, σ1,..., σl) and P̃
(
X |Θ̃

)
in (4) with P (X |Θ) so that M(embedded)

S ≡ MS = {P (X |Θ)}. We begin to

study the IGAC arising from the Fisher-Rao metric defined as,

ds2Ms

def
= gij (Θ) dΘidΘj =

l∑

k=1

(
1

σ2
k

dµ2
k +

2rk
σ2
k

dµkdσk +
2

σ2
k

dσ2
k

)
, with i, j = 1,..., 2l. (8)

We assume positive macroscopic correlational coefficients rk ∈ (0, 1), ∀k = 1,..., l. The Fisher-Rao metric tensor

gij (Θ)
def
= gij (µ1,...µl; σ1,..., σl) leading to the line element in (8) is given by,

[gij (Θ)]2l×2l =




M
(1)
2×2 0 0 0
0 · 0 0
0 0 · 0

0 0 0 M
(l)
2×2


 , with i, j = 1,..., 2l. (9)

where M
(k)
2×2 is the two-dimensional matrix defined as,

[
M

(k)
2×2

]
def
=

1

σ2
k

(
1 rk
rk 2

)
with k = 1,..., l. (10)

The inverse matrix
[
M

(k)
2×2

]−1

, useful for computing the Christoffel connection coefficients and other quantities char-

acterizing the information geometry of Ms is given by,

[
M

(k)
2×2

]−1 def
=

σ2
k

2− r2k

(
2 −rk

−rk 1

)
with k = 1,..., l. (11)

It can be shown [43] that the scalar curvature of such 2l-dimensional manifold is given by,

RMs
(r1,..., rl) = −2

l∑

k=1

(
2− r2k

)−1
. (12)

Notice that in the limit of vanishing coefficients {rk = 0}, RMs
= −l as shown in [44]. The computation of geodesic

equations on the 2l-dimensional Gaussian statistical manifold Ms leads to the following coupled systems of nonlinear
second order ordinary differential equations,

0 =
d2µk

dτ2
− rk

2− r2k

1

σk

(
dµk

dτ

)2

− 4

2− r2k

1

σk

dµk

dτ

dσk

dτ
− 2rk

2− r2k

1

σk

(
dσk

dτ

)2

,

0 =
d2σk

dτ2
+

1

2− r2k

1

σk

(
dµk

dτ

)2

+
2rk

2− r2k

1

σk

dµk

dτ

dσk

dτ
+

2r2k − 2

2− r2k

1

σk

(
dσk

dτ

)2

. (13)

with k = 1,..., l. When rk → 0, ∀k we get the ordinary Gaussian system of nonlinear and coupled ordinary differential
equations. Integration of such coupled system of nonlinear second order ordinary differential equations in is highly non
trivial. However, this problem can be tackled using the information geometric diagonalization procedure introduced

in [43]. The information metric tensor ĝ (µ1,...µl; σ1,..., σl)
def
= ĝ (Θ) in (8) is symmetric and therefore diagonalizable.

The eigenvalues of such matrix are,

α± (rk)
def
=

3±
√
∆(rk)

2
, ∆ (rk) = 1 + 4r2k, with k = 1,..., l. (14)

The eigenvectors Θ
(k)
+

def
= Θ+ (rk) and Θ

(k)
−

def
= Θ− (r) corresponding to α+ (rk) and α− (rk), respectively, are,

Θ+ (rk) =

(
1

1+
√

∆(rk)

2rk

)
and, Θ− (rk) =

(
1

1−
√

∆(rk)

2rk

)
with k = 1,..., l. (15)
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The diagonalized information matrix
[
ĝ′
(
Θ
(
Θ̃
))]

Bnew

in the new basis Bnew satisfies the following relation,

[ĝ (Θ)]Bold
= E2l×2l (r1,..., rl)

[
ĝ′
(
Θ
(
Θ̃
))]

Bnew

E−1
2l×2l (r1,..., rl) , (16)

where, in an explicit way, we obtain

[
ĝ′
(
Θ
(
Θ̃
))]

Bnew

=




D
(1)
2×2 0 0 0
0 · 0 0
0 0 · 0

0 0 0 D
(l)
2×2


 , (17)

with the two-dimensional diagonal matrices D
(k)
2×2 defined as,

[
D

(k)
2×2

]
def
=

1

σ2
k (µ̃k, σ̃k)




3−
√

∆(rk)

2 0

0
3+

√
∆(rk)

2


 with k = 1,..., l. (18)

The columns of the matrix E2l×2l (r1,..., rl) encode the eigenvectors of [ĝ (Θ)]Bold
, Θ

(k)
+ and Θ

(k)
− and is given by,

[E (r1,..., rl)]2l×2l =




E
(1)
2×2 0 0 0
0 · 0 0
0 0 · 0

0 0 0 E
(l)
2×2


 , (19)

where the two-dimensional matrices E
(k)
2×2 are,

[
E

(k)
2×2

]
def
=

(
1 1

1−
√

∆(rk)

2rk

1+
√

∆(rk)

2rk

)
. (20)

The relevance of E2l×2l (r1,..., rl) (and its inverse) is in expressing the set of macrovariables (µ1,...µl; σ1,..., σl) in
terms of the new statistical variables (µ̃1,..., µ̃l; σ̃1,..., σ̃l),

gij (µ1,...µl; σ1,..., σl)
diag−→ g′ij (µ̃1,..., µ̃l; σ̃1,..., σ̃l) . (21)

From differential geometry arguments [45], it follows that




∂µ̃1

·
·

∂σ̃l


 = E2l×2l (r1,..., rl)




∂µ1

·
·

∂σl


 and,




µ1

·
·
σl


 = E2l×2l (r1,..., rk)




µ̃1

·
·
σ̃l


 . (22)

Substituting (20) in (22), we finally obtain the formal relation between the old and new set of macrovariables labelling
the 2l-dimensional macrostates Θ of the embedded Gaussian statistical model in presence of non-trivial off-diagonal
terms,

µk (µ̃k, σ̃k)
def
= µ̃k + σ̃k and, σ (µ̃k, σ̃k)

def
=

1−
√
∆(rk)

2rk
µ̃k +

1 +
√
∆(rk)

2rk
σ̃k, with k = 1,..., l. (23)

After having introduced the information geometric diagonalization procedure, the new line element
ds′2 (µ̃1,..., µ̃l; σ̃1,..., σ̃l) to be considered becomes,

ds′2 (µ̃1,..., µ̃l; σ̃1,..., σ̃l) =

l∑

k=1

[
α− (rk)

[a0 (rk) µ̃k + a1 (rk) σ̃k]
2 dµ̃

2
k +

α+ (rk)

[a0 (rk) µ̃k + a1 (rk) σ̃k]
2 dσ̃

2
k

]
, (24)

where,

α± (rk)
def
=

3±
√
∆(rk)

2
, a0 (rk)

def
=

1−
√
∆(rk)

2rk
, a1 (rk)

def
=

1+
√
∆(rk)

2rk
and, ∆ (rk)

def
= 1 + 4r2k. (25)
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Notice that ds′2 (µ̃1,..., µ̃l; σ̃1,..., σ̃l) can be rewritten as,

ds′2 (µ̃1,., µ̃l; σ̃1,., σ̃l) =

l∑

k=1




α− (rk)

