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Abstract

Using the uniform most powerful unbiased test, we observed the sales distribution of consumer

electronics in Japan on a daily basis and report that it follows both a lognormal distribution and

a power-law distribution and depends on the state of the market. We show that these switches

occur quite often. The underlying sales dynamics found between both periods nicely matched a

multiplicative process. However, even though the multiplicative term in the process displays a size-

dependent relationship when a steady lognormal distribution holds, it shows a size-independent

relationship when the power-law distribution holds. This difference in the underlying dynamics is

responsible for the difference in the two observed distributions.
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I. INTRODUCTION

Since Pareto pointed out in 1896 that the distribution of income exhibits a heavy-tailed

structure [1], many papers has argued that such distributions can be found in a wide range

of empirical data that describe not only economic phenomena but also biological, physical,

ecological, sociological, and various man-made phenomena [2]. The list of the measurements

of quantities whose distributions have been conjectured to obey such distributions includes

firm sizes [3], city populations [4], frequency of unique words in a given novel [5-6], the

biological genera by number of species [7], scientists by number of published papers [8], web

files transmitted over the internet [9], book sales [10], and product market shares [11]. Along

with these reports the argument over the exact distribution, whether these heavy-tailed

distributions obey a lognormal distribution or a power-law distribution, has been repeated

over many years as well [2]. In this paper we use the statistical techniques developed in this

literature to clarify the sales distribution of consumer electronics.

To illustrate the heavy-tailed distribution’s appearance, random growth processes are

widely used as the approximation of its underlying dynamics. Gibrat, who built upon

Kapteyn and Uven’s work, was the first to propose the simplest form of this type of model,

usually known as the multiplicative process, to describe the appearance of heavy-tailed

distributions in firm size distributions [12]. His work is significant in market structure

literature [13]. Even 70 years after Gibrat’s book, more and more measures of quantities are

found that are conjectured to obey this type of process.

Among recent works, Fu et al. [14] is crucial because it was perhaps the first work to

consider the hierarchical structure of institutions. No one denies that firms grow in size and

scope and that such growth is heavily influenced by the successful launch of new products.

Fu et al. modeled products as elementary sales units assuming that they evolve based on a

random multiplicative process. They extended the usual model of proportional growth to

illustrate the size variance relationship found in growth distributions at different levels of

aggregation in the economy by considering hierarchical structure.

Many studies have analyzed product sales. Sornette et al. [10] used a book sales database

from Amazon.com and performed a time series analysis of book sales by classifying endoge-

nous and exogenous shocks. With a database of newspaper and magazine circulation, Picolli

et al. [15] used the multiplicative process to illustrate the link between tent-shaped log
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growth distributions and the power-law distributions found in the growth of newspaper and

magazine sales. However the exact dynamics of product sales remains an open question.

In this paper we clarify the distribution and the dynamics of the sales of consumer elec-

tronics using a unique database of product sales from the Japanese consumer electronics

market. The data were recorded daily, making it possible to track the actual sales volume of

each product in a more detailed manner and to model the dynamics from a more empirically

driven approach. We numerically analyzed more than 1200 sales distributions recorded on a

daily basis from October 1 2004 to February 29 2008. Using the uniform most powerful test,

we statistically show that sale distributions differ among different periods and occasionally

exhibit a power-law behavior. We also show with the multiplicative process that the under-

lying ingredients of stochastic growth itself are different among these periods. Moreover our

findings are compatible with the mathematical results reported by Ishikawa et al. [16].

The paper is organized as follows. Section 2 provides an overview of our data set. Sec-

tion 3 introduces the sales distribution of consumer electronics, and Section 4 illustrates our

statistical technique regarding the verification of a true power-law distribution. Using this

statistical technique, in Section 5, we show why the power-law behavior found in Section 3

can be considered a genuine power-law behavior. Section 6 reports how sales distribution

changes over time. Sales distribution exhibits both power-law and lognormal distributions.

Section 7 focuses on the underlying dynamics of sales, providing another source of evidence

that the dynamics of sales differs among different periods. Section 8 provides further dis-

cussion and a conclusion.

