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Abstract
As one of the evolutionary oldest parts of the brain, the diencephalon evolved to harmonize
changing environmental conditions with the internal state for survival of the individual and the
species. The pioneering work of physiologists and psychologists around the middle of the last
century clearly demonstrated that the hypothalamus is crucial for the display of motivated
behaviors, culminating in the discovery of electrical self-stimulation behavior and providing the
first neurological hint accounting for the concepts of reinforcement and reward. Here we review
recent progress in understanding the role of the lateral hypothalamic area in the control of
ingestive behavior and the regulation of energy balance. With its vast array of interoceptive and
exteroceptive afferent inputs and its equally rich efferent connectivity, the lateral hypothalamic
area is in an ideal position to integrate large amounts of information and orchestrate adaptive
responses. Most important for energy homeostasis, it receives metabolic state information through
both neural and humoral routes and can affect energy assimilation and energy expenditure through
direct access to behavioral, autonomic, and endocrine effector pathways. The complex interplays
of classical and peptide neurotransmitters such as orexin carrying out these integrative functions
are just beginning to be understood. Exciting new techniques allowing selective stimulation or
inhibition of specific neuronal phenotypes will greatly facilitate the functional mapping of both
input and output pathways.
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Introduction and historical perspective
The diencephalon first gained attention in the mid 19th century, after the group around the
Swiss neurologist, Walter Hess showed that electrical stimulation of different hypothalamic
areas in cats elicited a variety of behaviors, including fight, flight, copulation, and voracious
eating [1,2]. The influential discoveries of two hypothalamic areas with opposing effects on
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food intake and body weight in rats soon followed: a lateral area resulting in eating when
electrically stimulated and in aphagia and weight loss when lesioned [3] was dubbed
“feeding center” and a ventromedial area resulting in hyperphagia and obesity when
destroyed [4] was called “satiety center”. In parallel to these studies focusing on food intake,
Olds and Milner interested in reinforcement learning discovered the phenomenon of self-
stimulation in the brain [5,6]. Soon thereafter, the first paper published by the young Bartley
G. Hoebel under the mentorship of Phillip Teitelbaum put the two phenomena together in
the journal Science entitled: “Hypothalamic control of feeding and self-stimulation” [7] (Fig.
1).

This started a decade of intense investigation of the physiological determinants of these
phenomena, culminating in an impressive number of highly visible publications. However,
hypothalamic stimulation and lesion studies eventually tapered off, because little was
known, at the time, about neural connectivity and neurochemistry both within and outside
the hypothalamus. A first bout of anatomical studies was then fueled by the newly
discovered neural tract tracing methods with tritiated amino acids in the seventies (see
discussion by Swanson [8]). A second bout followed the discovery of leptin in the mid
nineties and capitalized on the identification of the “feeding” neuropeptides. Most recently,
revolutionary new ways have been developed to selectively stimulate specific types of
neurons in restricted brain areas, which definitely relegated the non-selective electrical
stimulation to the past. The new opto-genetic approach takes advantage of genetic
methodology for insertion of light-sensitive excitatory or inhibitory ion channels into
specific neurons and subsequent stimulation by light [9]. Thus, it is now possible to
selectively activate or suppress orexin or any other neuron type in the lateral hypothalamus
with maximal temporal control [10]. Similarly, “designer receptors” exclusively activated by
“designer drugs” (DREADD) can be genetically inserted into specific populations of
neurons and then selectively activated or suppressed by administration of the corresponding
designer drug [11,12].

This review is a tribute to the seminal work of Bartley G. Hoebel, whose work was
dedicated to a neurological understanding of ingestive behavior, specifically of food and
drug reward mechanisms. We will argue that the lateral hypothalamic area by virtue of its
connectivity and neurochemistry plays a key role in these behaviors. We believe that the
newly developed tracing and stimulating techniques will be essential for a detailed
understanding of how these complex pathways and circuits lead to the expression of
adaptive behaviors and ultimately to the regulation of energy balance which is so important
in health and disease. Given the large body of literature, we will not be able to cite all
relevant studies, but several excellent reviews, mainly focusing on the role of orexin/
hypocretin neurons, have recently been published [10,13–18].

Background of anatomy and chemistry of the lateral hypothalamus
The lateral hypothalamic area or zone is a large and heterogeneous area with several distinct
nuclear groups and is one of the most extensively interconnected area of the hypothalamus,
allowing it to receive a vast array of interoceptive and exteroceptive information and to
modulate cognitive, skeletal motor, autonomic, and endocrine functions (Fig. 2). The lateral
hypothalamic area merges rostrally into the preoptic area and caudally into the ventral
tegmental area. It borders medially to the dorsomedial, ventromedial, and arcuate nuclei and
the anterior hypothalamic and medial preoptic areas, and laterally to the internal capsule, the
optic tract, and more caudal to the subthalamic nucleus. There is no doubt that the LHA
consists of numerous distinct nuclei [19,20], but the function and connectivity of most of
these subnuclei has not been systematically studied. Generally, the lateral hypothalamic area
can be divided into anterior, tuberal (roughly at the level of the ventromedial hypothalamus)
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and posterior portions based on its efferent connectivity as first described by Saper [20] (for a
more detailed review see [21]). Another useful anatomic guide is the distribution pattern of
two well studied neuronal populations that express either orexin/hypocretin or melanin-
concentrating hormone (MCH) [19].