[a1 (rk)]
2

1

σ̃2
k

1
(
1 + a0(rk)

a1(rk)
µ̃k

σ̃k

)2 dµ̃
2
k +

α+ (rk)

[a1 (rk)]
2

1

σ̃2
k

1
(
1 + a0(rk)

a1(rk)
µ̃k

σ̃k

)2 dσ̃
2
k


 . (26)

As a working hypothesis, we assume that a0(rk)
a1(rk)

µ̃k(τ)
σ̃k(τ)

≪ 1 for τ ≫ 1 and for each k = 1,.., l. Stated otherwise, we

assume that

lim
τ→∞

[
µ̃k (τ)

σ̃k (τ)

]
≪ min

r∈(0,1)

∣∣∣∣
a1 (rk)

a0 (rk)

∣∣∣∣ = min
rk∈(0,1)

∣∣∣∣∣
1 +

√
1 + 4r2k

1−
√
1 + 4r2k

∣∣∣∣∣ ≃ 2.6. (27)

Then, in the asymptotic long-time limit [46], the notion of distinguishability between probability distributions on the
diagonalized statistical manifold is quantified by the following line element,

ds′2 (µ̃1,., µ̃l; σ̃1,., σ̃l) =
α− (rk)

[a1 (rk)]
2

1

σ̃2
k

dµ̃2
k +

α+ (rk)

[a1 (rk)]
2

1

σ̃2
k

dσ̃2
k. (28)

Recall that the Christoffel connection coefficients Γn
ij are defined as,

Γn
ij

def
=

1

2
gnm (∂igmj + ∂jgim − ∂mgij) . (29)

Substituting the metric tensor components from (28) into (29), it turns out that the only non-zero connection coeffi-
cients are given by,

(
Γ1
12

)k
= − 1

σk

,
(
Γ2
11

)k
=

α− (rk)

α+ (rk)

1

σk

,
(
Γ2
22

)k
= − 1

σk

, (30)

where k = 1,.., l. Therefore the set of coupled nonlinear ordinary differential equations satisfied by the geodesic
trajectories becomes,

d2µ̃k

dτ2
− 2

σ̃

dµ̃k

dτ

dσ̃k

dτ
= 0,

d2σ̃k

dτ2
+

α− (rk)

α+ (rk)

1

σ̃

(
dµ̃k

dτ

)2

− 1

σ̃k

(
dσ̃k

dτ

)2

= 0. (31)

Notice that in the limit of rk → 0, α−(rk)
α+(rk)

→ 1
2 and the system of equations (31) describing the asymptotic behavior of

maximally probable trajectories on the diagonalized manifold becomes the standard two-dimensional Gaussian system
of nonlinear coupled ordinary differential equations studied in [36]. In order to further simplify the integration of (31),
consider the following (invertible) change of variables,

(µ̃k, σ̃k) −→
(
µ′
k (µ̃k, σ̃k) =

√
2α− (rk)

α+ (rk)
µ̃k, σ

′
k (µ̃k, σ̃k) = σ̃k

)
. (32)

Substituting (32) into (31), the coupled system of nonlinear differential equations to be integrated becomes,

d2µ′
k

dτ2
− 2

σ′

dµ′
k

dτ

dσ′
k

dτ
= 0,

d2σ′
k

dτ2
+

1

2σ′
k

(
dµ′

k

dτ

)2

− 1

σ′
k

(
dσ′

k

dτ

)2

= 0. (33)

Integrating (33) leads to the following geodesic trajectories,

µ′
k (τ ) =

Ξ2
k

2λk

1

exp (−2λkτ ) +
Ξ2

k

8λ2
k

− 4λk, σ
′
k (τ) =

Ξk exp (−λkτ )

exp (−2λkτ) +
Ξ2

k

8λ2
k

, (34)

where Ξk and λk are real and positive constants of integration [36]. Using (23) and (32), we have

µk (µ
′
k, σ

′
k)

def
=

√
α+ (rk)

2α− (rk)
µ′
k + σ′

k and, σk (µ
′
k, σ

′
k)

def
=

1−
√
∆(rk)

2rk

√
α+ (rk)

2α− (rk)
µ′
k +

1 +
√
∆(rk)

2rk
σ′
k. (35)
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Notice that our working hypothesis (27) is satisfied since we have,

lim
τ→∞

µ̃k (τ)

σ̃k (τ)
=

(√
α+ (rk)

2α− (rk)

)
· lim
τ→∞

µ′
k (τ )

σ′
k (τ )

∝ exp (−λkτ)
τ→∞−→ 0. (36)

Finally, in terms of the original macrovariables (µk, σk), the geodesic trajectories become,

µk (τ ; rk) =
√

α+(rk)
2α−(rk)


 Ξ2

k

2λk

1

exp(−2λkτ)+
Ξ2
k

8λ2
k

− 4λk


+ Ξk exp(−λkτ)

exp(−2λkτ)+
Ξ2
k

8λ2
k

,

σk (τ ; rk) =
1−

√
∆(rk)

2rk

√
α+(rk)
2α−(rk)


 Ξ2

k

2λk

1

exp(−2λkτ)+
Ξ2
k

8λ2
k

− 4λk


+

1+
√

∆(rk)

2rk

Ξk exp(−λkτ)

exp(−2λkτ)+
Ξ2
k

8λ2
k

.

(37)

In our probabilistic macroscopic approach to dynamics, the geodesic trajectories in (37) represent the maximum
probability paths on the 2l-dimensional embedded Gaussian statistical model.

IV. INFORMATION GEOMETRIC COMPLEXITY

In our information geometric approach a relevant quantity that can be useful to study the degree of complex-
ity characterizing information-constrained dynamical models is the information geometrodynamical entropy SMs

(τ )
(IGE) [36]. In what follows, we will briefly highlight the key-points leading to the construction of such quantity.
The elements (or points) {P (X |Θ)} of a 2l-dimensional curved statistical manifold Ms are parametrized using

2l-real valued variables
(
θ1,..., θ2l

)
,

Ms
def
=
{
P (X |Θ) : Θ =

(
θ1,..., θ2l

)
∈ D(tot)

Θ

}
. (38)

The set D(tot)
Θ is the entire parameter space (at disposal) and it is a subset of R2l,

D(tot)
Θ

def
=

2l⊗

k=1

Iθk = (Iθ1 ⊗ Iθ2 ...⊗ Iθ2l) ⊆ R
2l, (39)

where Iθk is a subset of R and represents the entire range of allowable values for the macrovariable θk. For instance,
considering the statistical manifold of one-dimensional Gaussian probability distributions parametrized as usual in
terms of Θ = (µ, σ), we obtain

D(tot)
Θ = Iµ ⊗ Iσ = [(−∞, +∞)⊗ (0, +∞)] ⊆ R

2. (40)

In the IGAC, we are interested in a probabilistic description of the evolution of a given system in terms of its

correspondent probability distribution on Ms which is homeomorphic to D(tot)
Θ . Assume we are interested in the

evolution from τ initial to τfinal. Within the probabilistic description, this turns out to be equivalent to study the
shortest path (or, in terms of the ME method [27–30], the maximally probable path) leading to Θ (τfinal) from
Θ (τ initial).
Is there a way to quantify the ”complexity” of such path?. We have proposed that the IGE SMs

