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Abstract

The concept of impedance, which characterises the current response to a period-
ical driving, is introduced in the context of stochastic transport. In particular,
we calculate the impedance for an exactly solvable model, namely the stochastic
transport of particles through a single-level quantum dot.
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1. Introduction

Electrical impedance [1, 2] is a well known concept from undergraduate
courses on electromagnetism. Students learn about it when analysing simple
electrical circuits composed out of resistors, capacitors and inductors. When
driven by an alternating voltage, the current response of these circuits is far
richer compared to any direct current measurement. Apart from the amplitude,
now also the phase shift between the voltage and current signal comes into
play. By combining amplitude and phase into a single complex quantity, the
impedance, students learn to appreciate the effectiveness of a complex notation.
In a typical experimental setup, a swipe of the driving frequency allows access
to detailed information about the composition and topology of the underlying
electrical network.

Impedance can also be found in many other areas such as acoustics [3] and
mechanical response [4]. All it requires is a linear and time-invariant system,
properties which are easily found in various branches of physics. In this work,
we introduce the concept of impedance in the context of stochastic transport of
particles. We do so by considering one of the simplest stochastic systems avail-
able, namely a single-level quantum dot connected to two electron reservoirs.
Periodic driving is achieved by modulating the difference in chemical potential
between the reservoirs. Such a driving brings the system out of equilibrium and
induces a flow of particles between the reservoirs via the intermediate quantum
dot. As we demonstrate, even for this simple setup the response behaviour
is rich and intricate. And quite remarkable, for certain parameter values the
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impedance of this system can be mapped exactly to the one of an equivalent
electrical circuit.

The inspiration for this work comes from a series of remarkable experiments
performed at the X-LAB facilities of Hasselt University [5]. Subject of these in-
vestigations are cable bacteria, a recently discovered organism found in fresh and
seawater sediments [6, 7, 8, 9]. These multicellular organisms form centimeter
long and unbranched filaments. Due to their specific living environment, they
have developed a unique metabolism which requires them to transport electrons
from one end of the filament to the other end. Recent experiments in which a
voltage difference is applied across the filament, show that these cable bacteria
are capable of conducting electrons over centimeter long distances, an organic
tour de force. The mechanism by which they achieve this, however, remains
elusive, and is the subject of ongoing research. One possibility is an incoher-
ent hopping of electrons between discrete sites along the conductive pathway
[10]. In this context, the use of impedance spectroscopy is a well tried tech-
nique to further characterise the electrical conduction. In the present work, we
investigate if and how such a stochastic hopping motion would be reflected in a
measurement of the impedance.

This paper is organised as follow. In section 2 we set the scene and briefly
discuss the electrical impedance. This section introduces the basic notions, and
the impedance of a simple electrical circuit is calculated. With hindsight, this
impedance will be of relevance in section 3. In that section, we introduce the
concept of stochastic impedance by studying the stochastic transport through
a quantum dot. Furthermore, we discuss the relation between stochastic and
electrical impedance. In section 4 we conclude and discuss several possibilities
for future research.

2. Electrical Impedance

Consider an electrical circuit composed of passive and linear components,
and driven by a sinusoidal voltage V (t) = V0 cos(ωt + ϕ) with frequency ω.
The linear dependence between voltage and current implies that the current
signal has the exact same frequency, albeit with a different phase. Combining
amplitude V0 and phase ϕ of the voltage signal into a single complex quantity
V = V0e

iϕ, the applied voltage can be written as the following real part

V (t) = Re
(
Veiωt

)
, (1)

and a similar expression holding for the induced current

I(t) = Re
(
Ieiωt

)
. (2)

The impedance is then defined as the ratio of these complex amplitudes

Z = V/I. (3)
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Figure 1: (left panel) A standard electrical circuit pertaining to an impedance spectroscopy
experiment, with the purpose to characterise the unknown impedance ZD. R and C represent
the resistance and capacity originating from the measurement setup. (right panel) Plot of the
imaginary and real part of the impedance Z of the circuit shown in the left panel, with ZD

replaced by a (pure) resistor RD.

For the basic electrical components this leads to:

ZR = R resistor R,
ZC = 1/(iωC) capacitor C,
ZL = iωL inductor L.