Two prominent fiber bundles traverse the lateral hypothalamic area, the medial forebrain
bundle extending from the brainstem to the olfactory bulb and integrating neuronal
processes from several brain areas including lateral hypothalamic neurons [22], and the
fornix, connecting the hippocampal complex with the mammillary nuclei in the posterior
ventral hypothalamus. This makes interpretation of electrical stimulation and lesion studies
difficult, as involvement of nonspecific fibers of passage must be taken into
consideration [22–24].

Connectivity of the lateral hypothalamic area
Afferents to the lateral hypothalamic area have been classically studied with retrograde
tracing techniques, but because such tracers can be taken up not only by axon terminals but
also by fibers of passage, some caution is necessary, and prospective afferent sites need to
be verified with anterograde tracers. Based on such verification, afferents to the lateral
hypothalamic area have been demonstrated to originate from various cortico-limbic
structures such as the prefrontal/orbitofrontal, insular, and olfactory cortex, amygdala,
hippocampal formation, the shell of the nucleus accumbens, and from brainstem structures
including most aminergic cell groups such as the nucleus of the solitary tract [21,25].
Afferents from medial portions of the hypothalamus, although generally sparse, are
functionally highly significant, as for example, projections from the arcuate nucleus POMC/
CART and NPY/AgRP neurons [26–28] (Fig. 3). The perifornical area within the lateral
hypothalamus receives substantial NPY-ergic input from the arcuate nucleus, and the
strongest feeding response to NPY can be elicited by local injection into the perifornical
area [29]. Furthermore, given its size and structural complexity, there is considerable
connectivity within the lateral hypothalamic area itself, particularly projections from anterior
to more posterior portions [26,30].

More recently, Sakurai and colleagues used a transgenic method to map upstream neuronal
populations that have synaptic connections to orexin neurons and confirmed most of the
older findings with classical tracing techniques [31] (Fig. 2). In another recent study
retrogradely transported neurotrophic viruses where used to map circuits including the
lateral hypothalamic area [32]. They revealed projections from the arcuate nucleus,
particularly the lateral POMC neuron containing portion, to insular and anterior cingulate
cortex via synaptic relays in the lateral hypothalamic area (including orexin and MCH
neurons) and midline thalamic nuclei. Similar multisynaptic projections relaying in the
lateral hypothalamus to the nucleus accumbens shell originated in both arcuate POMC and
NPY/AgRP neurons [32].

The LHA has vast efferent projections to the entire cortical mantle including the
hippocampal formation, extended amygdala, basal ganglia and thalamus, the midbrain and
pons, the brainstem and spinal cord, as well as most other nuclei of the
hypothalamus [26,33,34] (and see [21] for a review) (Figs. 2 and 3). These projections have
been established using mainly retrograde tracer injections into the various projection targets
resulting in labeled perikarya in the lateral hypothalamic area, and erroneous co-labeling of
fibers of passage is not a problem. More recently, many of these projections have been
confirmed on the basis of immunohistochemical studies using antibodies to peptide
neurotransmitters, which are almost exclusively produced in lateral hypothalamic neurons
such as orexin and MCH (for a review see [35]). Within the hypothalamus the lateral zone
has efferent projections to most medial zone nuclei such as the arcuate, paraventricular,
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dorsomedial, ventromedial, and anterior hypothalamic nuclei[21]. In particular, orexin
neurons have been shown to project to the arcuate and paraventricular nuclei [36,37].

With respect to the theme of this review, Mogenson was the first to recognize that the
nucleus accumbens, with its efferent projections to the lateral hypothalamus, may provide an
interface between motivation and behavioral action [38], and his basic idea has been further
developed in more recent review articles [39,40]. Specifically, Zahm has presented an
integrative neuroanatomical perspective and proposed a convincing conceptual framework
implicating this circuitry in general adaptive responding [39]. Particularly relevant,
significant projections from the nucleus accumbens to the hypothalamus have been
demonstrated. As shown with various tracing methods, these projections originate mainly
from the shell and terminate predominantly in the lateral and perifornical
hypothalamus [30,41–44]. In addition to these direct inputs, the nucleus accumbens may
influence hypothalamic function via its very strong projections to the ventral pallidum,
located ventrally to the nucleus accumbens [40,42], and via the pedunculopontine tegmental
area [45]. The ventral pallidum projects directly to the far lateral hypothalamic area [46,47],
and this pathway could also be involved in accumbens-induced food intake, as suggested by
Stratford and colleagues [48,49].

Feeding peptides and neurotransmitters in lateral hypothalamic neurons
Several neuronal populations expressing neuropeptides categorized either as orexigenic such
as MCH [50], orexin/hypocretin [51], galanin [52,53], or anorexigenic such as neurotensin [54]

and CART [55] have been described.