(τ ) is a good
complexity quantifier [25, 26]. A suitable indicator of temporal complexity within the IGAC framework is provided
by the information geometric entropy (IGE) SMs

(τ ) [36],

SMs
(τ )

def
= log ṽol

[
D(geodesic)

Θ (τ )
]
. (41)

The average dynamical statistical volume ṽol
[
D(geodesic)

Θ (τ )
]
is defined as,

ṽol
[
D(geodesic)

Θ (τ )
]

def
= lim

τ→∞

(
1

τ

∫ τ

0

dτ ′vol
[
D(geodesic)

Θ (τ ′)
])

, (42)
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where the ”tilde” symbol denotes the operation of temporal average. The volume vol
[
D(geodesic)

Θ (τ ′)
]
is given by,

vol
[
D(geodesic)

Θ (τ ′)
]

def
=

∫

D
(geodesic)
Θ (τ ′)

ρ(Ms, g)

(
θ1,..., θn

)
dnΘ, (43)

where ρ(Ms, g)

(
θ1,..., θn

)
is the so-called Fisher density and is equal to the square root of the determinant g =

|det (gµν)| of the metric tensor gµν (Θ),

ρ(Ms, g)

(
θ1,..., θn

) def
=
√∣∣g

((
θ1,..., θn

))∣∣. (44)

The integration space D(geodesic)
Θ (τ ′) in (43) is defined as follows,

D(geodesic)
Θ (τ ′)

def
=
{
Θ ≡

(
θ1,..., θn

)
: θk (0) ≤ θk ≤ θk (τ ′)

}
, (45)

where k = 1,.., n and θk ≡ θk (s) with 0 ≤ s ≤ τ ′ such that,

d2θk (s)

ds2
+ Γk

lm

dθl

ds

dθm

ds
= 0. (46)

The integration space D(geodesic)
Θ (τ ′) in (45) is a 2l-dimensional subspace of the whole (permitted) parameter space

D(tot)
Θ . The elements of D(geodesic)

Θ (τ ′) are the 2l-dimensional macrovariables {Θ} whose components θk are bounded

by specified limits of integration θk (0) and θk (τ ′) with k = 1,.., 2l. The limits of integration are obtained via
integration of the 2l-dimensional set of coupled nonlinear second order ordinary differential equations characterizing
the geodesic equations. Formally, the IGE SMs

(τ ) is defined in terms of an averaged parametric (τ is the parameter)
2l+1-fold integral over the multidimensional geodesic paths connecting Θ (0) to Θ (τ ). In our information geometric

approach, the information geometric complexity ṽol
[
D(geodesic)

Θ (τ )
]
represents a statistical measure of complexity

of the macroscopic path Θ
def
= Θ(τ ) on MS connecting the initial and final macrostates Θi and Θf , respectively.

The path Θ (τ) is obtained via integration of the geodesic equation on MS generated by the universal ME updating
method. At a discrete level, the path Θ (τ ) can be described in terms of an infinite continuos sequence of intermediate
macroscopic states, Θ (τ ) =

[
Θi,..., Θk̄−1, Θk̄, Θk̄+1,..., Θf

]
with Θj = Θ(τ j), determined via the logarithmic relative

entropy maximization procedure subjected to well-specified normalization and information constraints. The nature of
such constraints defines the (correlational) structure of the underlying probability distribution on the particular curved
statistical manifold MS . In other words, the correlational structure that may emerge into our information-geometric
statistical models has its origin in the valuable information about the microscopic degrees of freedom of the actual
physical systems. It emerges in the ME maximization procedure via integration of the geodesic equations defined
on MS and it is finally quantified in terms of the intuitive notion of volume growth via the information geometric

complexity ṽol
[
D(geodesic)

Θ (τ )
]
or, in entropic terms by the IGE SMS

(τ ). The information geometric complexity is

then interpreted as the volume of the statistical macrospace explored in the asymptotic limit by the system in its
complex evolution from Θi to Θf . Otherwise, upon a suitable normalization procedure that makes the information
geometric complexity an adimensional quantity, it represents the number of accessible macrostates (with coordinates

living in the accessed parameter space D(geodesic)
Θ (τ )) explored by the system in its evolution from Θi to Θf .

For the model defined in (8), VMs
(τ) becomes,

VMs
(τ) ≡ ṽol

[
D(geodesic)

Θ (τ )
]

def
=

1

τ

τ∫

0

dτ ′




Θf(τ ′)∫

Θi(0)

√
gd2lΘ


 , (47)

where g
def
= det [gij (Θ)]2l×2l is the determinant of the block-diagonal matrix in (9),

g (r1,.., rl) =

l∏

k=1

det
(
M

(k)
2×2

)
=

l∏

k=1

[
2− r2k
σ2
k

]
. (48)
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The geodesic paths Θ (τ) = (µ1 (τ ; r1) , σ1 (τ ; r1) ;..; µl (τ ; rl) , σl (τ ; rl)) are given in (37). Substituting them into
(47), we get,

VMs
(τ ; λ1,.., λk) =

l∏

k=1





√
2− r2k
τ

τ∫



Ξk exp (−λkτ
′)− 4λk

√
α+(rk)
2α−(rk)

exp (−2λkτ
′)

1+
√

∆(rk)

2rk
Ξk exp (−λkτ ′)− 4λk

√
α+(rk)
2α−(rk)

1−
√

∆(rk)

2rk
exp (−2λkτ ′)


 dτ ′





.

(49)
For the sake of simplicity, let us introduce the following substitutions,

Ak
def
= Ξk, Bk

def
= −4λk

√
α+ (rk)

2α− (rk)
, Ck

def
=

1 +
√
∆(rk)

2rk
Ξk, Dk

def
= −4λk

√
α+ (rk)

2α− (rk)

1−
√
∆(rk)

2rk
. (50)

Then, the integral defining VMs
(τ ; λ1,..,λk) becomes,

VMs
(τ ; λ1,..,λk) =

l∏

k=1





√
2− r2k
τ

τ∫ [
Ake

−λkτ
′

+Bke
−2λkτ

′

Cke−λkτ ′ +Dke−2λkτ ′
dτ ′

]
dτ ′



 . (51)

Upon integration, we get

∫ τ Ake
−λkτ

′

+Bke
−2λkτ

′

Cke−λkτ ′ +Dke−2λkτ ′
dτ ′ =

1

λk

(
Ak

Ck

− Bk

Dk

)
ln

[
Dk + Cke

λkτ

Dkeλkτ

]
+
Ak

Ck

τ
τ→∞≈ 1

λk

(
Ak

Ck

− Bk

Dk

)
ln

Ck

Dk

+
Ak

Ck

τ , (52)

and substituting (52) into (51), we obtain

VMs
(τ ; λ1,..,λk) =

l∏

k=1

{√
2− r2k

[
Ak

Ck

+
1

λk

(
Ak

Ck

− Bk

Dk

)
ln

Ck

Dk

1

τ

]}
. (53)