II. SALES DATA OF CONSUMER ELECTRONICS

Consumer electronics chains sell products such as TVs, personal computers, audio devices,

refrigerators, digital cameras, air conditioners, and DVD recorders. Their annual revenue

amounts to 5.9 trillion yen in Japan. In this paper we investigate distribution using the sales

data of digital cameras from 23 different consumer electronics chains in Japan collected by a

private company called BCN Inc. This dataset covers about 45% of all consumer electronics

chains in Japan including over 1,400 retail stores [17]. The data were recorded daily covering

the period from October 1 2004 to April 30 2008.
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III. SALES DISTRIBUTION OF CONSUMER ELECTRONICS

We focused on the top selling products using cumulative distribution P>(S) defined as

P>(x) := Pr[X ≥ x] =

∫

∞

x

f(x′)dx′ (1)

where f(x) describes the probability density function. The cumulative distribution of the

sales volume of digital cameras on April 1 2005 is shown on a double logarithmic scale

(Fig. 1). It exhibits a heavy-tailed structure. To investigate the exact characteristic of

its distribution, we also depict the maximum likelihood estimate of a lognormal distribu-

tion, assuming that all values above 1 obeyed a lognormal distribution and the maximum

likelihood estimate of a power-law distribution, assuming that all values above 16 obeyed

a power-law distribution. A lognormal distribution fits nicely for almost all points except

the last three. For the points above 16 including these last three points, at first glance it

seems that a power-law distribution fits better. In this paper we numerically judge whether

a simple lognormal distribution or a lognormal distribution with a power-law tail displays

a better fit using the statistical technique developed by Malevergne et al. [18]. The impor-

tance of distinguishing between these two distributions lies in the fact that not only does

the tail describe the top selling products but these products which seems to exist in the

power-law region account for about 80% of total sales; identifying the dynamics of these top

selling products is important.

IV. TESTING A POWER-LAW DISTRIBUTION AT THE TAIL

To judge whether a power-law distribution or a lognormal distribution displays a better

fit for values over a threshold, one natural way is using a model selection technique between

a power-law distribution and a singly truncated lognormal distribution that puts the trun-

cation point identically as the lower bound of a power-law distribution (for instance, see

Clauset et al. [19]). The basic change of the variables shows that a logarithm of a random

variable, which obeys a power-law distribution, is an exponential distribution, but a loga-

rithm of a singly truncated lognormal distribution is a singly truncated normal distribution.

Hence the test of a power law against a singly truncated lognormal is equivalent to testing

an exponential distribution against a singly truncated normal distribution in the log-size

distribution of the original measure of quantity.
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Next, as shown by Castillo [20], an exponential distribution and a singly truncated normal

distribution have the following relationship:

fSTN(x;α, β, A) → fexp(x;λ)1x>A as (α, β) → (λ, 0), (2)

where A denotes the truncation point and α and β are the parameters of a singly truncated

normal distribution with the following relationship:

α := −
µ− A

σ2
β :=

1

2σ2
(3)

where µ is the usual mean, σ is the standard deviation. This implies that an exponential

distribution is in the boundary line of a singly truncated normal distribution. This rela-

tionship illustrates why a singly truncated normal distribution (singly truncated lognormal

distribution) so closely resembles an exponential distribution (power-law distribution) if β

becomes incresaingly close to 0. Fig. 2 shows the maximum likelihood estimate assuming an

exponential distribution and a singly truncated normal distribution for the log-size distri-

bution of digital camera sales on April 1 2005, setting the truncation point as A = log(16).

Observe from the maximum likelihood estimate that a singly truncated normal distribution

with sufficiently small closely resembles an exponential distribution.

Considering this relationship, a natural test to distinguish an exponential distribution

from a singly truncated normal alternative is to test the departure from the exponential form

(null hypothesis) against the singly truncated normal alternative (alternative hypothesis)

using the likelihood ratio test that evaluates statistic

W = 2(L(θ̂)− L(θ̃)) (4)

where L denotes log-likelihood function θ̂ = (α̂, β̂), which is the maximum likelihood estimate

under the full model, and θ̃ = (λ̃, 0) = ( 1
x̄
, 0) in its exponential form. Castillo and Puig [21]

showed the following: 1) the likelihood ratio test is the uniform most powerful unbiased test

in this case; 2) the likelihood ratio test could easily be performed using the clipped coefficient

of variation (i.e. c = min{1, c̄}, where c̄ is the empirical coefficient of variation); and 3)

the critical region of the test could be approximated with a high degree of accuracy even

for small samples using saddle point approximation. Malevergne et al. [18], who discussed

whether a lognormal suffices or a power-law distribution shows a better fit for the upper
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tail of the size distribution of US city size data, concluded that the upper tail of the size

distribution of US cities is in fact a power law.