MCH neurons project very broadly throughout the CNS [56,57], and similarly MCH receptors
(SLC-1) are distributed equally broad in the brain, with particularly strong in situ
hybridization signals throughout the cortex, including orbitofrontal, prelimbic, sensorimotor,
motor and piriform cortex, as well as in olfactory pathways, nucleus accumbens shell,
striatum, hippocampus, locus coeruleus and NTS[58–60]. Similar to other orexigenic peptides
such as NPY and AgRP, MCH expression levels increase with fasting and are restored to fed
levels with leptin injections [61]. Furthermore, intracerebroventricular MCH injections
increase food intake [62], and MCH overexpression leads to obesity and insulin
resistance [63], thus suggesting that MCH acts as a typical orexigenic neuropeptide that may
regulate and integrate various aspects of feeding behavior [63].

Orexin neurons are distinct from MCH neurons and co-express orexin-A and dynorphin [64].
Their projection pattern is equally widespread throughout the brain, including dense
projections to areas in the brainstem and spinal cord, such as the locus coeruleus and dorsal
vagal complex [36,64–68]. Orexin-A acts via two receptor isoforms (OxR-1 and OxR-2) that
are also broadly expressed throughout the brain. Orexin-A injections into the lateral
ventricle increase food intake [69] and systemic orexin receptor antagonist decreases food
intake [70]. Orexin knockout mice exhibit hypophagia and narcolepsy [71]. However, in
contrast to other orexigenic neuropeptides such as MCH, orexin gene expression does not
increase by fasting but is strongly increased by leptin administration [61,72,73]. Thus orexin is
not a typical orexigenic neuropeptide and based on its striking effect on sleep-wakefulness
regulation it was suggested that the feeding related properties of orexin might be secondary
to its regulation of arousal (a sleeping animal does not eat) [74,75] and regulation of arousal
may well interact with other orexin modulated behaviors such as reward and anxiety.

Neurotensin expressing neurons are not restricted to, but are found abundantly in the lateral
hypothalamic area [76], and centrally administered neurotensin may suppress food intake by
modulation of the mesolimbic dopamine system [77,78]. Consistent with this interpretation
are observations that anorexigenic leptin action induces neurotensin expression [79] and are
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suggested to involve leptin receptor expressing lateral hypothalamic neurotensin neurons [80]

and personal communication with Dr. Martin G Myers).

Galanin expressing neurons are found throughout most of the brain, including the lateral
hypothalamic area. When injected into the paraventricular nucleus, galanin stimulates
consumption of food, particularly high-fat diets, and alcohol, and high-fat consumption
stimulates galanin gene expression in a positive feedback manner [81,82]. Galanin expression
is not changed by fasting or leptin administration [83], but galanin deficient mice show
enhanced leptin sensitivity [84]. Several studies demonstrated that central galanin also
modulates the mesolimbic DA system [85–88], likely via galanin actions in the ventral
tegmental area [87], possibly involving galanin projections from the paraventricular nucleus
of the hypothalamus or the locus coeruleus. However, given the intense co-localization of
galanin and neurotensin specifically in the perifornical area of the lateral hypothalamus (Fig.
4, unpublished observations), galanin expressing neurons in the lateral hypothalamic area
may very well contribute to the modulation of the mesolimbic DA system. More recently,
the role of galanin in stress related behavior as well as drug addiction [89,90] has been
intensely studied and is thought to involve dopaminergic transduction also (see review by
Picciotto [91]).

CART expressing neurons are found scattered throughout the lateral hypothalamic area and
other brain areas [92]. Intracerebroventricular CART inhibits food intake [93] and has effects
on reward and anxiety (for a recent review see [94]). Leptin induces and fasting inhibits
CART mRNA expression in the arcuate nucleus and more moderately in the dorsomedial
nucleus and medial parts of the lateral hypothalamic area [93]. Research has been hindered
by the absence of an identified CART-receptor and lack of antagonists [94].

Most neurons in the lateral hypothalamic area express more than one peptide and in addition
may express either one of the classical neurotransmitters glutamate or GABA. The
physiological significance of this co-expression of multiple neuotransmitters is in general
not well understood and has not been investigated specifically for inputs to and downstream
signaling of lateral hypothalamic neurons. Studies in sympathetic neurons expressing the
classical neurotransmitters noradrenaline and acetylcholine together with the peptide
NPY [95] demonstrate a degree of segregation of transmitters in different synapses [96] and
preferential release of noradrenaline at low and NPY at high firing frequencies [97,98]. If
such principles apply to lateral hypothalamic neurons it is conceivable that given neurons do
not rigidly excite or inhibit downstream neurons, but can preferentially excite and inhibit
downstream neurons in an activity-dependent and location-specific manner.

The new opto-genetic and designer drug tools are very promising to answer some of these
questions. In a recent study, AgRP and POMC neurons were targeted with channelrhodopsin
(ChR2) and light induced stimulation, resulting in increased or decreased food intake
respectively, confirming earlier data (as reviewed by Schwartz [99]). However, these studies
also showed that the firing frequency in AgRP neurons directly translated into feeding
behavior (the higher the firing frequency, the more intense the hyperphagia observed).
Furthermore, anorexia evoked by light stimulated POMC neurons required functional MC4R
signaling, as expected from earlier findings, but orexigenic effects of optogenetically
stimulated AgRP neurons were surprisingly independent of melacocortin receptor
function [100]. These data are, however, consistent with other recent findings showing that
GABAergic, but melanocortin independent brainstem inputs from AgRP neurons into the
parabrachial nucleus are sufficient to explain orexigenic actions from AgRP neurons [101].