(4)

A major advantage of the complex impedance is that the familiar rules apply
for serial and parallel combination. As an example, consider the electric circuit
given in Fig. 1. This elementary circuit (and variants) is commonly found in
impedance experiments [11]. The resistor R and capacitance C can be seen
as originating from the contact resistance and capacitance of the measurement
setup, whereas ZD is the (unknown) impedance of the device of interest. The
total impedance of this circuit follows immediately:

Z = R+

(
iωC +

1

ZD

)−1
. (5)

The case of a purely resistive device, ie. for ZD ≡ RD, leads to

Z = R+
RD

1 + C2R2
Dω

2
− i ωCR2

D

1 + C2R2
Dω

2
. (6)

A visualization of the impedance can be done by a parametric plot of the real
and complex parts. In case of ZD ≡ RD, this results in the well-known semi-
circle shown in the right panel of Fig. 1. A quick calculation indeed confirms
that (

Re(Z)−R− RD
2

)2

+ Im(Z)2 =
R2
D

4
, (7)

hence the real and imaginary parts lie on a circle of radius RD/2 with its centre
on the real (horizontal) axis.

3. Stochastic Impedance: transport through a quantum dot

We now apply the concept of impedance to stochastic transport. We do
this by considering one of the simplest stochastic systems that allows a flow
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Figure 2: Sketch of the system. A single level quantum dot is connected by two reservoirs,
allowing the exchange of particles. Indicated in each reservoir is the Fermi distribution and
the chemical potentials. Changing the chemical potential in the left reservoir corresponds to
a raising/lowering of the distribution compared to the distribution in the right reservoir. The
temperatures in both reservoirs are equal.

of particles: a single quantum dot in simultaneous contact with two electron
reservoirs, see Fig. 2. A difference in chemical potential µl − µr = qV leads to
a flow of electrons via the intermediate quantum dot. We restrict ourselves to
a quantum dot with only one active level at energy E which is occupied by at
most one electron. Hence the quantum dot is either empty (unoccupied), with
probability p0(t), or occupied with probability p1(t). Changes in the state are
due to the exchange of electrons with the two reservoirs, and are described by
the following master equation

ṗ(t) =
(
W(l)(t) + W(r)(t)

)
p(t), (8)

with p(t) = (p0(t), p1(t)), and W(l/r)(t) is the time dependent transition matrix
associated with the left/right reservoir

W(l)(t) =

(
−kl(t) ll(t)
kl(t) −ll(t)

)
, (9)

and a similar expression for W(r)(t). Periodic driving is achieved by time de-
pendent chemical potentials: µr(t) for the right reservoir and µl(t) for the left
reservoir. The temperature is constant and for notational simplicity, we set
kBT = 1. The transition rates satisfy the local detailed balance condition

kl(t) = e−(E−µl(t))ll(t) ; kr(t) = e−(E−µr(t))lr(t). (10)

This ensures that when the quantum dot is connected to only one reservoir at
a constant chemical potential, the time evolution eventually leads to thermal
equilibrium.

Unlike the electrical setup, in which there is a single unique electrical current,
there are now two possible flows: jl describing the flow between the left reservoir
and the quantum dot, and jr describing the flow between the quantum dot and
the right reservoir:

jl = kl(t)p0(t)− ll(t)p1(t) ; jr = lr(t)p1(t)− kr(t)p0(t) (11)
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In a stationary non equilibrium situation, with constant but different chemical
potentials, these flows are identical, but in case of time dependent chemical
potentials, this is no longer the case.

In the context of impedance, we consider a time periodic driving. In that sit-
uation, eventually the flows and probabilities will become time periodic. Eq. (8)
can be solved exactly, and gives (after short-time initial-state corrections have
vanished) [12]:

p(t) = pad(t)−
∫ ∞
0

dτe−
∫ τ
0
ds[k(t−s)+l(t−s)]ṗad(t− τ), (12)

with

pad(t) =
1

k(t) + l(t)

(
l(t)
k(t)

)
, (13)

the steady-state distribution if the driving was fixed at time t, and

k(t) = kl(t) + kr(t) and l(t) = ll(t) + lr(t). (14)

The flow from the left reservoir into the quantum dot then reads:

jl =
kl(t)lr(t)− ll(t)kr(t)

k(t) + l(t)

+

∫ ∞
0

dτe−
∫ τ
0
ds(k(t−s)+l(t−s))(kl(t) + ll(t)

)
×

(
k̇(t− τ)l(t− τ)− k(t− τ)l̇(t− τ)