Introducing again the original parameters in (50), we finally get

VMs
(τ ; λ1,..,λk) =

l∏

k=1





2rk
√
2− r2k

1 +
√
∆(rk)

+




(
2rk
√
2− r2k

)

(
1 +

√
∆(rk)

)
λk

− 2rk
√
2− r2k(

1−
√
∆(rk)

)
λk


 lnΣ (rk, λk, α±)

τ



 , (54)

where the strictly positive function Σ (rk, λk, α±) is given by,

Σ (rk, λk, α±)
def
=

1+
√

∆(rk)

2rk
Ξk

−4λk

√
α+(rk)
2α−(rk)

1−
√

∆(rk)

2rk

> 0, ∀rk ∈ (0, 1) . (55)

Finally, inserting (54) into (41), the IGE SMs
(τ ) becomes,

SMs
(τ ; λ1,..,λk) =

l∑

k=1

log





2rk
√
2− r2k

1 +
√

∆(rk)
+


 2rk

√
2− r2k(

1 +
√
∆(rk)

)
λk

− 2rk
√
2− r2k(

1−
√
∆(rk)

)
λk


 lnΣ (rk, λk, α±)

τ



 . (56)

With a suitable change of notation, equation (56) can be rewritten in a more elegant way as follows,

SMs
(τ ; λ1,..,λk)

τ→∞∼
l∑

k=1

log

[
Λ1 (rk) +

Λ2 (rk, λk)

τ

]
, (57)

where,

Λ1 (rk)
def
=

2rk
√
2− r2k

1 +
√
1 + 4r2k

, Λ2 (rk, λ)
def
=

√
(1 + 4r2k) (2− r2k)

rk

lnΣ (rk, λk, α±)

λk

, α± (rk)
def
=

3±
√
1 + 4r2k
2

. (58)

As stated above, Σ (rk, λk, α±) is a strictly positive function of its arguments. It appears that the introduction of
embedding constraints between the macrovariables of the larger Gaussian statistical model leads to the emergence of an
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asymptotic information geometric compression of the explored statistical macrostates on the embedded configuration
manifold Ms in its evolution between the initial and final macrostates. This result, thought for a special (not general)
case, leads to interesting conclusions. The presence of constraints between macroscopic pieces of relevant information
on the microscopic degrees of freedom of a complex system allows for an information geometric probabilistic description
whose complexity, measured in terms of SMs

(or VMs
), decays in a power law way. Asymptotically, the complexity

reaches a saturation value characterized solely by the strength of such macroscopic correlational coefficients. The
relevance of such results becomes even more clear if compared to what happens for the 4l-dimensional (uncorrelated
and larger) Gaussian statistical model [36]. We will mention this comparison in our final remarks. For rk = rs, ∀k,
s = 1,..., l, the information geometric entropy SMs

(τ ; l, λ, r) becomes,

SMs
(τ ; l, λ, r)

τ→∞∼ log

[
Λ1 (r) +

Λ2 (r, λ)

τ

]l
. (59)

Therefore, the information geometric complexity presents a power law decay where the power is related to cardinality
l of the microscopic degrees of freedom characterized by correlated pieces of macroscopic information and it reaches
a saturation value quantified by the set of coefficients {rk}.

V. JACOBI-LEVI-CIVITA EQUATION AND JACOBI FIELDS

The Jacobi-Levi-Civita (JLC) equation of geodesic deviation is a complicated second-order system of linear ordinary
differential equations. It describes the geodesic spread on curved manifolds of a pair of nearby freely falling particles

travelling on trajectories Θρ (τ ) and Θ′ρ (τ )
def
= Θρ (τ ) + δΘρ (τ). The JLC equation is given by [47],

D2Jk

Dτ2
+Rk

nml

∂Θn

∂τ
Jm ∂Θl

∂τ
= 0, (60)

with k = 1,.., 2l and where the covariant derivatives DΘµ(τ)
Dτ

along the curve Θµ (τ ) are defined as,

DΘµ (τ )

Dτ

def
=

dΘµ (τ )

dτ
+ Γµ

νρ

dΘρ

dτ
Θν . (61)

The Jacobi vector field components Jk are given by,

Jk ≡ δλk
Θk def

=

(
∂Θk (τ ; λk)

∂λk

)

τ

δλk, (62)

and Rαβγδ is the Riemann curvature tensor defined as [47],

Rα
µνρ

def
= ∂νΓ

α
µρ − ∂ρΓ

α
µν + Γα

βνΓ
β
µρ − Γα

βρΓ
β
µν . (63)

In the 2l-dimensional case J =
{
Jk
}
k=1,.., 2l

represents how geodesics, in a 1-parameter family of geodesics, are

separating. The covariant derivative D2Jµ

Dτ2 in (60) is defined as [48],

D2Jµ

Dτ2
=

d2Jµ

dτ2
+ 2Γµ

αβ

dJα

dτ

dΘβ

dτ
+ Γµ

αβJ
α d

2Θβ

dτ2
+ Γµ

αβ, ν

dΘν

dτ

dΘβ

dτ
Jα + Γµ

αβΓ
α
ρσ

dΘσ

dτ

dΘβ

dτ
Jρ. (64)

Equation (60) forms a system of 2l coupled ordinary differential equations linear in the components of the deviation
vector field (62) but nonlinear in derivatives of the metric tensor gij (Θ). It describes the linearized geodesic flow:
the linearization ignores the relative velocity of the geodesics. When the geodesics are neighboring but their relative
velocity is arbitrary, the corresponding geodesic deviation equation is the so-called generalized Jacobi equation [49].
The nonlinearity is due to the existence of velocity-dependent terms in the system. Neighboring geodesics accelerate
relative to each other with a rate directly measured by the curvature tensor Rαβγδ.
Multiplying both sides of (60) by gij (Θ) and using the standard symmetry properties of the Riemann curvature

tensor, the geodesic deviation equation becomes,

gji
D2J i

Dτ2
+Rlmkj

∂Θk

∂τ
Jm ∂Θl

∂τ
= 0. (65)
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After some algebra, it follows that the only non-zero Riemann tensor components are given by,

(R1212)
k
= −α− (rk)

a21 (rk)

1

σ2
k

, k = 1,.., 2l. (66)

In the model considered, the Jacobi field J̃Ms
has 2l-components

{
J̃µ
}
µ=1,.., 2l

that can be grouped into l-pairs as

follows,

J̃Ms
↔
(
J̃1
Ms

, J̃2
Ms

,.., J̃2l−1
Ms

, J̃2l
Ms

)
↔
((

J̃1
Ms

, J̃2
Ms

)
1-pair

;..;
(
J̃2k−1
Ms

, J̃2k
Ms

)
k-pair

;.. ;
(
J̃2l−1
Ms

, J̃2l
Ms

)
l-pair

)
, (67)

where,

J̃2k−1
Ms

def
=

(
∂µ̃k (τ ; λk)

∂λk

)

τ

δλk, J̃
2k
Ms

def
=

(
∂σ̃k (τ ; λk)

∂λk

)

τ

δλk, (68)

with k = 1,.., l. Similarly, the 2l-equations of Jacobi-Levi-Civita can be grouped into l-pairs of differential equations
with identical structure. Substituting (30), (66) and (64) into (65), after some tedious algebra, the first pair of JLC
equations become,