Figure 3 shows the test using the sales distribution found in April 1 2005. Starting from

the top 10 products we recursively calculated the p-value of the test using Castillo and Puig’s

method. We then calculated the point where the p-value of the test first falls within the

critical region (in this paper, α = 0.1) minus 1. For the sales distribution found in April 1

2005 this point is 68. This implies that for the 68 points above this threshold the power-law

distribution is not rejected and shows that the upper tail of the distribution of sales found

in April 1 2005 was well fit by a power-law distribution.

V. DISTRIBUTION ANALYSIS OF SALES

In a small sample data set, we often observe ”power-law behavior” (straight line in the

cumulative distribution depicted on a double logarithmic scale) even if it were actually

sampled from a theoretical lognormal distribution. Fig. 4 shows two cases that plot the

cumulative distribution of synthetic data sets randomly sampled from a theoretical lognormal

distribution with the same parameters as the sales distribution of digital cameras on April

1 2005 (Fig. 1). In the one case depicted in the left panel, note that the tail follows a

lognormal distribution. However, in the other, even if we used the statistical technique

explained in Section 4, the lower bound estimated from the procedure returns a value of 77

for the distribution denoted in circles, confirming a power-law behavior at the tail.

Hence to judge whether distributions found in a certain period are well described by a

power-law distribution we must consider all the distributions found during that period. The

left panel of Fig. 5 shows the estimated lower bound from the 107 dates during January 22

2005 to May 8 2005 and the right panel shows the estimated lower bound of the first 107

synthetic data sets randomly sampling from a theoretical lognormal distribution with the

same parameter as the sales distribution found on April 1 2005. The lower bound from the

real data is clearly quite stable, which proves that the power-law behavior found in the sales

distribution of April 1 2005 reflected a generating process that produces a genuine power-law

behavior and not the result of a process that generates a lognormal distribution. Fig. 6 also

shows their probability density, confirming that the behaviors found in Fig. 5 are also quite

statistically different. Fig. 7 shows the time evolution of the power-law exponent during
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January 22 2005 to May 8 2005. The power-law exponent is stable and fluctuates around

value µ = 1.3 ± 0.1 which is quite close to the power law exponent found for city size [18]

and wealth [22]. The period when the power-law behavior becomes stable was repeatedly

found and shows that the lognormal distribution does not sufficiently describe the sales

distribution of digital cameras on a daily basis.

VI. HOW DISTRIBUTION CHANGES OVER TIME

Next we focus on all the other dates in our data set. Fig. 8 shows their estimated rank

thresholds from October 1 2004 to February 29 2008. The period at which we successively

observed high estimated rank thresholds is not only January 22 2005 to May 8 2005 but

is also found in other parts of the data. However, there is a period when the estimated

rank threshold does not behave as if a power-law behavior really exists at its distribution

tail: period January 16 2006 to August 8 2006 (Fig. 8). Fig. 9 shows a typical cumulative

distribution observed during this period. The lognormal distribution adequately explains

the sales distribution for all points. Fig. 10 also shows the histogram of the estimated

rank threshold of this period. For this period a simple lognormal distribution adequately

describes the distribution of sales. Therefore we conclude that sales distribution reflects

when they were observed.

VII. SALES DYNAMICS OF CONSUMER ELECTRONICS

It is well known that proportional growth principle applies to firm growth [23]. Fu et al

showed that not only does this principle apply to firms, but it also applies to different aggre-

gation of the economy from countries, industry sector, and to products showing theoretically

that this stems from its elementary sale unit (i.e. sales of products) evolving accroding to

a random multiplicative process [14,24]. Sakai and Watanabe investigated further this issue

confirming that dynamics of products determines firms growth by analyzing sales of products

sold at grocery stores in Japan [25]. Picoli et al used the multiplicative process to model the

dynamics of circulation of newspapers and magazines [15]. Motivated by these literature we

would use

S(t+ 1) = |b(t)S(t) + ǫ(t)| ǫ(t) ∼ Gaussian(0, σ) (5)
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to describe the underlying dynamics of sales. This assumes a preferential like model for

sales which requires age and average sales of products to correlate in a exponential fashion

if the distribution of lifetime is exponential. It is reported that the lifetime distribution

often follows exponential functions in competitive markets [26]. Although this relationship

could not be easily verified directly with products itself because lifetime of digital camera is

short (usually 6 to 12 month) due to product turnover, this could be roughly verified when

we observe the average daily market share of brands during there lifetime with their age

(fig.11).

If multiplicative noise b is independent of the former size of S, then S leads to a steady

power-law distribution [27]. However if it is size dependent, S departs from a power-law

distribution [28]. In this section, we show that sales dynamics follow this multiplicative

process and use it to reexamine the differences in the sales distribution found in Section 6

from the usually assumed elements of a stochastic growth process.