(k(t− τ) + l(t− τ))2

)
, (15)

and a similar expression for jr. As these expressions depend nonlinearly on the
chemical potentials, we first need to linearise them. Without loss of generality,
we set the chemical potential of the right reservoir constant, µr(t) = µ0, and the
driving ∆µ(t) of the left reservoir small enough µl(t) = µ0 + ∆µ(t). Expanding
kl(t) and ll(t) to first order in ∆µ(t)

ll(t) ≈ ll;0 + ∆µ(t)ll;1 ; kl(t) ≈ kl;0 + ∆µ(t)kl;1, (16)

while the rates associated with right reservoir are constant, kr(t) = kr;0 and
lr(t) = lr;0. The local detailed balance condition, Eq. (10), leads to the following
relation between the coefficients

kl;0
ll;0

=
kr;0
lr;0

; kl;1 = kl;0 +
kl;0ll;1
ll;0

. (17)

Linearising Eq. (15) in terms of the driving ∆µ(t) gives,

jl =
∆µ(t)kl;0lr;0
k0 + l0

+
kl;0l0(kl;0 + ll;0)

(k0 + l0)2

∫ ∞
0

dτe−(k0+l0)τ∆µ̇(t− τ), (18)
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with k0 = kl;0 + kr;0, l0 = ll;0 + lr;0. The corresponding result for jr reads:

jr =
∆µ(t)kl;0lr;0
k0 + l0

− kl;0l0(kr;0 + lr;0)

(k0 + l0)2

∫ ∞
0

dτe−(k0+l0)τ∆µ̇(t− τ). (19)

Similar expressions for the flows can be obtained when considering other config-
urations, for example ∆µl(t) = −∆µr(t) = ∆µ/2, which allows us to postulate
the following generic expression:

j = A1∆µ(t) +A2

∫ ∞
0

dτ e−(k0+l0)τ∆µ̇(t− τ). (20)

This flow is decomposed in two parts. The first term represents an ’adiabatic’
contribution, which is the steady-state flux associated with the gradient ∆µ(t)
fixed at time t. The flow associated with this term is directly proportional to
the gradient, and can be considered as an Ohmic contribution. The second term
is due to the finite speed of the driving. This term will lead to a phase difference
between the current j and gradient ∆µ. Introducing ∆µ(t) = µeiωt allows to
calculate the impedance Z = ∆µ(t)/j 1:

Z =

(
A1 +

iωA2

k0 + l0 + iω

)−1
. (21)

Since the sign of A1 can always be made positive by an appropriate choice for
the direction of the current, it is clear from this expression that the qualitative
dependence of Z on the parameters is fully determined by the ratio α ≡ A2/A1.
Introducing ω′ = ω/(k0 + l0) leads to

A1Z =
1 + ω′2(1 + α)− iω′α

1 + ω′2(1 + α)2
. (22)

The following result is immediate:(
Re(A1Z)− 2 + α

2 + 2α

)2

+ Im(A1Z)2 =

(
α

2 + 2α

)2

. (23)

That is, the real and imaginary part are always located on a circle with the
centre on the real axis. In fact, when the frequency is varied from 0 to ∞,
Re(Z) and Im(Z) always trace out a semicircle, since Im(Z) does not changes
sign, and starts/ends in 0. The analogy with the electrical circuit shown in
Fig. 1 with ZD ≡ RD follows immediate. A direct comparison with Eq. (6)
gives the following identification

R =
1

A1(1 + α)
; RD =

α

A1(1 + α)
; C =

A1(1 + α)2

α(k0 + l0)
. (24)

1In a thermodynamic setting the driving force for a particle current is the difference in
chemical potential divided by kT .
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While the analogy is there, the interpretation of such an identification is not
straightforward. In fact, depending on the value of α, the signs of R, RD and
C can change. These changes in sign can be used to identify three different
regions in the (Re(Z), Im(Z))-plane by varying α from −∞ to +∞. A graphical
representation of Eq. (22) is given in Fig. 3. The first region, for positive α
and shown as the blue region in Fig. 3, corresponds to positive values for R,
RD and C. When α = 0 (or A2 = 0) the current only contains the adiabatic
contribution. Hence Im(Z) = 0 and the radius of the semi-circle reduces to
zero. This result is equivalent with an electrical circuit containing a single
resistor R. As α decreases further, the values for R, RD and C can become
negative. For −1 < α < 0 (the red region in Fig. 3) we find R > 0 and both
RD and C negative (see for example [13, 14]). This region ends at α = −1. For
that specific value the radius of the semi-circle diverges and becomes a straight
vertical line. This impedance is equivalent to that of a series combination of a
resistor and inductor, as Eq. (21) reduces to

Z =
1

A1
+

iω

A1(k0 + l0)
. (25)

Finally, the third region, indicated by the green color in Fig. 3, corresponds to
α < −1. In this case R < 0, RD > 0 and C < 0 (the green region in Fig. 3).