0 =
d2J̃2k−1

dτ2
+ 2

(
Γ1
12

)k dσ̃k

dτ

dJ̃2k−1

dτ
+ 2

(
Γ1
12

)k dµ̃k

dτ

dJ̃2k

dτ
+

+J̃2k−1

[
(
Γ1
12

)k d2σ̃k

dτ2
+

(
∂σ̃k

(
Γ1
12

)k
+
(
Γ1
12

)k (
Γ1
12

)k
+

(R1212)
k

(g11)
k

)(
dσ̃k

dτ

)2
]
+

+J̃2k

[
(
Γ1
12

)k d2µ̃k

dτ2
+

(
∂σ̃k

(
Γ1
12

)k
+
(
Γ1
12

)k (
Γ1
12

)k − (R1212)
k

(g11)
k

)
dµ̃k

dτ

dσ̃k

dτ

]
, (69)

and,

0 =
d2J̃2k

dτ2
+ 2

(
Γ2
11

)k dµ̃k

dτ

dJ2k−1

dτ
+ 2

(
Γ2
22

)k dσ̃k

dτ

dJ2k

dτ
+

+J̃2k−1

[
(
Γ2
11

)k d2µ̃k

dτ2
+

(
∂σ̃k

(
Γ2
11

)k
+
(
Γ2
11

)k (
Γ1
12

)k
+
(
Γ2
22

)k (
Γ2
11

)k − (R1212)
k

(g22)
k

)
dµ̃k

dτ

dσ̃k

dτ

]
+

+J̃2

[
(
Γ2
22

)k d2σ̃k

dτ2
+
(
∂σ̃k

(
Γ2
22

)k
+
(
Γ2
22

)k (
Γ2
22

)k)
(
dσ̃k

dτ

)2

+

(
(
Γ2
11

)k (
Γ1
21

)k
+

(R1212)
k

(g22)
k

)(
dµ̃k

dτ

)2
]
.(70)

More explicitly, equations (69) and (70) may be written as,

0 =
d2J̃2k−1

dτ2
− 2

σ̃k

dσ̃k

dτ

dJ̃2k−1

dτ
− 2

σ̃k

dµ̃k

dτ

dJ̃2k

dτ
+ J̃2k−1

[
− 1

σ̃k

d2kσ̃

dτ2
+

1

σ̃2
k

(
dσ̃k

dτ

)2
]
+

+J̃2k

[
− 1

σ̃k

d2µ̃k

dτ2
+

3

σ̃2
k

dµ̃k

dτ

dσ̃k

dτ

]
, (71)

and,

0 =
d2J̃2k

dτ2
+ 2

α− (rk)

α+ (rk)

1

σ̃k

dµ̃k

dτ

dJ̃2k−1

dτ
− 2

σ̃k

dσ̃k

dτ

dJ̃2k

dτ
+ J̃2k−1

[
α− (rk)

α+ (rk)

1

σ̃k

d2µ̃k

dτ2
− 2

α− (rk)

α+ (rk)

1

σ̃2
k

dµ̃k

dτ

dσ̃k

dτ

]
+

+J̃2k

[
− 1

σ̃k

d2σ̃k

dτ2
+

2

σ̃2
k

(
dσ̃k

dτ

)2

− 2
α− (rk)

α+ (rk)

1

σ̃2
k

(
dµ̃k

dτ

)2
]
. (72)
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From (32) and (34), we notice that the asymptotic expansion of σ̃k and the first and second derivative of µ̃k and σ̃k

are given by,

σ̃k (τ ) ≈ 8λ2
k

Ξk

exp (−λkτ) ,
dµ̃k

dτ
≈
√

α+ (rk)

2α− (rk)

64λ4
k

Ξ2
k

exp (−2λkτ ) ,
dσ̃k

dτ
≈ 8λ3

k

Ξk

exp (−λkτ ) ,

d2µ̃k

dτ2
≈
√

α+ (rk)

2α− (rk)

128λ5
k

Ξ2
k

exp (−2λkτ) ,
d2σ̃k

dτ2
≈ 8λ4

k

Ξk

exp (−λkτ ) . (73)

Substituting (73) into (69) and (70), keeping only the leading terms into the asymptotic expansion, the JLC equations
to integrate become,

d2J̃2k−1

dτ2
+ 2λk

dJ̃2k−1

dτ
−
√

α+ (rk)

2α− (rk)

16λ2
k

Ξk

exp (−λkτ)
dJ̃2k

dτ
−
√

α+ (rk)

2α− (rk)

8λ3
k

Ξk

exp (−λkτ ) J̃
2k = 0, (74)

and,

d2J̃2k

dτ2
+

√
2α− (rk)

α+ (rk)

8λ2
k

Ξk

exp (−λkτ )
dJ̃2k−1

dτ
+ 2λk

dJ̃2k

dτ
+ λ2

kJ̃
2k = 0. (75)

As a working hypothesis, we assume that [36],

lim
τ→∞

[
exp (−λkτ )

dJ̃2k−1

dτ

]
= 0, lim

τ→∞

[
exp (−λkτ )

dJ̃2k

dτ

]
= 0, lim

τ→∞

[
exp (−λkτ ) J̃

2k
]
= 0. (76)

In order to prove that our assumptions in (76) are correct, we will check a posteriori their consistency. The geodesic
deviation equations in (74) and (75) finally become,

d2J̃2k−1

dτ2
+ 2λk

dJ̃2k−1

dτ
= 0,

d2J̃2k

dτ2
+ 2λk

dJ̃2k

dτ
+ λ2

kJ̃
2k = 0. (77)

Integration of (77) leads to the following asymptotic expressions for J̃2k−1
Ms

(τ ) and J̃2k
Ms

(τ),

J̃2k−1
Ms

(τ ) = C
(k)
0 + C

(k)
1 exp (−2λkτ) , J̃

2k
Ms

(τ ) = C
(k)
2 exp (−λkτ) + C

(k)
3 τ exp (−2λkτ ) , (78)

where C
(k)
w are real constant of integration with w = 1,.., 3. Notice that conditions (76) are satisfied and therefore

our assumption are compatible with the solutions obtained.