In summary, the lateral hypothalamic area with its rich inputs and outputs is in an ideal
anatomical position to integrate both internal and external information and access all major
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output axes, behavioral, autonomic, and endocrine. However, much future research will be
necessary to identify the details of input-output relationships of functionally specific sub-
areas of the larger lateral hypothalamic area. These studies show clear evidence that arcuate
feeding circuits are segregated into peptiderdic transmission and transmission via classic
neurotransmitters and much has to be learned for their relative importance for feeding and
other behaviors. Optogenetic tools will allow the study of other hypothalamic neurons in
discrete brain sites and their functional (modulation of neuronal activity) and behavioral
importance.

Role of the lateral hypothalamic area in sensing of the internal milieu
Sensing the internal milieu by the brain, including the availability of nutrients, is
fundamental for the orchestration of optimal adaptive responses under given environmental
conditions. Although the basomedial hypothalamus and caudal brainstem have been
identified as key areas involved in nutrient sensing (as reviewed in [102,103]), there is
accumulating evidence for a similar role of the lateral hypothalamus and other brain areas.
There are two ways by which a brain area can sense availability of nutrients, through neural
inputs from primary nutrient-sensing areas elsewhere in the brain (or periphery) and by
direct action of nutrient availability signals on neurons and glial cells within a given area. In
the case of the lateral hypothalamic area, neural inputs from both the arcuate nucleus and the
caudal brainstem (as discussed above) are likely to convey information about the availability
of nutrients, although the relevant experiments necessary to demonstrate such a function,
namely selective elimination of these inputs, have not yet been carried out.

After food is ingested, a cascade of signals is generated along the alimentary canal and the
metabolic pathways in various organs after absorption. Together, these hormonal,
metabolite, and neural signals provide comprehensive information regarding availability of
nutrients acutely and long-term. The gustatory system is at the interface between
environment and internal milieu and will be discussed together with the other external
sensory modalities below.

Glucose and insulin as signals for acute fuel availability
Glucose sensing was already a hot topic soon after the hypothalamic centers were
discovered. Using in vivo extracellular recording in a number of species, the pioneering
work of the Japanese researcher Yutaka Oomura identified and characterized glucose
sensitive neurons throughout the central and peripheral nervous system, including the lateral
hypothalamus [104–106]. These and other earlier studies from the pre-leptin era on food
intake-related functional aspects of the lateral hypothalamus are discussed in an extensive
review by Bernardis and Bellinger [107].

While many of the earlier in vitro studies used glucose concentrations well above the
physiological range found in normal brain tissue [108,109], the general observation of
glucose-inhibited and glucose-excited neurons in the lateral hypothalamus was confirmed in
studies using more physiological glucose concentrations. Specifically, it was demonstrated
that while physiologically relevant glucose concentrations decrease excitability and inhibit
orexin neurons, they increase excitability of co-mingled MCH neurons [110,111] and that a
distinct population of orexin neurons exhibits only a transient inhibitory response to
sustained rises in glucose levels, allowing cell firing to maintain sensitivity to small
fluctuations while simultaneously encoding a large range of basal glucose
concentrations [112].

It was originally thought that neuronal metabolism of glucose via the GLUT2 glucose
transporter, glucokinase and the ATP-sensitive potassium channel (KATP) was necessary for
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glucose to change neuronal excitability, but several alternative mechanisms of glucose
sensing have recently been described. First, the sweet taste receptor T1R2 is expressed in
lateral hypothalamus and may activate neurons in a metabolism-independent fashion [113].
Second, orexin neurons may function as lactate sensors, as lactate produced in astrocytes
and taken up by neighboring neurons through the monocarboxylate transporter (MCT1/2)
may sustain spontaneous activity of orexin neurons and keep them sensitized for excitation
by other stimuli, independent of glucose [114].

With the availability of c-Fos immunohistochemistry as a neuronal activity stain, it was also
found that hypoglycemia induced by acute insulin administration in rats stimulated neurons
throughout the lateral hypothalamic area, many of them co-expressing orexin [115]. A similar
activation of lateral hypothalamic orexin and other neurons was found after acute food
deprivation in rats [116] and monkeys [117], as well as after food restriction and 2-deoxy-D-
glucose administration in rats [118]. However, these studies do not rule out activation of
distant glucose sensing mechanisms and mediation by neural inputs to the lateral
hypothalamus.

Finally, in a recent study in mice, it was shown that the transcription factor Foxa2, a
downstream target of insulin signaling, regulates the expression of orexin and MCH during
fasting. Constitutive activation of Foxa2 in the brain resulted in increased neuronal orexin
and MCH expression and increased food consumption, metabolism, insulin sensitivity, and
increased physical activity in the fed state (reaching the level in fasted mice) [119].