These results show that the impedance in a stochastic setup, even for a sim-
ple system as considered here, can be quite diverse. The qualitative behaviour
strongly depends on the values of the various parameters. Unlike the electrical
setup, the characteristics of the impedance are not due to the presence of dif-
ferent components. In contrast, here they have a dynamic origin and are due to
the difference in time scales of the driving frequency ω and the stochastic events
as determined by the transition rates.

So far the calculations were done for general transition rates satisfying the
detailed balance condition, without further assumptions. A specific choice is
made by considering the connected thermal reservoirs as metallic leads described
by a Fermi-Dirac distribution (see for example [15]), leading to:

kl(t) = Γlf(xl) ; ll(t) = Γl (1− f(xl)) (26)

kr(t) = Γrf(xr) ; lr(t) = Γr (1− f(xr)) (27)

with

f(x) =
1

ex + 1
; xl =

E − µl(t)
kT

; xr =
E − µr(t)

kT
. (28)

The presence of E is only visible in the end results via a prefactor in the currents,
hence without loss of generality, we can set E = 0 and (as before) kT = 1.
Further setting µr(t) = µ0 = 0 and µl(t) = µeiωt we end up with the following
(linearised) currents:

jl =
µeiωtΓl(Γr + iω)

4 (Γl + Γr + iω)
(29)

and

jr =
µeiωtΓlΓr

4 (Γl + Γr + iω)
. (30)
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Figure 3: Plot of the imaginary and real part of the impedance Z given by Eq. (22) as a
function of the ratio α. The three regions (see text) are indicated by the boxed interval of α
values and by the different colours. Solid arrows show the direction of variation in α, dashed
arrows indicate specific values of α.

The corresponding impedances are

Zl =
4

Γl
+

4Γr
Γ2
r + ω2

− i 4ω

Γ2
r + ω2

(31)

and

Zr =
4

Γl
+

4

Γr
+ i

4ω

ΓlΓr
. (32)

These results show that it is not possible to assign a unique impedance to a
stochastic system. Unlike the electrical counterpart, the current here depends
on the location at which it is measured. A calculation of the impedance based
upon either jl or jr yields quite a different result. Comparing Zl with Eq. (6)
shows that this impedance is located in the blue region (α > 0) and hence is
equivalent to the circuit to the electrical circuit shown in Fig. 1 with ZD ≡ RD.
Zr on the other hand corresponds to the vertical dashed line in Fig. 3 with
α = −1.

4. Conclusions

In conclusion, we have introduced and applied the concept of impedance in
a stochastic setting, namely the stochastic flow of particles. For a single-level
quantum dot connecting two electron reservoirs, the impedance can be calcu-
lated exactly. Even this seemingly simple setup displays a diverse response to
an alternating driving. For certain parameter values, the impedance is equiv-
alent to that of an actual electrical circuit. An interesting question for further
research would be how general this result is, i.e., to what extend is it possible to
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map a stochastic system on an equivalent electrical circuit and vice versa and
whether a general procedure exists to do this mapping. This might be done
using general approaches such as macroscopic fluctuation theory [16, 17].

Another open question, is whether an actual impedance measurement on
an experimental system (such as nanowires or the cable bacteria mentioned
in the introduction) shows any signs of the underlying transport mechanism.
This is clearly of interest, as it leads to new insights concerning the internal
structures of the experimental system at hand. Results obtained so far for cable
bacteria only show a purely resistive behaviour [18] up to frequencies of 1MHz.
Comparing this frequency with the typical hopping rates applicable in bacterial
nanowires, which are of the order of 1013 s−1 (see for example [19]), shows that
these driving frequencies are rather low. And as a result, the imaginary part of
the impedance, responsible for the capacitive signature, becomes insignificant.

Apart from the biological relevance, stochastic impedance also has a funda-
mental appeal. The field of thermodynamics has made tremendous progress in
the last decades with the development of stochastic thermodynamics [20, 21]. In
particular, the analysis done in this work bears similarities with the framework
for linear stochastic thermodynamics for periodically driven systems [22, 23, 24,
25]. In these works, the thermodynamic quantities such as for example heat,
(chemical) work and entropy have been defined as time-averages over one period
of the driving signal. The use of impedance allows to describe these quantities in
a fully time dependent setting, and might reveal new characteristics concerning
the thermodynamics of small-scaled systems.
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