Consider the Jacobi vector field components
{
J̃µ
}
µ=1,.., l

defined in (67) and its magnitude J̃Ms
,

J̃2
Ms

def
=
(
J̃Ms

)µ (
J̃Ms

)
µ
. (79)

The magnitude J̃Ms
is called the Jacobi field intensity. Using (28), Equation (79) becomes,

J̃2
Ms

(τ )
def
=

l∑

k=1

{
α− (rk)

[a1 (rk)]
2

1

σ̃2
k

[
J̃2k−1
Ms

(τ)
]2

+
α+ (rk)

[a1 (rk)]
2

1

σ̃2
k

[
J̃2k
Ms

(τ )
]2
}
. (80)

Substituting (73) and (78) into (80), keeping only the leading terms in the asymptotic expansion of J̃2
Ms

(τ ), we
obtain

J̃2
Ms

(τ)
τ→∞≈

l∑

k=1


 α− (rk)

[a1 (rk)]
2

(
C

(k)
0 Ξk

8λ2
k

)2

exp (2λkτ)


 . (81)

Let us rewrite the quantity J̃2
Ms

(τ ) in terms of ”attenuation factors” A (rk) and elementary quadratic Jacobi vector

field components j2Ms
(τ ; λk) given by,

Ãk (rk)
def
=

α− (rk)

[a1 (rk)]
2 =

2rk

(
3−

√
1 + 4r2k

)

(
1 +

√
1 + 4r2k

)2 , (82)
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and,

j̃2Ms
(τ ; λk)

def
=

(
C

(k)
0 Ξk

8λ2
k

)2

exp (2λkτ) , (83)

respectively. Notice that Ãk (rk) is a bounded function of the correlation coefficient rk ∈ (0, 1) and its maximum is

reached for r̄k =
√
2−

√
2 ≃ 0.77,

Ãkmax (rk)
def
= max

rk∈(0, 1)
Ãk (rk) = Ãk (r̄k) = 3− 2

√
2 ≃ 0.17. (84)

Therefore, substituting (82) and (83) into (81) and considering the boundedness of the attenuation factors in (84),

the square of the Jacobi field intensity J̃2
Ms

(τ ) may be written as,

J̃2
Ms

(τ ; λ1,.., λl)
τ→∞≈

l∑

k=1

Ãk (rk) j̃
2
Ms

(τ ; λk) . (85)

Let us now consider the asymptotic behavior of JMs
,

J2
Ms

def
=

l∑

k=1

{
1

σ2
k

[
J
(2k−1)
Ms

]2
+

2rk
σ2
k

J
(2k−1)
Ms

J
(2k)
Ms

+
2

σ2
k

[
J
(2k)
Ms

]2}
. (86)

From (23) and (62), it follows that the Jacobi field components
(
J
(2k−1)
Ms

, J
(2k)
Ms

)
with k = 1,.., l are related to the

Jacobi field components
(
J̃
(2k−1)
Ms

, J̃
(2k)
Ms

)
in the following way,

J
(2k−1)
Ms

def
= J̃

(2k−1)
Ms

+ J̃
(2k)
Ms

, (87)

and,

J
(2k)
Ms

def
=

1−
√
∆(rk)

2rk
J̃
(2k−1)
Ms

+
1 +

√
∆(rk)

2rk
J̃
(2k)
Ms

. (88)

Considering (78) and substituting (87) and (88) into (86), the asymptotic behavior of J2
Ms

is given by,

J2
Ms

≈
l∑

k=1






1 + 2rk

1−
√
∆(rk)

2rk
+ 2

(
1−

√
∆(rk)

2rk

)2

 1

σ2
k

[
J̃
(2k−1)
Ms

]2


 . (89)

Substituting (37) and (78) into (89) and keeping only the leading terms into the asymptotic expansion, we obtain,

(
J2
Ms

)
embedded

(τ ; λ1,.., λl) ≈
l∑

k=1

Ak (rk) j
2
Ms

(τ ; λk) , (90)

where j2Ms
(τ ; λk) = j̃2Ms

(τ ; λk) is defined in (83) and the new attenuation function is given by,

Ak (rk)
def
=

4r2k
[
1 + 2rka0 (rk) + a20 (rk)

]

[1 + a1 (rk)]
2 , (91)

where a0 (rk) and a1 (rk) are defined in (25). Notice that Ak (rk) is a bounded function of the correlation coefficient
rk ∈ (0, 1) and its maximum is reached for r̄k ≃ 0.65,

Akmax (rk)
def
= max

rk∈(0, 1)
Ak (rk) = Ak (r̄k) ≃ 0.15. (92)

In [36, 44], it was shown that in absence of constraints, the model here considered leads to an asymptotic behavior of
the Jacobi fields given by,

(
J2
Ms

)
larger

(τ ; λ1,.., λ2l)
τ→∞≈

2l∑

k=1

j2Ms
(τ ; λk) . (93)
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Therefore, from equations (93) and (90), we obtain,

0 ≤




[(
J2
Ms

)
embedded

(τ ; λ1,.., λl)
]

k̄[(
J2
Ms

)
larger

(τ ; λ1,.., λl)
]

k̄




1
2

≈
√

4r2
k̄
[1 + 2rk̄a0 (rk̄) + a20 (rk̄)]

[1 + a1 (rk̄)]
2 . 0.4 < 1, (94)

We conclude that the appearance of embedding constraints among the Gaussian statistical macrovariables on the larger
4l-dimensional curved manifold leads to an attenuation of the asymptotic exponential divergence of the Jacobi field
intensity on the embedded 2l-dimensional manifold. This is a quantitative indication that the information geometric
complexity of a system decreases in the presence of emerging correlational structures.

VI. FINAL REMARKS

In this article, we characterized the complexity of geodesic paths on a curved statistical manifold Ms through the
asymptotic computation of the information geometric complexity VMs

and the Jacobi vector field intensity JMs
. We

considered a manifold a 2l-dimensional Gaussian model Ms reproduced by an appropriate embedding in a larger
4l-dimensional Gaussian manifold and endowed with a Fisher-Rao information metric gµν (Θ) with non-trivial off
diagonal terms. Such terms in the information metric on the embedded manifold emerged due to the presence of
a correlational structure (embedding constraints) among the statistical variables on the larger manifold and were
characterized by macroscopic correlational coefficients rk. First, we observed a power law decay of the information
geometric complexity at a rate determined by the coefficients rk and concluded that the non-trivial off diagonal
terms lead to the emergence of an asymptotic information geometric compression of the explored macrostates Θ on
Ms. Finally, we observed that the presence of such embedding constraints lead to an attenuation of the asymptotic
exponential divergence of the Jacobi vector field intensity.
The relevance of such results becomes evident when compared to what happens in the larger Gaussian statistical

model (absence of constraints) [36, 44]. In such case, the information geometric entropy of the 4l-dimensional (larger
and uncorrelated) Gaussian model increases linearly in time and its complexity diverges exponentially at a rate
determined by λk, the Lyapunov exponents of the statistical trajectories of the system [25] and the Jacobi field
intensity diverges exponentially without any attenuation factor. It seems that our measure of complexity not only
can quantify the degree of chaoticity of a physical system, but it also adequately captures the correlational structure
(relationship between system’s components, [3, 9–11]) in its behavior. In the model studied, the emergence of structure
appears in terms of non-trivial off diagonal elements in the Fisher-Rao information metric. Such structure leads to

the information geometric compression of ṽol
[
D(geodesic)