Leptin as a signal for availability of stored nutrients
Within the hypothalamus, the arcuate nucleus, with its NPY and POMC neurons, had been
originally thought to play an exclusive role in integrating metabolic signals such as leptin.
But clearly, leptin receptors are located in other hypothalamic areas such as the
ventromedial, dorsomedial, and premammillary nuclei, as well as the lateral and perifornical
areas, where they likely contribute to leptin’s effects on food intake and energy expenditure.
Indeed, with novel transgenic leptin receptor specific tracing methods it was shown that
LHA leptin receptor neurons modulate the mesolimbic dopamine system in the ventral
tegmental area. While some leptin receptor-bearing lateral hypothalamic neurons project
directly to the ventral tegmental area [72], they also locally synapse onto orexin (but not
MCH neurons), which in turn also project to dopamine neurons in the ventral tegmental
area [73]. Furthermore, leptin action in these lateral hypothalamic neurons, some of which
also co-express neurotensin (personal communication with Dr. Martin G. Myers), increases
orexin gene expression and decreases food intake [73]. Thus, orexin neurons do not
themselves express leptin receptors but receive input from neighboring leptin receptor-
expressing neurons [73] (Fig. 3). In addition, leptin responsive POMC/CART and NPY/
AgRP neurons in the arcuate nucleus project to the lateral hypothalamus [27] and some of
them make close anatomical contacts with orexin and MCH neurons [27,120]. It will be
interesting to determine whether these two leptin-sensitive inputs to orexin neurons play
different roles.

Signals from the gut
Ghrelin, a hormone secreted mainly from the gastric mucosa and showing the highest
circulating levels in the absence of digestible nutrients, increases c-Fos expression in orexin
but not MCH neurons when administered intracerebroventricularly [121,122] and directly
depolarizes and increases firing frequency of orexin neurons in vitro [123]. Local
administration of ghrelin into the lateral hypothalamic area increases food intake and
wakefulness [124] and central pretreatment with anti-orexin antibody attenuated peripheral
ghrelin-induced increase in food intake [121]. These findings strongly suggest that at least
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one site of action for endogenous ghrelin to stimulate arousal, foraging, and appetitive
behavior is orexin neurons in the lateral hypothalamus [123].

A potential role for the lateral hypothalamic area in the effects on food intake by other gut
hormones is much less clear. Although, as expected from a putative satiety hormone, direct
lateral hypothalamic injections of GLP-1 suppressed and its receptor antagonist Exendin-9
increased short-term food intake in rats [125], GLP-1 unexpectedly depolarized orexin
neurons and increased their spike frequency in vitro [126]. It is thus not clear whether the two
gut hormones ghrelin and GLP-1, which have clearly opposite effects on food intake, act on
different populations of orexin neurons. Except for a report of no effect of intraperitoneal
injection of PYY(3–36) on orexin gene expression in mice, there are no data available
suggesting a role for the LHA in the satiating effects of the other lower gut hormone PYY.

In addition to a direct action via the circulation and blood barrier transport mechanisms, gut
hormones and mechanical signals can potentially reach the lateral hypothalamic area via
neural pathways including vagal afferents and medullary-hypothalamic projections
including A2 catecholaminergic and GLP-1 expressing NTS neurons [127,128]. Functional
input from vagal afferents to lateral hypothalamic neurons was demonstrated using
extracellular recording techniques in intact rats [129]. This latter study further showed a
remarkable degree of convergence on single lateral hypothalamic neurons of inputs from
various sources. About half of all neurons tested responded to both vagal and cerebellar
(somatic) input, and of all neurons doubly responsive, 60% were also glucose sensitive.
Also, when the vagal and cerebellar inputs were stimulated simultaneously, a summation of
the responses was observed [129].

In summary, glucose, insulin, ghrelin, and leptin have been quite convincingly demonstrated
to directly act on various types of lateral hypothalamic neurons and to provide negative
(insulin, leptin) and positive (ghrelin) feedback in the control of food intake. However, the
specific circuitries and physiological roles of glucose-inhibited and glucose-stimulated
neurons within the lateral hypothalamic area remain unclear.

Role of the lateral hypothalamic area in monitoring environmental stimuli
and conditions
Olfactory, gustatory, somatosensory, and visual and information

Using single unit recording in intact animals, it was already shown during the height of the
hypothalamic feeding center days that lateral hypothalamic neurons in the far-lateral
hypothalamus receive olfactory and gustatory input [130–134]. Gustatory pathways from the
parabrachial taste area to the lateral hypothalamus were confirmed with tracing
techniques [135]. Extensive studies in Rhesus monkeys further identified both glucose
excited and glucose inhibited LH neurons as recipients of olfactory and gustatory
inputs [136–139]. The lateral hypothalamus also receives direct, monosynaptic input from
nociceptive neurons in the spinal cord [140] and periaqueductul gray [141], and noxious
stimuli increased Fos protein expression in orexin neurons [142].

Threat and stress
Besides input from nociceptive somatosensory afferents, orexin neurons are activated by
immobilization and cold stress [143]. Because it was demonstrated that corticotrophin-
releasing factor (CRF)-immunoreactive terminals make direct contact with orexin neurons
and that CRF increases the firing rate of a subpopulation of orexin neurons in a CRF
receptor-1 dependent fashion, it is likely that stress-induced arousal depends on a CRF-
orexin pathway [143,144].