When BCN Inc. collected this dataset, they made new contracts with other stores to

offer sales data and generated an apparent artificial change of product sales along time.

To cope with this problem, we introduce normalized sales, S̄i(t) = Si(t)/
1
n

∑n

i=1 Si(t), in-

stead of actual sales to compare two distant periods. Here, n is number of products in the

market. All the results in this section can also be reproduced using market share, Ŝi(t) =

Si(t)/
∑n

i=1 Si(t), as well. To begin our empirical investigation we cut the scatter plots of

both periods into equal logarithmic bins: 0.7 ≤ S̄low < 2.175 ≤ S̄mid < 6.76 ≤ S̄high < 21

(Fig. 12). The basic idea is to observe whether the distribution of sales growth for one week,

S̄i(t+1)
S̄i(t)

, depends on S̄i(t).

We saw in Section 6 that the tail property of the sales distribution follows a power law

for January 22 2005 to May 8 2005 and a lognormal for January 16 2006 to August 8 2006

(Fig. 8). Hence, as shown in Fig. 13, we compare the distribution of log sales growth for

1 week, log S̄i(t+1)

S̄i(t)
, observed during periods January 22 2005 to May 8 2005 and January 16

2006 to August 8 2006. Note that while the positive values of the middle and high areas are

quite different during January 16 2006 to August 8 2006, they seem to coincide for the log

growth distributions observed during January 22 2005 to May 8 2005. Note also that log

growth distribution could be well described as a double exponential distribution and that

for the negative log growth rates, the probability density coincides. This suggests that while

the multiplicative term for the high and middle areas is size independent during January
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22 2005 to May 8 2005, it is size dependent during January 16 2006 to August 8 2006 and

shows different behaviors.

The same observation can also be made using the two sample Kormogorv-Smirnov tests.

Table 1 shows the p-value from the test for two pairs, ”high vs middle” and ”middle vs

low”, for two periods, January 22 2005 to May 8 2005 and January 16 2006 to August 8,

respectively. The only pair for which the test does not reject the null hypothesis is the ”high

and middle” pair found in January 22 2005 to May 8 2005.

From these observations, the sales dynamics can be described by the multiplicative pro-

cess:

S̄(t+1) = |b(S̄(t))S̄(t)+ǫ(t)| b(S̄(t)) =







blow(S̄(t)) if S̄(t) < 2.175

bmid(S̄(t)) = bhigh(S̄(t)) if S̄(t) ≥ 2.175
(6)

where t describes the time during January 22 2005 to May 8 2005 and

S̄(t+ 1) = |b(S̄(t))S̄(t) + ǫ(t)| b(S̄(t)) =



















blow(S̄(t)) if S̄(t) < 2.175

bmid(S̄(t)) if 2.175 ≤ S̄(t) < 6.76

bhigh(S̄(t)) if 6.76 ≤ S̄(t)

(7)

where t describes the time during January 16 2006 to August 8 2006. Here, ǫ(t) ∼

Gaussian(0, σ). Where S̄i(t) is large, the log growth distribution displays a size-independent

relationship with S̄i(t) during January 22 2005 to May 8 2005, but it displays a size-

dependent relationship with S̄i(t) during January 16 2006 to August 8 2006. As shown

by Ishikawa et al. [16], if the log growth distribution is well described by a double expo-

nential distribution and the probability density coincides for negative log growth rates but

exhibits a size dependent relationship for positive values, then the multiplicative process de-

scribed in Eq. (7) will generate a steady lognormal distribution. Recall that during period

January 16 2006 to August 8 2006 this condition is satisfied. On the other hand, as shown

by Takayasu et al. [27], Eq. (5) theoretically generates a power-law distribution when the

growth distribution is independent of S̄i(t). Therefore while Eq. (6) generates a distribution

with a power-law tail, Eq. (7) generates a simple lognormal distribution that explains the

difference in the underlying dynamics for the two periods in which we observed different

distributions.
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VIII. CONCLUSION AND FURTHER DISCUSSIONS

This paper showed how the sales distributions of products evolves when we observed

them daily. We showed that the distribution of the top ranking products switches between

lognormal and power-law distributions depending on the timing, suggesting that the un-

derlying dynamics among these periods differs. This structural difference in the underlying

dynamics was well established from the usually assumed ingredients of the growth process

as well providing another source of evidence that the dynamics between these two periods

differ. Our result is mathematically compatible with Ishikawa et al. [16], who illustrated the

appearance of both power-law and lognormal distributions under a multiplicative process.