Θ (τ )
]
and, thus, to a reduction of the complexity of the path

leading to Θfinal from Θinitial.
Information Geometry and Maximum (relative) Entropy methods hold great promise for solving computational

problems of interest in classical and quantum physics in terms of their probabilistic description on curved statistical
manifolds. Our theoretical formalism allows us to tackle physics problems through statistical inference and informa-
tion geometric techniques, that is Riemannian geometric techniques applied to probability theory. The macroscopic
behavior of an arbitrary complex system is a consequence of the underlying statistical structure of the microscopic
degrees of freedom of the system being considered.
As a side remark, we point out two more facts: 1) Probabilistic concepts are naturally incorporated into the

fundamentally statistical quantum theory. Furthermore, describing and understanding the complexity of quantum
motion is still an open problem since our present knowledge on the relations among complexity, chaoticity and
dynamical stochasticity are not satisfactory at all [5]; 2) Riemannian geometric tools are currently being used to
characterize the quantum gate complexity in quantum computing [50–53]. In [50], the problem of finding quantum
circuits was recasted as a geometric problem. It was shown that finding optimal quantum circuits is essentially
equivalent to finding the shortest path (geodesic) between two points in a certain curved geometry. In light of these
two considerations and in view of the results obtained thus far, we are confident the work presented here constitutes
a further important step towards the characterization of the dynamical complexity of microscopically correlated
multidimensional Gaussian statistical models, and other models of relevance in more realistic physical systems. We
hope to extend this approach in the field of Quantum Information to better understand the connection between
quantum entanglement and quantum complexity [5, 41, 42, 54, 55].
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Appendix A: Derivation of the line element

We derive Equation (6). For the sake of clarity, we consider a two-dimensional Gaussian probability distribution
p (x1, x2|µ1, µ2, σ1) obtained from the Gaussian distribution p (x1, x2|µ1, µ2, σ1, σ2) setting σ1 = σ2 and defined as,

p (x1, x2|µ1, µ2, σ1) =
1

2πσ2
1

exp

[
− 1

2σ2
1

[
(x1 − µ1)

2
+ (x2 − µ2)

2
]]

. (A1)

The Fisher-Rao information metric in the three-dimensional statistical manifold (µ1, µ2, σ1) is given by,

ds2 =
1

σ2
1

(
dµ2

1 + dµ2
2 + 4dσ2

1

)
. (A2)

Consider the two-dimensional submanifold embedded as a slice in the three-dimensional space defined by the following
embedding constraint,

µ2 = µ2 (µ1, σ1) . (A3)

The Gaussian distributions p (x1, x2|µ1, µ2 (µ1, σ1) , σ1) ≡ p̃ (x1, x2|µ1, σ1) belonging to this submanifold are such
that 〈x2〉 = µ2 and 〈x1〉 = µ1 are not independent, they are related in a peculiar way. From (A3), we obtain

dµ2 =
∂µ2

∂µ1

dµ1 +
∂µ2

∂σ1
dσ1, (A4)

that is,

dµ2
2 =

(
∂µ2

∂µ1

)2

dµ2
1 +

(
∂µ2

∂σ1

)2

dσ2
1 + 2

∂µ2

∂µ1

∂µ2

∂σ1
dµ1dσ1. (A5)

Substituting (A5) in (A2), the information metric becomes,

ds2 =
1

σ2
1

[
Aµ1µ1

dµ2
1 + 2Aµ1σ1

dµ1dσ1 + 2Aσ1σ1
dσ2

1

]
, (A6)

where the coefficients Aµ1µ1
, Aµ1σ1

and Aσ1σ1
are given by,

Aµ1µ1

def
= 1 +

(
∂µ2

∂µ1

)2

, Aµ1σ1

def
=

∂µ2

∂µ1

∂µ2

∂σ1
and, Aσ1σ1

def
= 2 +

1

2

(
∂µ2

∂σ1

)2

. (A7)

Re-scaling the variables in such a way that µ̃1
def
= A

1
2
µ1µ1

µ1 and σ̃1
def
= A

1
2
σ1σ1σ1 and assuming that the coefficients

Aµ1µ1
, Aµ1σ1

and Aσ1σ1
are constants, the line element in (A6) becomes

ds2 = Aσ1σ1

1

σ̃2
1

[
dµ̃2

1 + 2r1dµ̃1dσ̃1 + 2dσ̃2
1

]
, (A8)

with,

r1
def
=

Aµ1σ1

A
1
2
µ1µ1

A
1
2
σ1σ1

=

∂µ2

∂µ1

∂µ2

∂σ1

[
1 +

(
∂µ2

∂µ1

)2] 1
2
[
2 + 1

2

(
∂µ2

∂σ1

)2] 1
2

. (A9)
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From (A7), it follows that the embedding defining the two-dimensional submanifold in the larger three-dimensional
manifold of Gaussians parametrized by (µ1, µ2, σ1) is given by,

µ2 (µ1, σ1) = a
(1)
1 µ1 + a

(1)
2 σ1 =

a
(1)
1√

1 +
[
a
(1)
1

]2 µ̃1 +
a
(1)
2√

2 + 1
2

[
a
(1)
2

]2 σ̃1, (A10)

with,

a
(1)
1

def
=
(
Aµ1µ1

− 1
) 1

2 and, a
(1)
2

def
= (2Aσ1σ1

− 4)
1
2 . (A11)

Finally, using (A10) and (A9), the explicit expression for r1 becomes

r1 =
a
(1)
1 a

(1)
2√

1 +
[
a
(1)
1

]2√
2 + 1

2

[
a
(1)
2

]2 . (A12)

From (A12), it is transparent that the explicit expression for r1 depends on the functional parametric form of the
embedding constraint in (A10).

[1] R. Landauer, ”A simple measure of complexity”, Nature 336, 306 (1988).
[2] M. Gell-Mann, ”What is Complexity?”, Complexity 1, 1 (1995).
[3] D. P. Feldman and J. P. Crutchfield, ”Measures of statistical complexity: Why?”, Phys. Lett. A238, 244 (1998).
[4] M. Ohya, ”Complexities and Their Applications to Characterization of Chaos”, Int. J. Theor. Phys. 37, 495 (1998).
[5] G. Benenti and G. Casati, ”How complex is quantum motion?”, Phys. Rev E79, 025201 (2009).
[6] S. Wolfram, ”Universality and Complexity in Cellular Automata”, Physica D10, 1 (1984).
[7] S. Wolfram, ”Origin of Randomness in Physical Systems”, Phys. Rev. Lett. 55, 449 (1985).
[8] M. Rasetti, ”Uncertainty, Predictability and Decidability in Chaotic Dynamical Systems”, Chaos, Solitons & Fractals 5,

133 (1995).
[9] B. A. Huberman and T. Hogg, ”Complexity and Adaption”, Physica D22, 376 (1986).

[10] P. Grassberger, ”Toward a Quantitative Theory of Self-Generated Complexity”, Int. J. Theor. Phys. 25, 907 (1986).
[11] J. P. Crutchfield and K. Young, ”Inferring Statistical Complexity”, Phys. Rev. Lett. 63, 105 (1989).
[12] A. N. Kolmogorov, ”Three approaches to the quantitative definition of information”, Probl. Inf. Transm. (USSR) 1, 4

(1965); ”Logical basis for information theory and probability theory”, IEEE Trans. Inf. Theory, IT14, 662 (1968).
[13] Y. Pesin, ”Characteristic Lyapunov exponents and smooth ergodic theory”, English transl., Russian Math. Surveys 32, 55

(1977).
[14] A. A. Brudno, ”Entropy and the complexity of trajectories of a dynamical system”, Trans. Moscow Math. Soc. 2, 127

(1983).
[15] F. Blume, ”On the relation between entropy and the average complexity of trajectories in dynamical systems”, Comp.