Berthoud and Münzberg Page 8

Physiol Behav. Author manuscript; available in PMC 2012 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The LHA and behavioral effector pathways
Reward seeking

As mentioned in the introduction, one of the hallmarks of the lateral hypothalamus is its
support of electrical self-stimulation, but that because of the indiscriminate activation of
local neurons and fibers of passage with electrical stimulation, its underlying neurology is
far from clear. Recent studies strongly implicate projections of lateral hypothalamic orexin
neurons to the midbrain ventral tegmental area in this behavior. Orexin fibers innervate
ventral tegmental dopamine neurons [145–147] which express orexin-1 receptors [148–150], and
both dopaminergic and non-dopaminergic neurons in the ventral tegmental area are excited
by orexins [151,152]. Ventral tegmental area orexin signaling is involved in cocaine and
morphine-induced hyperlocomotion and place preference through the mesolimbic dopamine
system, partly by potentiating NMDA-mediated excitatory currents in dopaminergic
neurons [150,152]. Orexin-deficient mice are less susceptible to develop drug
dependence [153], and orexin injection into the ventral tegmental area can reinstate an
extinguished preference for drugs of abuse [154].

Our own observations implicate lateral hypothalamic orexin neurons in natural food reward.
We used nucleus accumbens mu-opioid-induced intake of palatable food that was pioneered
by the group of the late Anne Kelley as a model of reward-driven food intake in
metabolically satiated rats [155–159], which is accompanied by activation of orexin neurons in
the perifornical lateral hypothalamus [158,160], and can be blocked by inhibiting lateral
hypothalamic activity with GABA receptor agonists [158] or glutamate receptor
antagonist [48]. This suggests that glutamatergic neurons within the hypothalamus mediate
the response, consistent with the finding that accumbens shell projections terminate in the
anterior LH, rich in glutamatergic neurons that connect with orexin neurons in the more
posterior lateral hypothalamus [30]. Because medium-spiny accumbens output neurons
express GABA, the most parsimonious explanation is that stimulation of food intake is
mediated by GABA-projections from the accumbens to the lateral hypothalamic area. These
projection neurons seem to be normally (tonically) active and inhibit certain lateral
hypothalamic neurons (e.g. orexin neurons) probably by presynaptically inhibiting glutamate
release from local interneurons (Fig. 3). Inhibition of accumbens-lateral hypothalamus
projection neurons leads to an arrest of GABA release from their terminals, disinhibition of
these lateral hypothalamic neurons, and increased food intake. This model would fit the
observation that activation of NMDA receptors in the lateral hypothalamus by glutamate is
necessary for food-deprivation-induced food intake [161] and that injection of the GABA-
antagonist bicuculline into the anterior lateral hypothalamic area increases ingestion of
sweet milk [162].

Using this nucleus accumbens-driven intake of high-fat food in satiated rats, we showed that
local bilateral injection of orexin receptor-1 antagonist into the ventral tegmental area
blocked accumbens-induced palatable food intake [163] (Fig. 4). Findings by Harris and
Aston-Jones suggest that largely separate orexin neuron populations in the lateral (lateral to
fornix) and medial portions of the lateral hypothalamic area mediate reward- and stress-
guided behaviors, respectively [154,164,165]. In contrast, we found significant increases in
Fos-activated orexin neurons after accumbens DAMGO only in the perifornical area, but not
in the more lateral orexin neuron population [163]. There is considerable literature
demonstrating that metabolic stress such as food deprivation and restriction, insulin-induced
hypoglycemia, and 2DG-induced glucoprivation, activates orexin neurons [115–118], although
such activated orexin neurons can be found in both the medial and lateral fields [118]. Given
the importance of the hypothalamic orexin neurons in these diverse functional aspects, it
will be important to further examine functional specificity of subpopulations [166].
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In addition, orexin neurons feed back specifically to cholinergic striatal interneurons via the
paraventricular nucleus of the thalamus [167]. The seminal work by the group of Berridge
and colleagues identified a “liking” hotspot in the shell of the nucleus accumbens where mu-
opioid activity enhances positive hedonic reactions to palatable foods in rats [168,169].
Together, these findings strongly suggest a role for an accumbens - LH orexin – VTA circuit
in the expression of natural food reward.

While most of the above described experiments use pharmacological levels of drug
applications, it remains elusive if endogenous orexin levels stimulate dopaminergic VTA
neurons and if this would translate into DA release and behavioral changes. A recent study
by Tsai et. al. [170] used an optogenetic approach to test the behavioral effects of different
firing frequencies in dopaminergic DA neurons in the VTA. The study convincingly showed
that light evoked high frequency phasic firing, but not low frequency tonic firing, caused a
conditioned place preference and transient DA release in the nucleus accumbens [170].
Therefore, phasic dopaminergic activity is sufficient to evoke behavioral conditioning. Thus,
future experiments using neuron specific stimulation/inhibition of LHA (e.g. orexin)
neurons should reveal exiting new insights linking neuronal activity with appetitive behavior
and reward function.