We only investigated digital cameras in this paper; however such findings can be established

with many other products in consumer electronics markets as well.

An interesting question to ponder is why the switch behavior found in Section 6 occurred.

In our case the main source of the switch can probably be explained by product turnover.

In product markets such as the digital camera market product life cycle is short taking

only about 6 to 12 month for a particular brand to change from an old product to new one

due to product competition. Those product turnover usually takes place on February and

August before the aggregate demand for digital cameras starts to rise. Fig. 14 shows the

time evolution of the number of products and the lower bound. As denoted in fig. 14, the

periods coincide when we observed a steady power-law behavior and a rapid increase in the

number of products (i.e. when rapid product turnover take place), explaining the switch

behavior from a lognormal to a power law. When a large number of new products are

born simultaneously, sales distributions are generated by a mixture of old and new products

making sales dynamics to be more accurately described as Gibrat’s law (i.e. size independent

growth rate). An empirical study taking these product turnover effect is future work.

Since researchers are equipped with more detailed data from actual markets we can

investigate actual market coordination in a more detailed sense. These studies are important

not only for economics literature but also for physics because such social systems as the

market are one natural laboratory for investigating coordination under complex systems.

We hope this line of studies continues to be fruitful for both physics and economics.
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FIG. 1: Cumulative distribution of sales volume of digital cameras sold on April 1 2005. Slashed

line shows fitted maximum likelihood estimate assuming all points above 1 obeyed a lognormal

distribution, and continuous line shows fitted maximum likelihood estimate assuming all points

above 16 obeyed a power-law distribution. Parameters of both distributions are depicted as well.

14



FIG. 2: Log-size distribution of sales distribution found on April 1 2005 for values over A = log(16).

Maximum likelihood estimates of both exponential and singly truncated normal distributions are

depicted along with their parameters.
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FIG. 3: Right panel depicts p-value of test of null hypothesis where distribution’s upper tail is

power against alternative singly truncated lognormal distribution as a function of rank threshold.
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FIG. 4: Two examples of randomly sampling from a lognormal distribution with parameters µ =

1.97, σ = 1.36. There are 250 points in both distributions. Note the power-law behavior at the

distribution’s tail denoted by circles. Estimated lower bound for crosses is 9 and 77 for circles.
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FIG. 5: Left panel shows estimated rank threshold from distribution of sales volume from January

22 2005 to May 9 2005. Right panel shows estimated rank threshold for first 107 synthetic data

sets (LN(1), LN(2), ..., LN(107)) obtained in experiment. Estimated rank threshold of 7th and

22nd data sets denoted as A and B are used to depict Fig. 4.
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FIG. 6: Histogram comparison of estimated rank threshold. Circles denote histogram from syn-

thetic data sets, and diamonds denote histogram from real data.
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FIG. 7: Time evolution of power-law exponent found during period January 22 2005 to May 8

2005.
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FIG. 8: Time evolution of estimated rank threshold for entire period (October 1 2004 to February

29 2008).
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FIG. 9: Cumulative distribution of sales volume of digital cameras sold on March 27 2006. Con-

tinuous line shows fitted maximum likelihood estimate assuming that all points above 1 obeyed a

lognormal distribution. Maximum likelihood estimate of parameters is written inside parentheses.
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FIG. 10: Histogram of estimated rank threshold from real data (January 16 2006 to August 22

2006).
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FIG. 11: Average daily market share of brands versus its age in semilog scale. Continuous line

shows the least squares fit for the exponential hypothesis.
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FIG. 12: Cutting scatter plots into equal logarithmic bins. Left panel depicts sales of successive

weeks from period January 22 2005 to May 8 2005, and right panel depicts sales of successive weeks

from period January 16 2006 to August 8 2006.

25



FIG. 13: Left panel shows distribution of log growth for one week for period January 22 2005 to

May 8 2005. Right panel shows distribution for January 16 2006 to August 8 2006. Although right

panel clearly seems size dependent, between the middle and high areas, the left seems to coincide.
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FIG. 14: Estimated rank threshold for all dates with time evolution of number of products on

market.
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KS Test

Jan 22 – May 8 2005 Jan 16 – Aug 8 2006

Low vs Mid 2.10E-13 2.58E-14

Mid vs High 0.324 1.00E-05

TABLE I: Result of two sample Kormogorv-Smirnov test. Numbers inside show p-values. Rows

represents pairs and columns denote period. Null hypothesis states that two distributions are

identical, and the alternative states that they are different.
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