Complex. 9, 146 (2000).
[16] P. Szepfalusy, ”Characterization of Chaos and Complexity by Properties of Dynamical Entropies”, Physica Scripta T25,

226 (1989).
[17] A. Wehrl, ”General properties of entropy”, Rev. Mod. Phys. 50, 221 (1978).
[18] C. H. Bennett, ”How to Define Complexity in Physics, and Why”, in ”Complexity, Entropy and the Physics of Information”,

SFI Studies in the Sciences of Complexity, vol.VIII, Ed. W. H. Zurek, Addison-Wesley (1990).
[19] S. Lloyd and H. Pagels, ”Complexity as Thermodynamic Depth”, Annals of Physics 188, 186 (1988).
[20] C. M. Papadimitriou, ”Computational Complexity”, Addison-Wesley, Massachusetts (1994).
[21] J. Rissanen, ”Stochastic complexity and modeling”, Ann. Stat. 14, 1080 (1986).
[22] V. M. Alekseev and M. V. Yacobson, ”Symbolic dynamics and hyperbolic dynamic systems”, Phys. Rep. 75, 287 (1982).
[23] M. A. Nielsen and I. L. Chuang, ”Quantum Computation and Information”, Cambridge University Press (2000).
[24] A. Caticha, ”Entropic Dynamics”, in Bayesian Inference and Maximum Entropy Methods in Science and Engineering, ed.

by R.L. Fry, AIP Conf. Proc. 617, 302 (2002).
[25] C. Cafaro, ”The Information Geometry of Chaos”, Ph. D. Thesis, State University of New York at Albany, USA (2008).
[26] C. Cafaro, ”Works on an information geometrodynamical approach to chaos”, Chaos, Solitons & Fractals 41, 886 (2009).
[27] A. Caticha and R. Preuss, ”Maximum entropy and Bayesian data analysis: Entropic prior distributions”, Phys. Rev. E70,

046127 (2004).
[28] A. Caticha, ”Relative Entropy and Inductive Inference”, Bayesian Inference and Maximum Entropy Methods in Science

and Engineering,ed. by G. Erickson and Y. Zhai, AIP Conf. Proc. 707, 75 (2004).



19

[29] A. Caticha and A. Giffin, ”Updating Probabilities”, in Bayesian Inference and Maximum Entropy Methods in Science and

Engineering, ed. by Ali Mohammad-Djafari, AIP Conf. Proc. 872, 31 (2006).
[30] A. Giffin, ”Maximum Entropy: The Universal Method for Inference”, Ph. D. Thesis, State University of New York at

Albany, USA (2008).
[31] S. Amari and H. Nagaoka, Methods of Information Geometry, American Mathematical Society, Oxford University Press,

2000.
[32] L. Casetti et al. , ”Riemannian theory of Hamiltonian chaos and Lyapunov exponents”, Phys. Rev. E54, 5969 (1996).
[33] M. Di Bari and P. Cipriani, ”Geometry and Chaos on Riemann and Finsler Manifolds”, Planet. Space Sci. 46, 1543 (1998).
[34] C. G. J. Jacobi, ”Vorlesungen uber Dynamik”, Reimer, Berlin (1866).
[35] T. Kawabe, ”Indicator of chaos based on the Riemannian geometric approach”, Phys. Rev. E71, 017201 (2005); T. Kawabe,

”Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system”, Phys. Rev. E67, 016201 (2003).
[36] C. Cafaro and S. A. Ali, ”Jacobi Fields on Statistical Manifolds of Negative Curvature”, Physica D234, 70 (2007).
[37] M. Tribus, ”Rational Descriptions, Decisions and Designs”, Pergamon Press (1969).
[38] A. Caticha and C. Cafaro, ”From Information Geometry to Newtonian Dynamics”, in Bayesian Inference and Maximum

Entropy Methods in Science and Engineering, ed. by K. Knuth et al., AIP Conf. Proc. 954, 165 (2007).
[39] S. A. Ali, C. Cafaro, D.-H. Kim, S. Mancini, ”The Effect Of Microscopic Correlations On The Information Geometric

Complexity Of Gaussian Statistical Models”, Physica A389, 3117 (2010).
[40] C. Cafaro and S. A. Ali, ”Geometrodynamics of Information on Curved Statistical Manifolds and its Applications to Chaos”,

EJTP 5, 139 (2008).
[41] C. Cafaro, ”Information geometry, inference methods and chaotic energy levels statistics”, Mod. Phys. Lett. B22, 1879

(2008).
[42] C. Cafaro and S. A. Ali, ”Can chaotic quantum energy levels statistics be characterized using information geometry and

inference methods?”, Physica A387, 6876 (2008).
[43] C. Cafaro and S. Mancini, ”On the Complexity of Statistical Models Admitting Correlations”, arXiv: math-ph/0905.2907

(2009).
[44] C. Cafaro, ”Information-Geometric Indicators of Chaos in Gaussian Models on Statistical Manifolds of Negative Ricci

Curvature”, Int. J. Theor. Phys. 47, 2924 (2008).
[45] J. M. Lee, ”Riemannian Manifolds: An Introduction to Curvature”, Springer-Verlag (1997).
[46] G. Casati and B. V. Chirikov, ”The legacy of chaos in quantum mechanics”, in Quantum Chaos: Between Order and

Disorder, edited by G. Casati and B. V. Chirikov, Cambridge University Press (1995).
[47] F. De Felice and J. S. Clarke, ”Relativity on Curved Manifolds”, Cambridge University Press (1990).
[48] H. C. Ohanian and R. Ruffini, ”Gravitation and Spacetime”, W.W. Norton & Company (1994).
[49] C. Chicone and B. Mashhoon, ”The generalized Jacobi equation”, Class. Quantum Grav. 19, 4231 (2002).
[50] M. A. Nielsen et. al., ”Quantum Computation as Geometry”, Science 311, 1133 (2006).
[51] M. R. Dowling and M. A. Nielsen, ”The Geometry of Quantum Computation”, Quantum Information & Computation 8,

0861 (2008).
[52] H. E. Brandt, ”Riemannian Geometry of Quantum Computation”, Nonlinear Analysis 71, 474 (2009).
[53] H. E. Brandt, ”Riemannian curvature in the differential geometry of quantum computation”, Physica E42, 449 (2010).
[54] M. A. Nielsen, ”Quantum information science as an approach to complex quantum systems”, arXiv:quant-ph/0208078

(2002).
[55] T. Prosen, ”Chaos and Complexity of Quantum Motion”, J. Phys. A40, 7881 (2007).

http://arxiv.org/abs/quant-ph/0208078

	I Introduction
	II On the IGAC: Remarks and Applications
	A Remarks
	B Applications
	1 Gaussian Statistical Models in the Absence of Correlations
	2 Gaussian Statistical Models in the Presence of Correlations between Microvariables
	3 Ensemble of Random Frequency Macroscopic Inverted Harmonic Oscillators
	4 IGAC of regular and chaotic quantum spin chains


	III The Model
	A Motivations
	B Information Geometry of the Model

	IV Information Geometric Complexity
	V Jacobi-Levi-Civita Equation and Jacobi Fields
	VI Final Remarks
	 Acknowledgments
	A Derivation of the line element
	 References