Food intake
Although reward seeking is an important component, a number of other neural systems are
required for the orchestration of ingestive behavior. These include access to appropriate oro-
motor and locomotor functions and its autonomic support, which are generally organized in
the hindbrain and spinal cord. One approach we and others have used to address hindbrain
participation in orexin-induced food intake is 4th ventricular administration of orexin in
rats [68,171]. We demonstrated that sub-populations of about 20% and 10% of lateral
hypothalamic orexin and MCH neurons, respectively, project to the nucleus of the solitary
tract and dorsal motor nucleus with axon terminals in close contact to neurons expressing
tyrosine hydroxylase and GLP-1, both allegedly involved in satiation and suppression of
food intake. Similar contacts were frequently observed with neurons of the nucleus of the
solitary tract, activation of which by gastrointestinal food stimuli was demonstrated by the
expression of nuclear c-Fos immunoreactivity, and orexin-A administration to the fourth
ventricle induced significant Fos-expression in many of the catecholaminergic neurons.
Finally, fourth ventricular orexin injections significantly stimulated chow and water intake
in nonfood-deprived rats, and direct bilateral injections of orexin into the dorsal vagal
complex increased intake of palatable high-fat diet [68].

To further characterize the role of hindbrain orexin signaling in ingestive behavior, Baird
and colleagues used sucrose licking microstructure analysis [171]. Fourth ventricular
administration of orexin increased both meal size and meal frequency. Prolonging meals
without affecting early ingestion rate or lick burst size suggested that orexin affected
inhibitory postingestive feedback rather than taste evaluation [171]. This interpretation was
supported by the observation that third ventricular orexin, while still able to increase meal
frequency, was no longer able to increase meal size in rats with lesions of the area postrema
and adjacent NTS [171]. Together, the findings suggest that areas in the hindbrain mediate
the increase in consummatory (meal size) and the hypothalamus and other forebrain sites
mediate the appetitive (meal frequency) components of orexin-induced hyperphagia.

The hypothalamic effect on meal frequency (meal initiation) could be mediated by orexin
projections to the arcuate nucleus NPY/AgRP and POMC/CART neuron populations [172].
Specifically, POMC neurons are presynaptically inhibited by orexin in vivo [173]. This
pathway may also play a permissive role in food intake induced by mu-opioid stimulation of
the nucleus accumbens [160].
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In summary, we have come a long way in better understanding what is happening in the
classical “feeding center”. A circuitry that includes at least parts of the lateral hypothalamic
area, the midbrain dopamine system with its numerous cortico-limbic targets, and the
nucleus accumbens, appears to be important for reward seeking and the initiation of
appetitive behavior. Equally important circuits including reciprocal connections with the
medullary oromotor pattern generators and projections to the brainstem and spinal cord
autonomic preganglionic neurons prepare the internal milieu for an ingestive bout and
sustain ingestive behavior.

The LHA and autonomic effector pathways
Gut, pancreas, and hepatic functions

Again, electrical stimulation and lesions of the LHA were the first to show changes in
gastrointestinal [174], pancreatic [175], hepatic [176,177], and adipose tissue functions [178], as
mediated by the sympathetic and parasympathetic nervous system. However, only the
discovery of neuropeptides and other technological advances made it possible to identify the
specific pathways and confirm some of these earlier claims.

We demonstrated that local administration of minute amounts of orexin-A into the dorsal
motor nucleus of the vagus nerve increased gastric motility and intragastric pressure [179].
Together with demonstrating orexin receptor-1 on gastric retrogradely identified vagal
motor neurons [179,180] and our anatomical findings discussed above, these observations
strongly suggest that lateral hypothalamic orexin neurons can directly influence
gastrointestinal functions via vagal excitatory motor neurons in preparation for handling
ingested nutrients. Similarly, central orexin administration appears to stimulate pancreatic
exocrine secretion in a vagus-dependent but gastric acid secretion-independent fashion [181],
and hypoglycemia-induced increases in vagal efferent signaling to the pancreas depends on
orexin-signaling in the dorsal motor nucleus of the vagus [182].

Orexin projections to the spinal cord appear to specifically innervate sympathetic
preganglionic neurons, which are activated and synchronized by orexin in an orexin
receptor-1 dependent fashion [183].

Energy expenditure
We also examined in detail orexin-A innervation of the caudal raphé nuclei in the medulla,
known to harbor sympathetic preganglionic motor neurons involved in thermal,
cardiovascular, and gastrointestinal regulation. All three components of the caudal raphé
nuclei, raphé pallidus, raphé obscurus, and parapyramidal nucleus, are innervated by orexin-
A-immunoreactive fibers [184]. Using confocal microscopy, we demonstrate close
anatomical appositions between varicose orexin-A immunoreactive axon profiles and
sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies
virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of
pro-TRH mRNA [184]. Furthermore, orexin-A injected into the fourth ventricle induced c-
Fos expression in the raphé pallidus and parapyramidal nucleus [184]. These findings suggest
that orexin neurons in the hypothalamus can modulate brown fat thermogenesis,
cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal
raphé nuclei, and support the idea that orexin’s simultaneous stimulation of food intake and
sympathetic activity might have evolved as a mechanism to stay alert while foraging [184]

Fourth ventricular administration of melanin-concentrating hormone in freely moving rats
decreased core body temperature but did not change locomotor activity and food and water
intake[58]. We conclude that the rich hypothalamo-medullary melanin-concentrating
hormone projections in the rat are mainly inhibitory to nucleus of the solitary tract neurons,
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but are not involved in the control of food intake. Projections to ventral medullary sites may
play a role in the inhibitory effect of melanin-concentrating hormones on energy
expenditure [58,185]

Conclusions and Perspective
An exciting new discovery more than 50 years ago showed that electrical stimulation of the
lateral hypothalamic area induces feeding and self-stimulation behavior. However, only the
continuous progress in neuroanatomical, neurochemical, and genetically-based techniques
has allowed us to have at least a glimpse of understanding the neurology behind these
phenomena. As could have been suspected 50 years ago, the lateral hypothalamus “does it
not alone”; it is the rich connectivity with key downstream effector circuits and mechanisms
and feedback from the metabolic periphery that underlies these phenomena. Despite these
new insights, there are still more questions than answers. One issue is the connectivity and
functional specificity of lateral hypothalamic sub-areas. Are all orexin or MCH neurons
serving the same physiological functions, or are there different orexin or MCH-fields that
serve different aspects of a unifying function or different functions altogether? Another
unsolved issue is the physiological significance of co-expression of multiple classical and
peptide neurotransmitters in a given neuron. We believe the new generation of
methodological tools such as the ability to selectively stimulate specific neurons will greatly
facilitate exciting future research.
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Highlights

1. A historical perspective of lateral hypothalamic functions is provided.

2. The anatomy, connectivity, and chemistry of the lateral hypothalamic area is
reviewed.

3. Lateral hypothalamic mechanisms involved in energy homeostasis are
discussed.

4. The utility of cutting-edge modern methodology is highlighted.
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Fig. 1.
Sustained inhibition of self-stimulation by intragastric food but not water load in rats as
demonstrated by Hoebel and Teitelbaum [7] in 1962. The authors concluded that: “Self-
stimulation rate was slowed to about half the normal rate by a stomach load of 18 ml of
liquid milk diet. The same amount of water had only a transient effect, suggesting that some
consequence of food intake other than taste or stomach distension was responsible for
prolonged inhibition [7].
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Fig. 2.
Schematic diagrams showing major inputs (top)and outputs (bottom) of the lateral
hypothalamic area on an outline of the rat brain.
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Fig. 3.
Interactions of lateral hypothalamic neurons with other hypothalamic areas and major
behavioral, autonomic, and endocrine output pathways and functions. This highly simplified
diagram does not show the relationship with other important hypothalamic nuclei such as the
dorsomedial and ventral hypothalamic nuclei. Also not shown are the massive reciprocal
connections from cortex and limbic structures to the lateral hypothalamic area. Arrows
entering the three nuclei but not contacting individual neurons signifies potential input to all
the different neuron types in that area. Abbreviations: AgRP, agouti-related protein; AVP,
arginine-vasopressin; CART, cocaine and amphetamine-regulated transcript; CRH,
corticotrophin-releasing hormone; DYN, dynorphin; GABA, gamma-aminobutyric acid;
Gal, galanin, Glu, glutamate; MCH, melanin-concentrating hormone; NPY, neuropeptide Y;
NT, neurotensin; ORX, orexin/hypocretin; OT, oxytocin; POMC, proopio-melanocortin;
TRH, Thyrotropin-releasing hormone; LHA, lateral hypothalamic area; PVN,
paraventricular nucleus of the hypothalamus; SCN, suprachiasmatic nucleus; 3V, third
ventricle.
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Fig. 4.
Co-existence of orexigenic (galanin) and anorexigenic (neurotensin) neuropeptides in the
LHA was demonstrated in colchicine-treated reporter mice with green fluorescent protein
expression in galanin neurons (green) and co-staining for neurotensin (red).
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Fig. 5.
Orexin-1R antagonist administration into the VTA blocks high-fat intake induced by
accumbens administration of DAMGO. a: Vehicle or the orexin receptor antagonist
SB334867 (15 nmol/side) was injected into the VTA and saline or DAMGO (250 ng) into
the nucleus accumbens after overnight access to high-fat chow for pre-satiation. The robust
DAMGO-induced feeding response over saline baseline (p<0.001) was almost completely
abolished by VTA pretreatment with the orexin receptor antagonist. In animals with either
one or both of the bilateral cannula tips not within the VTA, the orexin receptor antagonist
was unable to block DAMGO-induced high-fat feeding. Bars that do not share the same
letter are significantly different from each other (based on ANOVA, followed by
Bonferroni-adjusted multiple comparisons test, p<0.05). b: Verification of orexin receptor
antagonist injection sites aimed at the VTA. Striped circles depict animals with both sites
within the VTA (n = 11), gray circles depict animals with one or both sites outside the VTA
(n = 6), and diamond-filled circles depict animals with unilateral injections (n = 2). Injection
sites are superimposed on images from the Paxinos and Watson stereotaxic atlas.
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